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Preface

…In nature, where chance also seems to reign, we have long ago
demonstrated in each particular field the inherent necessity and
regularity that asserts itself in this chance.

F. Engels

A vast concourse of events and phenomena occur in the world around
us. The events are interrelated: some are effects or outcomes of others which
are, in turn, the causes of still others. Gazing into this gigantic whirlpool of
interrelated phenomena, we can come to two significant conclusions. One is
that there are both completely determined (uniquely defined) outcomes and
ambiguous outcomes. While the former can be precisely predicted, the latter
can only be treated probabilistically. The second, no less essential conclusion
is that ambiguous outcomes occur much more frequently than completely
determined ones. Suppose you press a button and the lamp on your desk
lights up. The second event (the lamp lights up) is the completely determined
result of the first event (the button is pressed). Such an event is called a
completely determined one. Take another example: a die is tossed. Each face
of the die has a different number of dots. The die falls and the face with four
dots ends up at the top. The second event in this case (four dots face-up) is
not the completely determined outcome of the first event (the die is tossed).
The top face may have contained one, two, three, five, or six dots. The event
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8 preface

of appearance of the number of dots on the top face after a die is tossed is an
example of a random event. These examples clearly indicate the difference
between random and completely determined events.

We encounter random events (and randomness of various kinds) very
often, much more frequently than is commonly thought. The choice of the
winning numbers in a lottery is random. The final score of a football match
is random. The number of sunny days at a given geographical location varies
randomly from year to year. A set of random factors underlies the completion
of any service activity: delivery ambulance arrival, telephone connection, etc.

Maurice Glaymann and Tamas Varga have written an interesting book
called Les Probabilités à l’école (Probability in Games and Entertainment), in
which they make an interesting remark:

“When facing a chance situation, small children think that it is possible
to predict its outcome. When they are a bit older, the believe that
nothing can be postulated. Little by little they discover that there are
patterns hiding behind the seeming chaos of the randomworld, and
these patterns can be used to get their bearings in reality.”

There are three distinct stages here: lack of understanding of the random at
first, thenmere confusion, and finally a correct viewpoint. Let us forget small
children for a time and try to apply this to ourselves. We shall have to recognize
that frequently we stop at the first stage in a simple-minded belief that any
outcome can be precisely predicted. The misconception that randomness is
simply equal to chaos, or the absence of causality, has lasted a long time. And
even now not everybody clearly appreciates that the abundance of random
events around us conceal definite ( probabilistic) patterns.

These ideas prompted me to write this book. I want to help the reader
discover for himself the probabilistic nature of the world around us, to in-
troduce random phenomena and processes, and to show that it is possible to
orient oneself in this random world and to operate effectively within it.
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This book begins with a talk between myself and an imaginary reader
about the role of chance, and ends with another talk about the relationship
between randomness and symmetry. The text is divided into two major parts.
The first is on the concept of probability and considers the various applica-
tions of probability in practice, namely, making decisions in complicated
situations, organizing queues, participating in games, optimizing the control
of various processes, and doing random searches. The basic notions of cyber-
netics, information theory, and such comparatively new fields as operations
research and the theory of games are given. The aim of the first part is to con-
vince the reader that the randomworld begins directly in his own living room
because, in fact, all modern life is based on probabilistic methods. The second
part shows how fundamental chance is in Nature using the probabilistic laws
of modern physics and biology as examples. Elements of quantummechanics
are also involved, and this allows me to demonstrate how probabilistic laws
are basic to microscopic phenomena. The idea was that by passing from the
first part of the book to the second one, the reader would see that probability
is not only around us but is at the basis of everything.

In conclusion Iwould like to expressmy gratitude to everyonewhohelped
me when writing this book. I.I. Gurevich, Corresponding Member of the
USSR Academy of Sciences, gave me the idea of writing this text and gave me
a number of other provoking ideas concerning the material and structure of
the book. B.V. Gnedenko, Member of the USSR Academy of Sciences, G.Ya.
Myakishev, D.Sc. (Philosophy), and O.F. Kabardin. Cand. Sc. (Physics and
Mathematics) read the manuscript thoroughly and made valuable remarks.
V.A. Ezhiv and A.N. Tarasova rendered me constant advice and unstinting
support the whole time I was preparing the text.





Part I

Tamed Chance





Introduction

And chance, inventor God …
A. S. Pushkin

A Discussion on the Role of Chance

author: “You wrote some nice words about chance in the Preface.
In spite of them, I still think chance plays a negative role on the
whole. Naturally, there is good luck, but everybody knows it is
better not to count on it. Chance interferes with our plans, so
it’s better not hang on it, we should rather ward it off as much
as possible.”

author: “That is exactly the traditional attitude towards the ran-
dom. However, it is an attitude we must clearly review. First of
all, is it really possible to get by without the random?”

reader: “I don’t say that it’s possible. I said we should try.”

author: “Suppose you work at an ambulance centre. Obviously,
you cannot foresee when an ambulance will be needed, where it
will be necessary to send it to, and howmuch time the patient
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4 introduction

will require. But a practical decision depends on all of these
points. Howmany doctors should be on duty at anyone time?
On the one hand, they should not be idle waiting for calls for
long periods of time, yet on the other hand, patients should
not have to remain without aid for too long. You cannot avoid
chance. What I am trying to say is: we cannot eliminate chance,
and so we must take it into account.”

reader: “True, we have to make peace with chance in this example.
However, it still is a negative factor.”

author: “Thus, we see that sometimes we have to take chance into
consideration rather than control it. But we can go further.
We can discover situations in which chance becomes a positive
factor rather than a negative one, so that it is desirable to raise
the level of the random threshold.”

reader: “I don’t understand you.”

author: “Of course, chance occasions interfere with our plans. At
the same time because it makes us new solutions and improve
our ability to create”.

reader: “Do youmean an improvement is obtained by overcoming
difficulties?”

author: “The main point is that randomness can create new pos-
sibilities. An American writer has written an interesting science
fiction story. A group of scientists with various disciplines is
officially informed that a sensational discovery has been made,
but unfortunately the discoverer died in an explosion during a
demonstration of the phenomenon and thus the secret was lost.
In reality neither the invention nor the inventor ever existed.
The scientists were presented with the evidence of a tragedy:
indistinct fragments of records, a library, and an equipped labo-
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ratory. In other words, the scientists were given a vast quantity
of unconnected information with chance data from various
fields of science and technology. The evidence could be called
informational noise. The scientists were certain a discovery had
been made, and therefore the target was achievable. They uti-
lized all the information at their disposal and ‘revealed’ the secret
of the non-existing invention. Wemight say that they succeeded
in sifting information from the noise.”

reader: “But that’s only a science fiction story.”

author: “True. However, the idea behind the story is far from
being fiction. Any discovery is related to the use of random
factors.”

reader: “I don’t think anyone can discover anything important
unless he or she has a professional grasp of the subject.”

author: “I think so too. Moreover, a discovery requires both ex-
pertise on the part of the researcher and a certain level of the
development within the science as a whole. And yet …, random
factors play a fundamental role in that.”

reader: “As I understand, theword fundamentalmeans something
primary, something at the basis. Can you apply the term funda-
mental to something random? I admit that randomness may
be useful. But can it be fundamental? In the last analysis, we
deal with random variables when there is something we do not
know and cannot take into account. ”

author: “By believing that randomness is related to inadequate
knowledge, you make it subjective. It follows that you believe
that randomness appears, as itwere, on the surface and that there
is nothing random at the basis of phenomena. Is it correct?”
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reader: “Precisely. That is why we cannot assert randomness is
fundamentality. As science develops, our ability to take different
factors into account increases, and the result is that the domain
of random variables will gradually recede. There is sense in
saying that science is the enemy of chance. ”

author: “You’re not quite right. Indeed, the advance of science en-
hances our ability to make scientific predictions, that is, science
is against the random factor. But at the same time, it turns out
that while our scientific knowledge becomes deeper, or, more
accurately, while we look at the molecular and atomic aspects of
phenomena, randomness not only does not become less impor-
tant, bit on the contrary, it reigns supreme. Its existence proves
to be independent of the degree of our knowledge. Randomness
reveals its fundametality at the level of the microcosm.”

reader: “This is the first time I’ve heard someone say that. Please
tell me more.”

author: “Let me say at once that this topic has had a long history.
It was first formalized in Ancient Greece with two approaches
to the random being stated. The two views are associated with
the names of Democritus and Epicurus. Democritus identi-
fied the random with the unknown, believing that Nature is
completely deterministic. He said: People have created an idol
out of the random as a cover for their inability to think things
out. Epicurus considered that the random is inherent in various
phenomena, and that it is, therefore, objective. Democritus’s
point of view was preferred for a long time, but in the 20th cen-
tury, the progress of science showed that Epicurus was right.
In his doctoral thesis Difference Between the Democritian and
Epicurian Philosophy on Nature (1841), Karl Marx positively
evaluated Epicurus’s view of the random and pointed out the
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deep philosophical significance of the teachings of Epicurus on
the spontaneous displacement of atoms. Of course, we should
not exaggerate the contribution of Epicurus to our understand-
ing of the random because he could only guess.”

reader: “It turns out that I presented Democritus’s views on the
random without knowing it. But I would like to have some
concrete examples showing the fundamentality of the random.”

author: “Consider, for instance, a nuclear-powered submarine.
How is the engine started?”

reader: “As far as I understand it, special neutron-absorbing rods
are drawn from the core of the reactor. Then a controlled chain
reaction involving the fission of uranium nuclei begins …”

author: “(interrupting) Let us try and see how everything begins.”

reader: “After entering a uranium nucleus, a neutron triggers its
disintegration into two fragments and another neutron is re-
leased. The neutrons split two more uranium nuclei; four neu-
trons are then set free, which in turn split fourmore nuclei. The
process develops like an avalanche.”

author: “All right. But where does the first neutron come from?”

reader: “Who knows? Say, they come from cosmic rays.”

author: “The submarine is deep under water. The thick layer of
water protects it from cosmic rays.”

reader: “Well then, I don’t know …”

author: “The fact is that a uranium nucleus may either split be-
cause a neutron enters it or it may decay spontaneously. The
process of spontaneous nuclear fission is random.”
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reader: “But maybe spontaneous nuclear fission is caused by fac-
tors we do not know about yet.”

author: “This is something physicists have been trying to solve.
Many attempts have been made to find the hidden parameters
which govern the processes in the microcosm. It has been con-
cluded that there are no such parameters, and therefore ran-
domness in the microcosm is fundamental. This cornerstone
problem is thoroughly treated in quantummechanics, a theory
which appeared in the early 20th century in connection with
research on atomic processes.”

reader: “The only thing I know about quantummechanics is that
it describes the laws governing the behaviour of elementary
particles.”

author: “We shall talk about quantummechanics in more detail
later. Let me only note here that it demonstrates the fundamen-
tal role of spontaneous processes and, therefore, demonstrates
the fundamentality of the random. The operation of any ra-
diation generator, from a vacuum tube to a laser, would be
impossible without spontaneous processes. They are funda-
mental as the trigger without which the radiation generation
would not start.”

reader: “And yet, it is difficult for me to believe that randomness
is fundamental. You mentioned a nuclear-powered submarine.
When the captain orders that the engines be turned on, he does
not rely on a lucky chance. An appropriate button is pressed,
and the engines start (if they are in good condition). The same
can be said when a vacuum tube is turned on. Where is the
randomness here?”

author: “Nevertheless, when we consider phenomena in the mi-
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crocosm, the processes are triggered by random factors.”

reader: “However, we generally deal with processes occurring in
the macrocosm.”

author: “Firstly, while studying the world around us and trying
to comprehend its cause and effect relations, we must address
the atomic level, i. e., the level of microcosm phenomena. Sec-
ondly, the randomness inmicrocosmic phenomena is essentially
reflected in the processes observed at the macrocosmic scale.”

reader: “Can you give me an example when the fundamentality
of randomness reveals itself at the macrocosmic scale?”

author: “ Evolution, which is a continuous process in both the
plant and animal kingdoms, may serve as an example. Evolution
relies onmutation, i.e., randomchanges in the structure of genes.
A randommutation may be rapidly spread by the reproduction
of the organisms themselves. It is essential that selection occurs
simultaneously with mutation. The organisms which contain
the random gene are then selected to that those best fitted to
their environment survive. In consequence, evolution requires
the selection of random gene changes.”

reader: “I don’t quite understand this business of selection.”

author: “Here’s an example. The flowers of a certain orchid look
like a female wasp. They are pollinated by male wasps which
take the flowers to be females. Suppose a mutation occurs, and
the shape and colour of the flower are changed. The flower will
then remain unpollinated. The result is that the mutation is not
passed on to the new generation. It may be said that selection
rejected the mutation which changed the outward appearance
of the flower. There was a species of orchid which became a self-
pollinator, the flowers of this species rapidly acquired diverse
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shape and colour owing to the mutation.”

reader: “As far as I know, evolution progresses in the direction
of the differentiation of species. Doesn’t this show that the
mutations underlying evolution are not, in fact, so random?”

author: “That argument doesn’t stand to reason. Evolution se-
lects the fittest organisms rather than the more complex. Some-
times a higher degree of organization is preferable, but some-
times this is not the case. This is why human beings, jelly-fish,
and the influenza virus can coexist in today’s world. It is essen-
tial that evolution leads to the appearance of new species that
are unpredictable in principle. It may be said that any species is
unique because it occurred fundamentally by chance.”

reader: “I have to admit that the randomness does look to be a
fundamental factor indeed.”

author: “Since we are discussing the fundamentality of random-
ness in the picture of evolution, let me draw your attention to
one more important point. Modern science demonstrates that
chance and selection are the ‘creator’.”

reader: “Just as Pushkin said, ‘And chance, inventor God …”’

author: “Precisely. This line is strikingly accurate.”

reader: “It appears that when speaking about chance and selec-
tion, we should imply the selection of information from noise,
shouldn’t we? The same selection that we discussed in connec-
tion with the science-fiction story.”

author: “ Absolutely.”

reader: “I have to agree that we should consciously recognize the
existence of randomness rather than try and control it.”
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author: “We could say more. Naturally, the randomness which
is due to the incompleteness of our knowledge is undesirable.
While studying the world, man has fought, is fighting, and will
continue to fight it. It should be noted at the same time that
there is an objective randomness underlying every phenomena
along with the subjective randomness which is due to lack of
data on a phenomenon. We should also take into account the
positive, creative role of the random. And in this connection it
is really necessary to recognize and control randomness. Man
shouldbe able, whennecessary, to create special situations, abun-
dantwith the random, and utilize the situation to his own ends.”

reader: “But is it really possible to treat randomness in such a way?
Isn’t it like trying to control the uncontrollable?”

author: “Both science and daily life indicate that it is possible to
orient ourselves consciously in very random situations. Special
calculation methods have been developed that depend on ran-
domness. Special theories have been produced, such as queueing
theory, the theory of games, and the theory of random search, to
deal with it.”

reader: “It is hard for me to imagine a scientific theory built on
randomness.”

author: “Let me emphasize right away that randomness does not
preclude scientific prediction. The fundamentality of random-
ness does not mean that the world around us is chaotic and de-
void of order. Randomness does not imply there are no causal
relations. But we shall deal with all that later. It is interesting to
try and imagine a world in which randomness as an objective
factor is completely absent.”

reader: “This would be an ideally ordered world.”
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author: “In such a world, the state of any object at a given time
would be unambiguously determined by its past states and, in
its turn, would determine the future states just as definitely. The
past would be strictly connected with the present, as would the
present with the future.”

reader: “Anything occurring in such a world would be predeter-
mined.”

author: “Pierre Laplace, a great French scientist of the 17th cen-
tury, suggested in this connection that we imagine a superbeing
who knew the past and the future of such a world in every detail.
Laplace wrote:”

‘The intellect who could know, at a given moment, every
force that animates the nature and the relative positions
of its every component, and would, in addition, be vast
enough to analyse these data, would describe by a single
formula themotions of the greatest bodies in the universe
and the motions of the lightest atoms. There would be
nothing uncertain for this being, and the future, like the
past, be open to his gaze.’

reader: “An ideally ordered world is therefore unreal.”

author: “As you see, it isn’t hard to feel that the real world should
admit the existence of objective randomness. Now let us re-
turn to the problem of causal relations. These relations are
probabilistic in the real world. It is only in particular cases (for
example, when solving maths problems at school) that we deal
with unambiguous, strictly determined relations. Here we ap-
proach one of the most essential notions of the modern science,
the notion of probability.”

reader: “I’m familiar with it. If I throw a die, I can equally expect
any number of dots from one to six. The probability of each
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number is the same and equal to 1/6.”

author: “Suppose you stand at the side of a road, with motor-cars
passing by. What is the probability of the first two digits in their
four digit number being equal?”

reader: “The probability equals 1/10.”

author: “Therefore, if you’re patient and observe enough cars,
about one tenth of themwill have number-plates with the same
first two digits, would they? Say, about thirty cars out of 300
will have such plates. Maybe, 27 or 32, but not 10 or 100.”

reader: “I think so.”

author: “But then there would be no need to stand at the roadside.
The result could be predicted. This is an example of probabilistic
prediction. Look at howmany random factors are involved in
this situation. A car could turn off the road before reaching
the observer, or another car could stop or even turn back. And
nonetheless, both today and tomorrow, about 30 cars out of
300 would have plates with the same first two digits.”

reader: “So, in spite of numerous random factors, the situation
has a certain constancy.”

author: “This constancy is commonly called statistical stability. It
is essential that statistical stability is observed because of random
factors rather than despite them.”

reader: “I hadn’t thought that we deal with probabilistic predic-
tions everywhere. They include, for instance, sports predictions
and weather forecasts.”

author: “You’re absolutely right. An important point is that prob-
abilistic (statistical) causal relations are common, while those
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leading tounambiguouspredictions are just a special case. While
definite predictions only presuppose the necessity of a phe-
nomenon, probabilistic predictions are related simultaneously
both with necessity and randomness. Thus, mutations are ran-
dom, but the process of selection is governed by laws, that is, it
is a necessary prerequisite.”

reader: “I see. The individual acts of the spontaneous fission of
uranium nuclei are random, but the development of the chain
reaction is unavoidable.”

author: “Taken separately, any discovery is random. However,
a situation which is favourable for the appearance of such a
chance should exist. This chance is determined by the advance
of science, the expertise of the researchers, and the level of mea-
surement technology. A discovery is random, but the logic of
the progress leading to the discovery in the long run is regular,
unavoidable, and necessary.”

reader: “Now I see why the fundamentality of randomness does
not result in the disorder of our world. Randomness and neces-
sity are always combined.”

author: “Correct. Friedrich Engels wrote in The Origin of the
Family, Private Property, and the State (1884): ‘In Nature,
where chance also seems to reign, we have long ago demon-
strated in each particular field the inherent necessity and regu-
larity that asserts itself in this chance.’ The Hungarian mathe-
matician A.Rényi wrote about the same thing in an interesting
book Letters on Probability”:

‘I came across Contemplations by Aurelius and acciden-
tally opened the page where he wrote about two possibili-
ties: the world is either in vast chaos or, otherwise, order
and regularity reign supreme. And although I had read
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these lines many times, it was the first time that I thought
over whyMarcus Aurelius believed that the world should
be dominated by either chance or order. Why did he be-
lieve that these two possibilities are contradictory? The
world is dominated by randomness, but order and regular-
ity operate at the same time, being shaped out of the mass
of random events according to the laws of the random.’

reader: “As far as I understand, order and regularity are produced
from a mass of random events, and this leads to the concept
probability. ”

author: “You’re absolutely right. Individual factors vary from
case to case. At the same time, the picture as a whole remains
stable. This stability is expressed in terms of probability. This
is why our world proves to be flexible, dynamic, and capable of
advancing.”

reader: “It follows that the world around us may justly be said to
be a world of probability.”

author: “It is better to speak of the world as being built on prob-
ability. When we examine this world, we shall concentrate on
two groups of questions. Firstly, I shall show howman, owing
to his use of probability in science and technology, was able to
tame randomness and thus turn it from being his enemy into
an ally and friend. Secondly, using the achievements of mod-
ern physics and biology, I shall demonstrate the probabilistic
features of the laws of nature. In consequence, I shall show that
the world around us (including both the natural and artificial
world) is really built on probability.”





Chapter 1

Mathematics of
Randomness

This doctrine, combining the accuracy of mathematical proofs
and the uncertainty of chance occasions and making peace
between these seemingly contradictory elements has a full right
to contend for the title of the mathematics of the random.

Blaise Pascal

Probability

Classical definition of probability. When we toss a coin, we do not know
which will land face up, heads or tails. However, there is something we do
know. We know that the chances of both heads and tails are equal. We also
know that the chances of any of the faces of a die landing face up are equal.
That the chances are equal in both examples is due to symmetry. Both the coin
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18 mathematics of randomness

and the die are symmetrical. When two or more events have equal chances
of occurring, we call them equally possible outcomes. Heads or tails are
equally possible outcomes. Suppose we are interested in a certain result while
throwing a die, for instance, a face with a number of dots exactly divisible by
three. Let us call outcomes satisfying such a requirement favourable. There
are two favourable outcomes in our example, namely, a three or a six. Now
let us call outcomes exclusive if the appearance of one in single trial makes it
impossible for the others to appear at the same trial. A die cannot land with
several faces up, so they are exclusive outcomes.

We can now formulate the classical definition of probability:

The probability of an event is the ratio of the number of favourable
outcomes to the total number of equally possible exclusive outcomes.

Suppose𝑃𝛢 is the probability of an even𝐴,𝑚𝛢 is the number of favourable
outcomes, and 𝑛 the total number of equally possible and exclusive outcomes.
According to the classical definition of probability

𝑃𝛢 =
𝑚𝛢
𝑛 . (1.1)

If𝑚𝛢 = 𝑛, then 𝑃𝛢 = 1 and the event 𝐴 is a certain event (it always occurs
in every outcome). If𝑚𝛢 = 0, then 𝑃𝛢 = 0, and the event𝐴 is an impossible
event (it never occurs). The probability of a random event lies between 0 and
1.

Let an event𝐴 be throwing a die and getting a number exactly divisible
by three. Here 𝑚𝛢 = 2 and so the probability of the event is 1/3, because
𝑛 = 6. Consider one more example. We have a bag with 15 identical but
differently coloured balls (seven white, two green, and six red). You draw a
ball at random. What is the probability of drawing a white (red or green) ball?
Drawing a white ball can be regarded as an event𝐴, drawing a red ball is an
event 𝐵, and drawing a green ball is an event 𝐶. The number of favourable
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outcomes of drawing a ball of a certain colour equals the number of balls of
this colour, i. e.,𝑚𝛢 = 7,𝑚𝛣 = 6, and𝑚𝐶 = 2. Using (1.1) and given 𝑛 = 15,
we can find the probabilities:

𝑃𝛢 =
𝑚𝛢
𝑛 = 7

15 , 𝑃𝛣 =
𝑚𝛣
𝑛 = 2

15 , 𝑃𝐶 =
𝑚𝐶
𝑛 = 2

15 .

Addition and multiplication of probabilities.What is the probability
that a randomly drawn ball will be either red or green? The number of
favourable outcomes is𝑚𝛣 + 𝑚𝐶 = 6 + 2 = 8, and therefore the probability
will be

𝑃𝛣+𝐶 =
𝑚𝛣 + 𝑚𝐶

𝑛 = 8
15 .

We see that 𝑃𝛣+𝐶 = 𝑃𝛣 +𝑃𝐶. The probability of drawing either a red or a green
ball is the sum of two probabilities: the probability of drawing a red ball and
that of drawing a green ball. The probability of drawing a ball which is either
red or green or white is the sum of three probabilities, 𝑃𝛢 +𝑃𝛣 +𝑃𝐶. It is equal
to unity (7/15 + 2/5 + 2/15 = 1). This stands to reason because the event
in question will always occur.

The rule for adding probabilities can be formulated as follows:

The probability of one event of several exclusive events occurring is the
sum of the probabilities of each separate event.

(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2)
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
(1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)

Figure 1.1: Possible outcomes of rolling a die.

Suppose that two dice are thrown. What is the probability of getting
two fours at the same time? The total number of equally possible exclusive
outcomes is 𝑛 = 6 × 6 = 36. Each one is listed in Figure 1.1, where the left
figure in the parentheses is the number on one die, and the right figure is
the number on the other. There is only one favourable outcome, and it is
indicated in Figure 1.1 as (4,4). Hence, the probability of the event is 1/36.
This probability is the product of two probabilities: the probability of a four
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appearing on one die and that of a four on the other i.e.

𝑃44 = 𝑃4 × 𝑃4 =
1
6 × 16 = 1

36 .

The rule for multiplication of probabilities can be formulated as follows:

The probability of several events occurring simultaneously equals the
product of the probabilities of each separate event.

By the was, it is not necessary for the events to be simultaneous. Instead
of throwing two dice at the same time, we could throw a single die twice. The
probability of getting two fours at the same time when two dice are thrown
is the same as the probability of getting two fours when one die is thrown
twice.

Inmany cases both rules (addition andmultiplication of probabilities) are
used jointly to calculate the probability of an event. Suppose we are interested
in the probability 𝑃 of the same number coming up on two dice. Since it is
only essential that the numbers be equal, we can apply the rule for adding
probabilities,

𝑃 = 𝑃11 + 𝑃22 + 𝑃33 + 𝑃44 + 𝑃55 + 𝑃66.

Each of the probabilities 𝑃𝑖𝑖 is, in turn, a product 𝑃𝑖 × 𝑃𝑖. Hence

𝑃 = (𝑃1 × 𝑃1) + (𝑃2 × 𝑃2) + … + (𝑃6 × 𝑃6) = 6 (16 × 16) =
1
6 .

This result can be obtained right away from Figure 1.1, where the favourable
outcomes are shown in the gray, (1,1), (2,2), (3,3), (4,4), (5,5), and (6,6). The
total number of such outcomes is six. Consequently, 𝑃 = 6/36 = 1/6.

Frequency and probability. The classical definition of probability
and the rules for addition and multiplication of probabilities can be used to
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Figure 1.2: Outcomes of rolling a dice many
times.

calculate the probability of a random event. However, what is the practical
value of such calculations? For instance, what does it mean in practice that
the probability of getting a four when a die is thrown equals 1/6? Naturally,
the assertion does not imply that a four will appear once and only once in
any six trials. It is possible that it will appear once, but it is also possible that
it will appear two (or more) times, or that it will not appear at all. In order
to discover the probability of an event in practice we should perform a large
number of trials and calculate how frequently a four appears.

Let us perform several sets of trials, for instance, throwing the die 100
times in each set. Let us designate𝑀1 to be the number of times a four
appears in the first set,𝑀2 to be the number of fours in the second set, etc.
The ratios𝑀1/100,𝑀2/100,𝑀3/100, … are the frequencies with which a



22 mathematics of randomness

0.22

0.21

0.20

0.19

0.18

0.17

100

N

500 1000 1500 2000 2500

0.16
1/6 = 0.167

AA

Fr
eq

ue
nc

y o
f d

es
ire

d 
ou

tc
om

e i
n 

ea
ch

 se
t

Number of trials

Figure 1.3: Frequencies of outcomes of trials of a
die as a function of number of trials. Note how
the deviation of the frequency of the occurrence
of an event from its probability decreases as the
number of trials increases.

four appeared in each set. Having performed several sets of trials, we can
see that the frequency of the appearance of a four varies from set to set in a
random fashion in the vicinity of the probability of the trials, we can see that
the frequency of the appearance of a four varies from set to set in a random
fashion in the vicinity of the probability of the given event, i.e. in the vicinity
of 1/6. This is clear from Figure 1.2, where the number 𝑘 of sets of trials is
plotted along the abscissa axis and the frequencies with which a four appears
along the axis of ordinates.

Naturally, if we perform the experiment again, we will get other values of
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the frequencies𝑀𝑘/100. However, the pattern of oscillations of the frequen-
cies of the event under consideration will be stable: the deviations upwards
and downwards from the straight line𝐴𝐴, which is associated with the proba-
bility of the event, will balance. Even though the amplitudes of the deviations
will vary from set to set, they will not tend to grow or decrease. This is a
consequence of the equivalence of each set of trials. The number of trials in
each set is the same, and the results obtained in a given set do not depend on
the results in any other set.

Let usmake an important change in thatwe gradually increase thenumber
of trials in each set. Using the results of our previous experiment, as presented
in Figure 1.2, let us obtain a new result by adding the value of a set of trials
to the result of the preceding sets. In other words, we calculate the number of
fours in the first 100 trials (in our case,𝑀1 = 22), then the number of fours
in the first 200 trials (𝑀1 +𝑀2 = 22 + 16 = 38), the in the first 300 trials
(𝑀1 +𝑀2 +𝑀3 = 22 + 16 + 18 = 56) etc. We then find the frequencies of
getting a four in the each new set:𝑀1/100 = 0.22, (𝑀1 +𝑀2)/200 = 0.19,
(𝑀1+𝑀2+𝑀3)/300 = 0.187, etc. These frequencies are plotted in Figure 1.3
against the number of trials in each set (100, 200, …, 2500). The figure
demonstrates a crucial fact: the deviation of the frequency of the occurrence
of an event from its probability decreases as the number of trials increases. In
other words,

frequency of the occurrence of a random event tends to its probability
with increasing number of trials.

Is it possible to give a definition of probability based on frequency?
Since the frequency of the occurrence of a random event tends to its prob-
ability as the number of trials increases, we might well ask whether we can
define the probability of an event as the limit of the ratio of the number of its
occurrence to the number of trials as the number of trials lends to infinity.
Suppose𝑁 is the number of trials and𝑀𝛢(𝑁) is the number of occurrence
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of an event A. We want to know whether we can define the probability 𝑃𝛢 of
the event𝐴 as

𝑃𝛢 = lim
𝛮→∞

[
𝑀𝛢(𝑁)
𝑁 ] . (1.2)

Richard vonMises (1883-1953), a German mathematician of the early
20th century, believed that equation (1.2) could be considered a definition of
the probability of a random event, and he called it the frequency definition of
probability. VonMises pointed out that the classical definition of probability
(1.1) only “works”when there is a finite number of equally possible outcomes.
For instance, situations involving the throwing of coins or dice.

However, we often encounter situations without the symmetry that
determines whether the outcomes are equally possible. These are the cases
when we cannot apply the classical definition of probability. Von Mises
assumed that then the frequency definition can be used because it does not
require a finite number of equally possible outcomes and, moreover, does not
require any calculation of probability at all. A probability using the frequency
approach is determined by experiment rather than being calculated.

However, is it possible to determine the probability of a random event
in practice using (1.2)? The relationship presupposes an infinite number of
identical trials. In practice, we must stop at a finite number of trials, and it
is debatable what number to stop at. Should we stop after a hundred trials,
or is it necessary for there to be a thousand, a million, or a hundred million?
And what is the accuracy of the probability determined in such a way? There
are no answers to these questions. Bcsides, it is not practicable to provide
the same conditions while performing a very large number of trials, to say
nothing of the fact that the trials may be impossible to repeat.

Consequently, relationship (1.2) is practically useless, moreover it is pos-
sible to prove (though I shall not do so) that the limit in (1.2) does not strictly
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speaking exist. This means that the VonMises’s error was that he made an
unwarranted generalization from a correct proposition: he concluded that
the probability of a random even is the limit of the frequency of its occurrence
when the number of trials tends to infinity from the correct observation that
the frequency of the occurrence of a random even approaches its probability
as the number of trials increases.

Geometrical definition of probability. Suppose that two people have
agreed to meet at a certain place between nine and ten o’clock. They also
agreed that each would wait for a quarter of an hour and, if the other didn’t
arrive, would leave. What is the probability that they meet? Suppose 𝑥 is the
moment one person arrives at the appointed place, and 𝑦 is the moment the
other arrives. Let us consider a point with coordinates (𝑥, 𝑦) on a plane as an
outcome of the rendezvous. Every possible outcome is within the area of a
square each side ofwhich corresponds to one hour ( Figure 1.4). The outcome
is favourable (the two meet) for all points (𝑥, 𝑦) such that | 𝑥 − 𝑦 | ≤ 1/4.
These points are within the blue part of the square in the Figure 1.4.

All the outcomes are exclusive and equally possible, and therefore the
probability of the rendezvous equals the ratio of the blue area to the area
of the square. This is reminiscent of the ratio of favourable outcomes to
the total number of equally possible outcomes in the classical definition of
probability. It should be borne in mind that this is a case where the number
of outcomes (both favourable and unfavourable) is infinite. Therefore, in-
stead of calculating the ratio of the number of favourable outcomes to the
total number of outcomes, it is better to consider here the ratio of the area
containing favourable outcomes to the total area of the random events.

It is not difficult to use Figure 1.4 and find the favourable area; it is the
difference between the area of the whole square and the unhatched area, i.e.
1 − (3/4)2 = 7/16 ℎ2. Dividing 7/16 ℎ2 by 1 ℎ2, we find the probability of
the rendezvous to be 7/16.

This example illustrates the geometrical definition of probability:
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Figure 1.4: Finding the probability using the
geometrical method.

The probability of a random event is the ratio of the area favourable
for an event to the total area of events.

The geometrical definitionof probability is a generalizationof the classical
definition for the case when the number of equally possible outcomes is
infinite.

The development of the concept of probability. Although probabilis-
tic notions were used by ancient Greek philosophers (such as Democritus,
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Epicurus, and Carus Lucretius), the theory of probability as a science be-
gan in the mid-17th century, with the work of the French scientists Blaise
Pascal and Pierre Fermat and the Dutch scientist Christian Huygens. The
classical definition for the probability of a random event was formulated by
the Swiss mathematician Jacob Bernoulli in Ars conjectandi (The Art of
Conjectures). The definition was given its final shape later by Pierre Laplace.
The geometrical definition of probability was first applied in the 18th century.
Important contributions to probability theory were made by the Russian
mathematical school in the 19th century (P.L. Chebyshev, A.A. Markov, and
A.M. Lyapunov).

The extensive employment of probabilistic concepts in physics and tech-
nology demonstrated, by the early 20th century, that there was a need for a
more refined definition of probability. It was necessary, in particular, in order
to eliminate the reliance of probability on “common sense”. An unsuccessful
attempt to give a general definition for the probability of a random event
on the basis of the limit of its frequency of occurrence was made, as we have
seen, by Richard vonMises. However, an axiomatic approach rather than a
frequency one resulted in more refined definition of probability. The new
approach was based on a set of certain assumptions (axioms) from which all
the other propositions are deduced using clearly formulated rules.

The axiomatic definition of probability now generally accepted was
elaborated by the Soviet mathematician A.N. Kolmogorov, Member of the
USSR Academy of Sciences, in The Basic Notions of the Probability Theory
(1936, in Russian). I shall not discuss the axiomatic definition of probability
because it would require set theory. Let me only remark that Kolmogorov’s
axioms gave a strict mathematical substantiation to the concept of probability
and made probability theory a fully fledged mathematical discipline.

The existence of several definitions for the same notion (probability)
should not worry the reader.
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As L.E. Maistrov put it in The Development of the Notion of Probability
(Nauka, Moscow, 1980):

“There are many definitions of notions, and this is an essential feature
of modern science. Hence the notion of probability is no exception.
Modern definitions in science represent diverse viewpoints, of which
there may be very many for a fundamental notion, and each view re-
flects a property of the defined notion. This includes the notion of
probability.”

Let me add that new definitions for a notion appear as our understanding of
it becomes deeper and its properties are made clearer.

Random Numbers

Random Number Generators. Let us put ten identical balls numbered
from 0 to 9 into a box. We take out a ball at random and write down its
number. Suppose it is five. Then we put the ball back into the box, stir the
balls well, and take out a ball at random. Suppose this time we get a one. We
write it down, put the ball back into the box, stir the balls, and take out a ball
at random again. This time we get a two. Repeating this procedure many
times, we obtain a disordered set of numbers, for instance: 5, 1, 2, 7, 2, 3, 0,
2, 1, 3, 9, 2, 4, 4, 1, 3, … This sequence is disordered because each number
appeared at random, since each time a ball was taken out at random from a
well-stirred set of identical balls.

Having obtained a set of random digits, we can compile a set of random
numbers. Let us consider, for instance, four-digit numbers. We need only
separate our series of randomnumbers into groups of four digits and consider
each group to be a random number: 5127, 2302, 1392, 4413, …

Any device that yields random numbers is called a random number
generator. There are three types of generators: urns, dice, and roulettes
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(Figure 1.5). Our box with balls is an urn.

Dice are the simplest random number generators. An example of such a
generator is a cube each of whose faces is marked with a different number.
Another example is a coin (or a token). Suppose five of the faces of a cube are
marked with the numbers 0, 1, 2, 3, 4, while the sixth face is unmarked. Now
suppose we have a token one side of which is labelled with 0 and the other
with 5. Let us throw the cube and token simultaneously and add together the
numbers that appear face up, the trial being discounted when the unmarked
face lands face up. This generator allows us to obtain a disordered set of
numbers from0 to 9, which can then be easily used to produce sets of random
numbers. A roulette is a circle marked in sectors, each of which is marked
with a different number. A roulette has a rotating arrow or rolling ball. A
trial involves spinning the arrow and recording the number

A roulette is a circle marked in sectors, each of which is marked with
a different number. A roulette has a rotating arrow or rolling ball. A trial
involves spinning the arrow and recording the number corresponding to the
sector of the roulette circle within which the arrow stops.

Note that a roulette may have any number of sectors. For instance. we
could divide a circle into ten sectors and label them from 0 to 9. As a random
number generator, our roulette in this case is equivalent to the two generators
discussed above:

(1) an urn with ten balls and
(2) a die and a token thrown at the same time.

A diagram of these equivalent random number generators is shown in Fig-
ure 1.5.

Tables of RandomNumbers. An example of a random number table is
shown in Figure 1.6. The table consists of three hundred four-digit numbers.
Each digit in the table was chosen randomly, as a result of a trial, e.g. throwing
a die and a token. Therefore, it is understandable that there is no order in the
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Figure 1.5: Three types of random number gen-
erators: urns, dice and roulettes.
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numbers, and there is no way of predicting which digit will follow a given
one. You could compile many tables after many trials. Nevertheless, there
will not be even the shadow of order in the sequence of digits.

0655 8453 4467 3234 5320 0709 2523 9224 6271 2607
5255 5161 4889 7429 4647 4331 0010 8144 8638 0307
6314 8951 2335 0174 6993 6157 0063 6006 1736 3775
3157 9764 4862 5848 6919 3135 2837 9910 7791 8941
9052 9565 4635 0653 2254 5704 8865 2627 7959 3682
4105 4105 3187 4312 1596 9403 6859 7802 3180 4499
1437 2851 6727 5580 0368 4746 0604 7956 2304 8417
4064 4171 7013 4631 8288 4785 6560 8851 9928 2439
1037 5765 1562 9869 0756 5761 6346 5392 2986 2018
5718 8791 0754 2222 2013 0830 0927 0466 7526 6610
5127 2302 1392 4413 9651 8922 1023 6265 7877 4733
9401 2423 6301 2611 0650 0400 5998 1863 9182 9032
4064 5228 4153 2544 4125 9654 6380 6650 8567 5045
5458 1402 9849 9886 5579 4171 9844 0159 2260 1314
2461 3497 9785 5678 4471 2873 3724 8900 7852 5843
4320 4553 2545 4436 9265 6675 7989 5592 3759 3431
3466 8269 9926 7429 7516 1126 6345 4576 5059 7746
9313 7489 2464 2575 9284 1787 2391 4245 5618 0146
5179 8081 3361 0109 7730 6256 1303 6503 4081 4754
3010 5081 3300 9979 1970 6279 6307 7935 4977 0501
9599 9828 8740 6666 6692 5590 2455 3963 6463 1609
4242 3961 6247 4911 7264 0247 0583 7679 7942 2482
3585 9123 5014 6328 9659 1863 0532 6313 3199 7619
5950 3384 0276 4503 3333 8967 3382 3016 0639 2007
8462 3145 6582 8605 7300 6298 6673 6406 5951 7427
0456 0944 3058 2545 3756 2436 2408 4477 5707 5441
0672 1281 8897 5409 0653 5519 9720 0111 4745 7979
5163 9690 0413 3043 1014 0226 5460 2835 3294 3674
4995 9115 5273 1293 7894 9050 1378 2220 3756 9795
6751 6447 4991 6458 9307 3371 3243 2958 4738 3996

Figure 1.6: A table of random numbers.

This is not amazing. A chance is a chance. But a chance has a reverse
aspect. For instance, try and count how many times each digit occurs in
Figure 1.6. Youwill find that digit 0 occurs 118 times (the frequency it appears
is 118/1200 = 0.099), digit 1 occurs 110 times (the frequency it appears is
0.090), digit 2 occurs 114 times (0.095), digit 3 occurs 125 times (0.104), digit
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4 occurs 135 times (0.113), digit 5 occurs 135 times (0.113), digit 6 occurs
132 times (0.110), digit 7 occurs 116 times (0097), digit 8 occurs 93 times
(0.078), and digit 9 occurs 122 times (0.102). We can see that the appearance
frequency for each digit is about the same, i. e. close to 0.1. Naturally, the
reader has come to a conclusion that 0.1 is the probability that a digit appears.
The reader may say that the appearance frequency of a digit is close to the
probability of its appearance over a long series of trials (there are 1200 trials
here).

Although this is natural, we shouldwonder once (againhowanunordered
set of random digits can have an inherent stability. This is a demonstration
of the reverse aspect of chance and illustrates the determinism of probability.

I advise the reader to “work” a little with a random number table (see
Figure 1.6). For instance, 32 numbers out of the three hundred ones in the
table begin with zero, 20 begin with 1, 33 begin with 2, 33 begin with 3, 38
begin with 4, 34 begin with 5, 34 begin with 6, 24 begin with 7, 20 begin
with 8, and 32 begin with 9. The probability that a number begins with a
certain digit equals 0.1. It is easy to see that the results of our count are in
a rather good keeping with this probability (one tenth of three hundred is
thirty). However, the deviations are more noticeable than in the example
considered earlier. But this is natural because the number of trials above was
1200 while here it is much less, only 300.

It is also interesting to count howmany times a digit occurs in the second
place (the number of hundreds), in the third place (tens), and the fourth place
(units). It is easy to see that in every case the frequency with which a given
digit appears is close to the probability, i.e. close to 0.1. Thus, zero occurs in
the second place 25 times, in the third place 33 times, and in the fourth place
28 times.

An example with the number-plates of motor-cars randomly passing the
observer was cited in the introduction. It was noted that the probability that
the first two digits in the licence number were identical is 0.1. The probability
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that the two last digits of the number or two middle digits or the first and the
last digit are identical is the same.

In order to see this, we need not observe a sequence of cars passing by.
We can simply use a random number table (see Figure 1.6). The four-digit
random numbers in the table can be taken as the license numbers of cars
randomly passing the observer. We can see that 40 of the 300 number’s have
the same twofirst digits, 28 numbers have the same two last digits, 24numbers
have the same two middle digits, and 32 numbers have the same first and last
digits. In other words, the frequencies with which a pair of identical digits
appears actually varies around the probability, i.e. in the neighbourhood of
0.1.

Random Events

Whenwe throw a die or take a ball out of an urn we deal with a random event.
There are several interesting problems where the probability of a random
event is required to be found.

Figure 1.7: Different ways of taking out two out
of three blue and one red balls.

A problem with coloured balls. There are three blue balls and a red
ball in a box. You take two balls out of the box at random. Which is more
probable: that the two balls are blue or that one is blue and one is red?

People often answer that it is more probable that two blue balls are taken
out because the number of blue balls in the box is three times greater than
the number of red ones. However, the probability of taking out two blue
balls is equal to the probability of taking out a blue and a red ball. You can
see this by considering Figure 1.7. Clearly there are three ways in which two
blue balls may be chosen and three ways of choosing a blue and a red ball at
the same time. Therefore, the outcomes are equally probable.

We can also calculate the probability of the outcomes. The probability
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of taking out two blue balls equals the product of two probabilities. The
first one is the probability of taking out a blue ball from a set of four balls
(three blue ones plus a red one), which is 3/4. The second probability is that
of taking out a blue ball from a set of three balls (two blue ones plus a red
one) which is 2/3. Consequently, the probability of taking out two blue balls
simultaneously is 3/4 × 2/3 = 1/2.

The probability of taking out a blue and a red ball is the sum 𝑃br + 𝑃rb,
where 𝑃br, is the probability of taking out a blue ball from a set of four balls
(three blue ones plus a red one) multiplied by the probability of taking out a
red ball from a set of three balls (two blue ones plus it red one) and 𝑃rb, is the
probability of taking out a red ball from a set of four balls (the second all in this
case must then be a blue one). In other words, 𝑃br is the probability of taking
out a blue ball first and then a red ball while 𝑃rb is the probability of taking
out a red ball first and then a blue ball. Inasmuch as 𝑃br = 3/4 × 1/3 = 1/4
and 𝑃rb = 1/4, the probability of taking out a pair of differently coloured
balls equals 1/4 + 1/4 = 1/2.

Throwing A Die: A Game. There are two players in this game, player
𝐴 and player 𝐵. The die is thrown three times in succession during each turn.
If a certain face turns up at least once during a turn (let it be a 5), player 𝐴
scores a point. But if the five does not turn up, a point is scored by player 𝐵.
The game is played until one of them scores, say, a hundred points. Who has
the chance of winning greater? Player𝐴 or player 𝐵?

In order to answer, we first calculate the probability of player𝐴 scoring a
point in a turn (the die is thrown three times in succession). He receives a point
in any of the following three cases: if five turns up in the first trial, if five does
not turn up in the first trial but turns up in the second one, and if five does not
turn up in the first two trials but turns up in the third one. Let us designate
the probability of these three events as 𝑃1, 𝑃2, and 𝑃3, respectively. The sought
probability is 𝑃 = 𝑃1 + 𝑃2 + 𝑃3. Note that the probability of five appearing
when the die is thrown is 1/6, and the probability that five does not appear is
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5/6. It is clear that 𝑃1 = 1/6. To find 𝑃2, we should multiply the probability
of the absence of a five in the first trial by the probability of its presence in
the second trial, 𝑃2 = 5/6 × 1/6 = 5/36. The probability 𝑃3 is the product of
the probability of the absence of a five in two trials (the first and the second)
and the probability of a five in the third trial, 𝑃3 = (5/6)2 × 1/6 = 25/216.
Consequently, 𝑃 = 𝑃1 + 𝑃2 + 𝑃3 = 1/6 + 5/6 + 25/216 = 91/216. Since
𝑃 < 1/2, player 𝐵 has more chance of winning this game. We could have
reached the same conclusion in a simpler way by considering the probability
of player 𝐵 scoring a point after three trials. This is the probability of the
absence of five in three trials: 𝑝 = 5/6×5/6×5/6 = 125/216. Since 𝑝 > 1/2,
player 𝐵’s chances are better. Note that 𝑃 + 𝑝 = 91/216 + 125/216 = 1.
This is natural because one of the players,𝐴 or 𝐵, must score a point in each
turn.

Let us change the rules of the game a little: the die is thrown four times
rather than three times in each turn. The other conditions remain the same.
The probability of player𝐵 scoring a point in a turn is 5/6×5/6×5/6×5/6 =
625/1296. This is less than 1/2, and therefore now𝐴 has a better chance of
winning a game.

The Problem Of An Astrologer. A tyrant got angry with an astrologer
and ordered his execution. However, at the last moment the tyrant made
up his mind to give the astrologer a chance to save himself. He took two
black and two white balls and told the astrologer to put them into two urns
at random. The executioner was to choose an urn and pick a ball out of it at
random. If the ball was white, the astrologer would be pardoned, and if the
ball was black, he would be executed. How should the astrologer distribute
the balls between the two urns in order to give himself the greatest chance of
being saved?

Suppose the astrologer puts a white and a black ball into each urn (Fig-
ure 1.8 (a)). In this case, no matter which urn the executioner chooses, he will
draw awhite ball out of it with a probability of 1/2. Therefore, the probability
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(a) (b)

(c) (d)

Figure 1.8: Different ways of arranging two
white and two black balls for different proba-
bilities of drawing out a ball of a given colour. the astrologer would be saved is 1/2.

The probability of the astrologer being saved will be the same if he puts
the two white balls into one urn and the two black balls into the other (Fig-
ure 1.8 (b)). His destiny will be decided by the executioner when he chooses
an urn. The executioner may choose either urn with equal probability.

The best solution for the astrologer is to put a white ball into one um
and a white ball and two black ones into the other urn (Figure 1.8 (c)). If the
executioner chooses the first urn, the astrologer will certainly be saved, but
if the executioner picks the second urn, the astrologer will be saved with a
probability of 1/3. Since the executioner chooses either urn with probability
1/2, the overall probability that the astrologer will be saved is (1/2 × 1) +
(1/2 × 1/3) = 2/3.

By contrast, if the astrologer puts a black ball into one urn and a black
ball and two white balls into the other (Figure 1.8 (d)), the probability of him
being saved will be smallest: (1/2 × 0) + (1/2 × 2/3) = 1/3.

Thus, in order to have the greatest chance of being saved, the astrologer
should distribute the balls between the urns as shown in (Figure 1.8 (c)) This
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is the best strategy. The worst strategy is to distribute the balls as shown in
(Figure 1.8 (d)). Of course, the selectionof the best strategy does not guarantee
the desired outcome. Although the risk is decreased, it still remains.

Wandering In A Labyrinth. A labyrinth with treasure has a death trap,
as shown in Figure 1.9. Unlucky treasure-hunters die in the trap. What is the
Probability that they will avoid the trap and reach the treasure?

1

2

3

4

5

A

Figure 1.9: The probability of finding the trea-
sure or a trap in a labyrinth.

After walking away from the entrance 𝐴 to point 1 (see Figure 1.9) a
treasure-hunter may either go straight ahead (in which case he walks directly
into the trap) or turn to the left (in which case he arrives at point 2) We shall
suppose he picks either path at random, with equal probability, i.e. with
probability 1/2. Alter arriving at point 2, the treasure-hunter may either go
straight ahead or turn right or turn left with probability 1/3. The first two
paths lead to the trap, while the third path leads to point 3. The probability
of someone getting from the entrance 𝐴 to point 3 is the product of the
probability of turning left at point 1 and the probability of turning left at
point 2, i.e., 1/2 × 1/3. It is easy to see now that the probability of reaching
point 4 from𝐴 is 1/2×1/3×1/2; the probability of reaching point 5 from𝐴
is 1/2 × 1/3 × 1/2 × 1/3; and finally, the probability of reaching the treasure
from𝐴 is𝑃+ = 1/2 ×1/3 × 1/2 × 1/3 × 1/2 = 1/72. The only way of getting
from the entrance of the labyrinth to the treasure is shown in the figure by
the dash line. The probability that a person will follow it is thus 𝑃+ = 1/72,
while the probability of walking into the trap is 𝑃− = 71/72.

The probability 𝑃− was calculated from the fact that 𝑃+ + 𝑃− = 1.
However, we can calculate 𝑃− directly. Let us expand 𝑃− as the sum 𝑃− =
𝑃1 + 𝑃2 + 𝑃3 + 𝑃4 + 𝑃5 where the 𝑃𝑖 are the probabilities of arriving at point
𝑖 from𝐴multiplied by the probability of walking into the trap from point
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𝑖 (𝑖 = 1, 2, 3, 4, 5).

𝑃1 = 1/2,
𝑃2 = 1/2 × 2/3,
𝑃3 = 1/2 × 1/3 × 1/2,
𝑃4 = 1/2 × 1/3 × 1/2 × 2/3,
𝑃5 = 1/2 × 1/3 × 1/2 × 1/3 × 1/2.

You can then find that 𝑃1 + 𝑃2 + 𝑃3 + 𝑃4 + 𝑃5 = 71/72.

Discrete Random Variables

Random Variables. Suppose there is a batch of 100 manufactured articles
and 11 articles are rejected as defective, 9 articles are rejected in another batchof
the same size, 10 articles are rejected in the third one, 12 articles are rejected in
the fourth one, etc. We use 𝑛 to denote the overall number of manufactured
articles in a batch and 𝑚 to denote the number of rejected articles. The
number 𝑛 is constant (here 𝑛 = 100) while the value of𝑚 varies from batch
to batch in a random manner. Suppose there is a definite probability that
there will be𝑚 rejected articles in a randomly selected batch of 𝑛 articles.

The number of rejected articles (the variable𝑚) is an example of a random
variable. It varies randomly fromone trial to another, anda certain probability
is associated with the occurrence of each value of the variable. Note that we are
dealing with a discrete random variable here, i.e. it may only take a discrete
set of values (the integers from 0 to 100 in this case).

There are also continuous random variables. For instance, the length
and weight of newborn babies vary randomly from child to child and may
take any value within a particular interval There are some special features
of continuous random variables which we shall discuss later; we shall first
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consider discrete variables.

Expected values and variance of a discrete random variable. Let 𝑥
be a discrete random variable which may assume 𝑠 values: 𝑥1, 𝑥2, … 𝑥𝑚, … 𝑥𝑠.
These values are associated with the probabilities 𝑝1, 𝑝2, … 𝑝𝑚, … 𝑝𝑠. For in-
stance, 𝑝𝑚 is the probability that a variable is 𝑥𝑚. The sum of all the prob-
abilities (𝑝1 + 𝑝2 + … + 𝑝𝑠) is the probability that a trial will give one of
the values 𝑥1, 𝑥2, … 𝑥𝑠, (without saying which one). This probability is unity.
Consequently,

𝑠
∑
𝑚=1

𝑝𝑚 = 1, (1.3)

The notation
𝑠
∑
𝑚=1

means that the summation is

performed over all𝑚 from 1 to 𝑠.

The set of probabilities 𝑝1 + 𝑝2 + … + 𝑝𝑠 (also called the distribution of the
probabilities) contains all the information needed about the random variable.
However, we do not need all the probabilities for many practical purposes. It
is sufficient to know twomost important characteristics of a random variable:
its expected value (its mathematical expectation) and its variance.

The expected value is an average value of the random variable taken over
a large number of trials. We shall use the letter𝐸 to denote the expected value.
The expected value of a random variable 𝑥 is the sum of the products of each
variable and its probability, i.e.

𝐸(𝑥) = 𝑝1𝑥1 + 𝑝2𝑥2 + … + 𝑝𝑠𝑥𝑠,

or using the summation sign,

𝐸(𝑥) =
𝑠
∑
𝑚=1

𝑝𝑚 𝑥𝑚. (1.4)

We also need to know how a variable deviates from the expected value, or,
in other words, howmuch the random variable is scattered. The expected
value of the deviation from the expected value (that is the difference 𝑥−𝐸(𝑥))
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cannot be used because it is equal to zero. We can show this as follows:

𝐸(𝑥 − 𝐸(𝑥)) =
𝑠
∑
𝑚=1

𝑝𝑚 (𝑥𝑚 − 𝐸(𝑥)),

=
𝑠
∑
𝑚=1

𝑝𝑚 𝑥𝑚 − 𝐸(𝑥)
𝑠
∑
𝑚=1

𝑝𝑚,

= 𝐸(𝑥) − 𝐸(𝑥),
= 0.

This is why the expected value of the squared deviation (rather than the
expected value of the deviation itself) is used, i.e.

var = 𝜎2 = 𝐸(𝑥—𝐸(𝑥))2 =
𝑠
∑
𝑚=1

𝑝𝑚 (𝑥𝑚 − 𝐸(𝑥))
2. (1.5)

This is the variance of a random variable andwe shall use var to denote it. The
square root of the variable √var is called the standard (or root-mean-square)
deviation 𝜎 of the random variable. It is easy to show that

var = 𝐸(𝑥2) − (𝐸(𝑥))2. (1.6)

Indeed,
𝑠
∑
𝑚=1

𝑝𝑚 (𝑥𝑚 − 𝐸(𝑥))
2 =

𝑠
∑
𝑚=1

𝑝𝑚 (𝑥
2
𝑚 − 2𝑥𝑚𝐸(𝑥) + 𝐸(𝑥))

2),

=
𝑠
∑
𝑚=1

𝑝𝑚 𝑥
2
𝑚 − 2𝐸(𝑥)

𝑠
∑
𝑚=1

𝑝𝑚 𝑥𝑚 + (𝐸(𝑥))
2

𝑠
∑
𝑚=1

𝑝𝑚,

= 𝐸(𝑥2) − 2𝐸(𝑥)𝐸(𝑥) + (𝐸(𝑥))2,

= 𝐸(𝑥2) − (𝐸(𝑥))2.

Two probability distributions are shown in Figure 1.10 (a). The two
random variables possess different expected values while having the same
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(a) (b)xm  xm

E(x1), var x1 E(x2), var x2

E(x1) < E(x2)
 var x1 = var x2

E(x1), var x1 E(x2), var x2

E(x1) = E(x2)
 var x1 < var x2

Figure 1.10: Distributions of random variables
with different parameters. (a) shows two distri-
butions with different expected values but the
same variance, while (b) shows two distributions
with different variance but the same expected val-
ues.

variance. Looking at Figure 1.10 (b), we can see a different picture: the random
variables possess different variances while having the same expected values.

Bernoulli’s Binomial Distribution. Suppose a series of 𝑛 independent
identical trials is performed. The trials are independent in the sense that
the results of any trial do not influence the results of any other trial. Some
trials produce a desired outcome while the rest do not. Let us call the desired
outcome, “event𝑈”. This is a random event. Suppose event𝑈 occurs in in
trials. This is a random variable. Let us consider the probability 𝑃𝑛 (𝑚) that
event𝑈will occur𝑚 times in a series of 𝑛 trials.

This is a commonly occurring situation. Suppose 𝑛manufactured articles
are checked. Then event𝑈 is a rejection, and 𝑃𝑛 (𝑚) is the probability of in
articles being rejected out of a set of in articles Suppose a hospital registers
𝑛 newborn babies and the event𝑈 is the birth of a girl. Hence 𝑃𝑛 (𝑚) is the
probability that there will be𝑚 girls in a set of 𝑛 newborn babies. Suppose
in a lottery, 𝑛 tickets are checked, event𝑈 is the discovery of a prize-winning
ticket, and𝑃𝑛 (𝑚) is the probability that𝑚 prize-winning tickets will be found
out of a total of 𝑛 tickets. Suppose in a physics experiment 𝑛 neutrons are
recorded, the event𝑈 is the occurrence of a neutron with an energy within
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a certain range, and 𝑃𝑛 (𝑚) is the probability that 𝑚 of the 𝑛 neutrons will
possess energies in the range. In all these examples, the probability 𝑃𝑛 (𝑚) is
described by the same formula which is the binomial distribution (sometimes
named after a 17th century Swiss mathematician called Jacob Bernoulli).

The binomial distribution is derived by assuming that the probability
that event𝑈will occur in a single trial is known and does not vary from trial
to trial. Let us call this probability 𝑝. The probability that event 𝑈 does
not occur in a single trial is 𝑞 = 1 − 𝑝. It is important that the probability
that an article is rejected does not depend in any way on howmany rejected
articles there are in the given batch. The probability that a girl is born in any
actual delivery does not depend on whether a girl or a boy was born in the
previous birth (nor on howmany girls have so far been born). The probability
of winning a prize neither increases nor decreases as the lottery tickets are
checked. The probability that a neutron has an energy in a given range does
not change during the experiment.

Now, once the probability 𝑝 that a certain random event will occur in a
single trial is known, we find the probability 𝑃𝑛(𝑚) of𝑚 occurrences in a series
of 𝑛 independent identical trials.

Suppose the event𝑈 occurred in the first𝑚 trials but did not occur in
𝑛−𝑚 trials, then the probability of the situationwould be 𝑝𝑚𝑞𝑛−𝑚. Naturally,
other orders are possible. For instance, event𝑈maynot occur in the first𝑛−𝑚
trials and occur in the rest in trials. The probability of this situation is also
𝑝𝑚𝑞𝑛−𝑚. There are also other possible situations. There are asmany situations
as there are ways choosing 𝑛 elements taken in at a time (this is written ( 𝑛𝑚 )).
The probability of each situation is identical and equals 𝑝𝑚𝑞𝑛−𝑚. The order
in which event𝑈 occurs is inessential. It is only essential that it occurs in𝑚
trials and does not occur in the remaining 𝑛−𝑚 trials. The sought probability
𝑃𝑛(𝑚) is the sum of the probabilities of each ( 𝑛𝑚 ) situation, i.e. the product
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of 𝑝𝑚𝑞𝑛−𝑚 and ( 𝑛𝑚 ):

𝑃𝑛(𝑚) = (𝑛𝑚) 𝑝
𝑚𝑞𝑛−𝑚. (1.7)

There is a formula for the number of combinations of 𝑛 elements taken𝑚 at
a time:

(𝑛𝑚) =
𝑛!

𝑚!(𝑛 − 𝑚)! =
𝑛(𝑛 − 1)(𝑛 − 2) … (𝑛 − 𝑚 + 1)

𝑚! . (1.8)

Here 𝑛! = 1 ⋅ 2 ⋅ 3 ⋅ … ⋅ 𝑛 (read 𝑛! as “en factorial”), by convention 0! = 1.

Substituting (1.8) into (1.7), we can find

𝑃𝑛(𝑚) =
𝑛!

𝑚!(𝑛 − 𝑚)! 𝑝
𝑚𝑞𝑛−𝑚. (1.9)

This is the binomial distribution, or the distribution of a binomial random
variable. I shall explain this term below, and we shall see that

𝑛
∑
𝑚=0

𝑃𝑛 (𝑚) = 1. (1.10)

0 4 6 8 10 12 14 16 20

m

0.
18

P20(m)

Figure 1.11: The binomial distribution.By way of example, let us calculate the probability that𝑚 girls are born in
a group of 20 babies. Assume that the probability of delivering a girl is 1/2,
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We set 𝑝 = 1/2 and 𝑛 = 20 in expression (1.9) and consider the integer values
of variable𝑚within the range from 0 to 20. The result can be conveniently
presented as a diagram (Figure 1.11). We see that the birth of 10 girls is the
most probable; the probability of delivering, for instance, 6 or 14 girls is six
times smaller.

If a random variable has a binomial distribution, then its expected value
is

𝐸(𝑚) =
𝑛
∑
𝑚=0

𝑚𝑃𝑛(𝑚).

or the product of the number of trials and the probability of the event in a
single trial,

𝐸(𝑚) = 𝑛𝑝. (1.11)
The variance of such a random variable is the product of the number of
trials, the probability of the occurrence of the event in a single trial, and the
probability it does not occur:

var = 𝐸(𝑚2) − (𝐸(𝑚))2 = 𝑛𝑝𝑞. (1.12)

The normal (Gaussian) Distribution. Probability calculations using
the binomial distribution are difficult for large 𝑛. For instance, in order to
find the probability that 30 girls were delivered from 50 births, you have to
calculate

𝑃30(50) =
50!

30!20! (0.5)
50.

Note that even 20! is a 19—digit number. In such cases one can use a formula
which is the limit of the binomial distribution at large 𝑛:

𝑃𝑛 (𝑚) =
1

√2𝜋 var
exp (−(𝑚 − 𝐸(𝑚))2

2 var ) , (1.13)

where 𝐸 (𝑚) = 𝑛𝑝 and var = 𝑛𝑝𝑞, and exp = 2.718… is the base of natu-
ral logarithms. The distribution defined in (1.13) is called the normal or
Gaussian distribution.
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The Poisson Distribution. If the probability that an event will occur
in a single trial is very small (𝑝 ≪ 1), the binomial distribution at large 𝑛
becomes the Poisson (rather than the normal) distribution, and is defined as

𝑃𝑛 (𝑚) =
(𝑛𝑝)𝑚

𝑚! exp(−𝑛𝑝). (1.14)

This distribution is also sometimes called the law of rare events. It is in-
teresting to note that the variance of a random variable with the Poisson
distribution equals its expected value.

Twodistributions are compared in Figure 1.12. The parameters of the first
distribution are 𝑛 = 30 and 𝑝 = 0.3, and it is close to the normal distribution
with the expected value 𝐸 (𝑚) = 9. The second distribution’s parameters
are 𝑛 = 30 and 𝑝 = 0.05, and it is close to the Poisson distribution with
𝐸 (𝑚) = 1.5.

0 1 5 10 15 0
m

Pn(m)

0.1

0.2

0.3
n=30
p=0.3

1 5
m

0.1

0.2

0.3
n=30
p=0.05

Pn(m)

Figure 1.12: The Poisson (right) and Gaussian
(left) distributions.A Little of Mathematics. The expression (𝑞 + 𝑝)𝑛, where 𝑛 is a positive

integer, is called a binomial (two-term) expression of degree 𝑛. You should
know about the binomial expansions of second and third degrees:

(𝑞 + 𝑝)2 = 𝑞2 + 2𝑞𝑝 + 𝑝2,

(𝑞 + 𝑝)3 = 𝑞3 + 3𝑞2𝑢 + 3𝑞𝑝2 + 𝑝3.
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In general (for a random integer 𝑛) the binomial expansion is

(𝑞+𝑝)𝑛 = 𝑞𝑛+𝑛𝑞𝑛−1𝑝+…+𝑛(𝑛 − 1) … (𝑛 − 𝑚 + 1)
𝑚! 𝑞𝑛−𝑚𝑝𝑚+…+𝑛𝑞𝑝𝑛−1+𝑝𝑛.

Using the notation given in (1.8), we can rewrite this formula as

(𝑞+𝑝)𝑛 = (𝑛0) 𝑞
𝑛+(𝑛1) 𝑞

𝑛−1𝑝+…+(𝑛𝑚) 𝑞
𝑛−𝑚𝑝𝑚+…+( 𝑛

𝑛 − 1) 𝑞𝑝
𝑛−1+(𝑛𝑛) 𝑝

𝑛.

Thus from (1.9), we can conclude that

(𝑞 + 𝑝)𝑛 =
𝑛
∑
𝑚=0

(𝑛𝑚) 𝑞
𝑛−𝑚𝑝𝑚 =

𝑛
∑
𝑚=0

𝑃𝑛 (𝑚).

Consequently, the probabilities 𝑃𝑛 (𝑚) coincide with the coefficients of the
binomial expansion, and this is why the binomial distribution is so called.
The probabilities 𝑞 and 𝑝 in a binomial distribution are such that 𝑞 + 𝑝 = 1.
Therefore, (𝑞 + 𝑝)𝑛 = 1. On the other hand,

(𝑞 + 𝑝)𝑛 =
𝑛
∑
𝑚=0

𝑃𝑛 (𝑚).

Hence (1.10).

Continuous Random Variables

Continuous random variables are very unlike discrete ones. A continuous
variable can assume any of infinite set of values, which continuously fill a
certain interval. It is impossible in principle to list every value or such a
variable at the very least because there rs no such thing as two neighbouring
values (just as it is impossible tomark twoneighbouring points on the number



47 continuous random variables

axis). Besides, the probability of a concrete value of a continuous random
variable is zero.

Can Probability Of A Possible Event Equal To Zero? You know now
that an impossible event has a zero probability. However, a possible event can
also have a zero probability.

Suppose a thin needle is thrown many times at random onto a strip of
paper on which a number axis is marked. We can regard the 𝑥-coordinate
of the point where the needle crosses the number axis (Figure 1.13 (a)) to be
a continuous random variable. This coordinate varies in a random fashion
from one trial to another.

0
x

(a)

(b)

x

Figure 1.13: The probability that a continuous
random variable will take a certain value is zero.We could also use a roulette instead of throwing a needle. A strip of paper

with a numbered line could be. pasted to the circumference of the roulette
circle, as shown in Figure 1.13 (b). Wherever the freely rotating arrow of the
roulette is pointing when it stops, it yields a number that will be a continuous
random variable.

What is the probability of the arrow stopping at a certain point 𝑥? In
other words, what is the probability that a concrete value 𝑥 of a continuous
random variable is chosen? Suppose the roulette circle’s radius 𝑅 is divided
into a finite number of identical sectors, e.g. 10 sectors (Figure 1.14). The
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length of the arc corresponding to the sector equals Δ𝑥 = 2𝜋𝑅/10. The
probability that the arrow will stop within the sector hatched in the figure is
Δ𝑥/2𝜋𝑅 = 1/10. Thus, the probability that the random variable will take
a value from 𝑥 to 𝑥 + Δ𝑥 is Δ𝑥/2𝜋𝑅. Let us gradually narrow the range of
numbers, i. e. divide the circle into larger numbers of sectors. The probability
Δ𝑥/2𝜋𝑅 that any value is in the range from 𝑥 to 𝑥 +Δ𝑥 also will fall. In order
to obtain the probability that the variable will take the value 𝑥 exactly, we
must find the limit asΔ𝑥 → 0. In this case, the probabilityΔ𝑥/2𝜋𝑅 becomes
zero. Thus we can see that the probability that a continuous random variable
will take a certain value is indeed zero.

x

0

Figure 1.14: A roulette to generate continuous
random variables.

A

V1

Figure 1.15: A finite non-zero mass can be gener-
ated from the sum of an infinite number of zero
masses.

That event may be both possible and possess a zero probability may seem
paradoxical, but it is not. In fact there are parallels you are surely well aware
of. Consider a body of volume 𝑉 with a mass 𝑀. Let us select a point
𝐴 within the body and consider a smaller volume 𝑉1 which contains the
point (Figure 1.15) and assign a mass𝑀1 to it. Let us gradually shrink the
smaller volume around point𝐴. We obtain a sequence of volumes containing
𝐴, i.e. 𝑉,𝑉1, 𝑉2, 𝑉3, … , and a corresponding sequence of decreasing masses:
𝑀,𝑀1,𝑀2,𝑀3, … ,. The limit of the mass vanishes as the volume around𝐴
contracts to zero. We can see that a body which has a finite mass consists of
points which have zero masses. In other words, the nonzero mass of the body
is the sum of an infinite number of zero masses of its separate points. In the
same way, the nonzero probability that a roulette arrow stops within a given
range Δ𝑥 is the sum of an infinite number of zero probabilities that the arrow
will stop at each individual value within the considered range.

The Density Of A Probability. This conceptual difficulty can be
avoided by using the idea density. Although the mass of a point within a
body is zero, the body’s density at the point is non-zero. IfΔ𝑀 is the mass of
a volumeΔ𝑉within which the point in question is located (we shall describe
the point in terms of its position vector r, then the density 𝜌 (r) at this point
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is the limit of the ratio Δ𝑀/Δ𝑉 as Δ𝑉 converges to the point at r, i.e.,

𝜌 (r) = lim
Δ𝑉→0

Δ𝑀
Δ𝑉 .

If the volume Δ𝑉 is small enough, we can say that Δ𝑀 ≃ 𝜌(r)Δ𝑉. Using a
strict approach, we should substitute Δ𝑉 by the differential d𝑉.

The mass𝑀 of a body occupying volume 𝑉 is then expressed by the
integral:

𝑀 = ∫
𝑉
𝜌 (r) d𝑉,

over the volume in question.

Probability theory uses a similar approach. Whendealingwith continuous
random variables, the probability density is used rather than the probability
itself. Let 𝑓(𝑥) be the probability density of a random variable 𝑥, and so by
analogy with the mass density we have

𝑓(𝑥) = lim
Δ𝑥→0

Δ𝑝𝑥
Δ𝑥 .

Here Δ𝑝𝑥 is the probability that a random variable will take a value between
𝑥 and 𝑥 + Δ𝑥. The probability 𝑝 that a random variable will have a value
between 𝑥1 and 𝑥2 is, in terms of probability density, as follows:

𝑝 =
𝑥2

∫
𝑥1

𝑓(𝑥)d𝑥. (1.15)

If the integration is over the whole range of values a random variablemay take,
the integral (1.15) will evaluate to unity (this is the probability of a certain
event). In the example with a roulette mentioned above, the whole interval is
from 𝑥 = 0 to 𝑥 = 2𝜋𝑅. In general, we assume the interval is infinite, when

+∞

∫
−∞

𝑓(𝑥)𝑑𝑥 = 1. (1.16)
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The integral is very simple in the roulette example because the probability the
roulette arrow stops within an interval from 𝑥 to 𝑥 + Δ𝑥 does not depend on
𝑥. Therefore, the probability density does not depend on 𝑥, and hence,

A similar situation is encountered when the density of a body is the same
at every point, i.e. when the body is uniform (𝜌 = 𝑀/𝑉). More generally,
density 𝜌(r) varies from point to point, and so does the probability density
𝑓(𝑥).

The Expected Value And The Variance Of A Continuous Random
Variable. The expected value and variance of a discrete random variable are
expressed as sumsover the probability distribution (see equations (1.4) to (1.6).
When the random variable is continuous, integrals are used instead of sums
and the probability density distribution is used rather than the probability
distribution:

𝐸(𝑥) =
+∞

∫
−∞

𝑥𝑓(𝑥) d𝑥, (1.17)

var =
+∞

∫
−∞

(𝑥 − 𝐸(𝑥))2𝑓(𝑥) d𝑥. (1.18)

The Normal Distribution Of Probability Density. The normal
distribution of probability density. When dealing with continuous random
variables, we often encounter the normal distribution of probability density.
This distribution is defined by the following expression (compare it with
(1.13)):

𝑓(𝑥) = 1
𝜎√2𝜋

exp (−(𝑥 − 𝐸(𝑥))
2

2𝜎2
) . (1.19)

Here 𝜎 is the standard deviation (𝜎 = √𝑣𝑎𝑟) the function (1.19) is called
the normal or Gaussian distribution.

The probability density of a continuous randomvariable is always normal
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if the variance of its values is due to many different equally strong factors. It
has been proved in probability theory that the sum of a large enough number
of independent random variables obeying any distributions tends to the
normal distribution, and the larger the number of sums the more accurately
the normal distribution is.

For instance, suppose we are dealing with the production of nuts and
bolts. The scatter of the inside diameter of the nut is due to random de-
viations in the properties of the metal, the temperature, vibration of the
machine tool, changes in the voltage, wear of the cutter, etc. All of these
effects act independently and approximately with the same strength. They
are superimposed, and the result is that the inside diameter of the nuts is a
continuous random variable with a normal distribution. The expected value
of this variable should evidently be the desired inside diameter of the nuts,
while the variance characterizes the scatter of the obtained diameters around
the desired value.

3

xE (x)

2

f (x)

Figure 1.16: The three-sigma rule for a Gaussian
distribution.

The Three-Sigma Rule. A normal distribution is shown in Figure 1.16.
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It has a maximum at the expected value𝐸(𝑥). The curve (the Gaussian curve)
is bell-shaped and is symmetric about 𝐸(𝑥). The area under the entire curve,
i. e. for the interval (−∞ < 𝑥 < +∞), is given by the integral ∫+∞−∞ 𝑓(𝑥)𝑑𝑥.
Substituting (1.19) here, it can be shown that the area is equal to unity. This
agrees with (1.16), whose meaning is that the probability of a certain event is
unity. Let us divide the area under the Gaussian curve using vertical lines (see
Figure 1.16). Let us first consider the section corresponding to the interval
𝐸(𝑥) − 𝜎 ≤ 𝑥 ≤ 𝐸(𝑥) + 𝜎. It can be shown (please believe me) that

𝛦(𝑥)+𝜎

∫
𝛦(𝑥)−𝜎

𝑓(𝑥)𝑑𝑥 = 0.683.

Thismeans that the probability of𝑥 taking a value in the interval from𝐸(𝑥)−𝜎
to 𝐸(𝑥) + 𝜎 equals 0.683. It can also be calculated that the probability of 𝑥
taking a value from 𝐸(𝑥) − 2𝜎 to 𝐸(𝑥) + 2𝜎 is 0.954, and the probability of 𝑥
taking a value in the range of 𝐸(𝑥) − 3𝜎 to 𝐸(𝑥) + 3𝜎 is 0.997. Consequently,
a continuous random variable with a normal distribution takes a value in the
interval 𝐸(𝑥) − 3𝜎 to 𝐸(𝑥) + 3𝜎with probability 0.997. This probability is
practically equal to unity. Therefore, it is natural to assume for all practical
purposes that a random variable will always take a value in the interval from
3𝜎 on the right to 3𝜎 on the left of 𝐸(𝑥). This is called the three-sigma rule.



Chapter 2

Decision Making

Practical demands brought forth special scientific methods that
can be collected under the heading “operations research”. We
shall use this term to mean the application of quantitative
mathematical methods to justify decisions in every area of
goal-oriented human activity.

E. S. Wentzel

These Difficult Decisions

Decision making under uncertain conditions. We often have to make
decisions when not all the information is available and this uncertainty always
decreases to some extent our ability to decide. For example, where to go
for a vacation or holiday? This has worried me many times, since various
uncertainties concerning the weather, the hotel, the entertainment at the
resort, and so on, must be foreseen. We try and decide on the best variant

53
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from our experience and the advice of our friends, and we often act “by
inspiration”. This subjective approach to decision making is justifiable when
the consequences involve ourselves and relatives. However, there are many
situations when a decision can affect a large number of people and therefore
requires a scientific and mathematically justifiable approach rather than a
subjective one.

For instance, modern society cannot function without electricity, stores
of food, rawmaterials, etc. The stores are kept everywhere: at factories, shops,
hospitals, and garages. But how large should the stores be in a particular
case? It is clear that they should not be too small, otherwise the function of
the enterprise would be interrupted. Neither should they also be too large
because they cost money to build and maintain: they would be dead stock.
Store-keeping is a problem of exceptional importance. It is so complicated
because a decision must always be made in conditions of uncertainty.

Two kinds of uncertainty. How shouldwemake decisions under condi-
tions of uncertainty? First of all, we should discover which factors are causing
the uncertainty and evaluate their nature. There are two kinds of uncertainty.
The first kind is due to factors which can be treated using the theory of proba-
bility. These are either random variables or random functions, and they have
statistical properties (for instance, the expected value and variance), which
are either known or can be obtained over time. Uncertainty of this kind is
called probabilistic or stochastic. The second kind of uncertainty is caused
by unknown factors which are not random variables (random functions) be-
cause the set of realizations of these factors does not possess statistical stability
and therefore the notion of probability cannot be used. We shall call this
uncertainty “bad”.

“So”, the reader may say, “it would seem that not every event that cannot
be predicted accurately is a random event.”

“Well, yes, in a way.” Let me explain. In the preceding chapter we dis-
cussed random events, random variables, and random functions. I repeatedly
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emphasized that there should always be statistical stability, which is expressed
in terms of probability. However, there are events, which occur from time
to time, that do not have any statistical stability. The notion of probability
is inapplicable to such events, and therefore, the term “random” cannot be
used here too. For instance, we cannot assign a probability to the event of
an individual pupil getting an unsatisfactory mark in a concrete subject. We
cannot, even hypothetically, devise a set of uniform trials that might yield
the event as one outcome. There would be no sense in conducting such a
trial with a group of pupils because each pupil has his or her own individual
abilities and level of preparation for the exam. The trials cannot be repeated
with the same pupil because he will obviously get better and better in the
subject from trial to trial. Similarly there is no way we can discuss the proba-
bility of the outcome of a game between two equally matched chess players.
In all such situations, there can be no set of uniform trials, and so there is
no stability which can be expressed in terms of a probability. We have “bad”
uncertainty in all such situations.

I am afraid we do not consider the notion “statistical stability” and often
use expressions such as “improbable”, “probable”, “most probable”, and “in
all probability” to refer to events that cannot be assigned by any probability.
We are apt to ascribe a probability to every event even though it might not be
predictable. This is why it becamenecessary to refine the notion of probability
early this century. This was done by A.N. Kolmogorov when he developed
an axiomatic definition of probability.

Options and the measure of effectiveness.When we speak of decision
making, we assume that different patterns of behaviour are possible. They are
called options. Let me emphasize that in the more important problems the
number of options is very great. Let𝑋 be the set of options in a particular
situation. A decision is made when we select one option 𝑥 from this set. How
do we determine which option is the most preferable or the most efficient? A
quantitative criterion is needed to allow us to compare different options in
terms of their effectiveness. Let us call this criterion the measure of effective-
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ness. This measure is selected for each particular purpose, e.g., not to be late
for school, to solve a problem correctly and quickly, or to reach the cinema.
A doctor wants to find an efficient method of treating his patient. A factory
manager is responsible for the fulfilment of a production plan. The most
efficient option is the one that suits its purpose best.

Suppose we work in a shop and our target is to maximize the receipts. We
could choose profit as the measure of effectiveness and strive to maximize this
measure. The selection of the measure in this example is evident. However,
there are more complicated situations, when several goals are pursued simul-
taneously, for example, we wish to maximize profit, minimize the duration of
the sales, and distribute the goods to the greatest number of customers. In
such cases we have to have several measures of effectiveness; these problems
are called multi-criterial.

Let𝑊 be a single measure of effectiveness. It would seem that our task is
now to find an option 𝑥 atwhich𝑊 is at amaximum (or, the otherway round,
at a minimum). However, we should remember that decision making occurs
under conditions of uncertainty. There are unknown (random) factors (let
us use 𝜉 to denote them), which influence the end result and therefore affect
the measure of effectiveness𝑊. There is also always a set of factors known
beforehand (let us designate them 𝛼). Therefore the measure of effectiveness
is dependent on three groups of factors: known factors 𝛼, unknown (random)
factors 𝜉, and the selected option 𝑥:

𝑊 = 𝑊(𝛼, 𝜉, 𝑥).

In the sales example, the 𝛼 set is goods on sale, the available premises, the
season, etc. The 𝜉 factors include the number of customers per day (it varies
randomly from day to day), the time customers arrive (random crowding is
possible, which leads to long queues), the goods chosen by the customers
(the demand for a given commodity varies randomly in time), etc.

Since the 𝜉, factors are random, the measure of effectiveness𝑊 is a ran-
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dom variable. Now, how is it possible to maximize (minimize) a random
variable? The answer quite clearly is that it is naturally impossible. Whichever
option 𝑥 is chosen,𝑊 remains random, and it cannot be maximized or mini-
mized. This answer should not discourage the reader. It is true that under
conditions of uncertainty we cannot maximize (minimize) the measure of
effectiveness with a hundred per cent probability. However, an adequate selec-
tion of an option is possible with a reasonably large probability. This is where
we should tackle the techniques used in decision making under conditions of
stochastic uncertainty.

Substitution of random factors by means. The easiest technique is
merely to substitute the random factors 𝜉 by their means. The result is that
the problem becomes completely determined and themeasure of effectiveness
𝑊 can be calculated precisely. It can, in particular, be either maximized or
minimized. This technique has been widely used to solve problems in physics
and technology. Almost every parameter encountered in these fields (e.g.,
temperature, potential difference, illuminance, pressure) is, strictly speak-
ing, a random variable. As a rule, we neglect the random nature of physical
parameters and use their mean values to solve the problems.

The technique is justified if the deviation of a parameter from its mean
value is insignificant. However, it is not valid if the random factor significantly
affects the outcome. For instance, when organizing the jobs in a motor-car
repair shop, we may not neglect the randomness in the way cars fail, or the
random nature of the failures themselves, or the random time needed to
complete each repair operation. If we are dealing with the noise arising in an
electronic device, we cannot neglect the random behaviour of electron flows.
In these examples, the 𝜉 factors must indeed be considered as random factors,
we shall say they are essentially random.

Mean value optimization. If the 𝜉 factors are essentially random, we
can use a technique called mean-value optimization. What we do is to use the
expected value 𝐸(𝑊) as the measure of effectiveness, rather than the random
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variable𝑊 and the expected value is maximized or minimized.

Naturally, this approach does not resolve the uncertainty. The effective-
ness of an option 𝑥 for concrete values of random parameters 𝜉may be very
different from the expected one. However, using mean-value optimization
means that we can be sure that after many repeated operations we shall gain
overall. It should be borne in mind that mean-value optimization is only ad-
missible when the gains of repeated operations are totalled, so that “minuses”
in some operations are compensated by the “pluses” in others. Mean-value
optimization would be justified should we be trying to increase the profit
obtained, for instance, in a sales department. The profit on different days
would be totalled, so that random “unlucky” days would be compensated by
the “lucky” days,

But here is another example. Suppose we consider the effectiveness of
the ambulance service in a large city. Let us select the elapsed time between
summoning help and the ambulance arriving as the measure of effectiveness.
It is desirable that this parameter be minimized. We cannot apply mean-value
optimization because if one patient waits too long for a doctor, he or she is
not compensated by the fact that another patient received faster attention.

Stochastic constraints. Let us put forward an additional demand. Sup-
pose we desire that the elapsed time𝑊 till the arrival of help after a call for
an ambulance be less than some value𝑊0. Since𝑊 is a random variable,
we cannot demand that the inequality𝑊 < 𝑊0 be always true, we can only
demand that it be true for some large probability, for instance, no less than
0.99. In order to take this into account we delete from the𝑋 set those options
𝑥, for which the requirement is not satisfied. These constraints are called
stochastic. Naturally, the use of stochastic constraints noticeably complicates
decision making.
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Random Processes with Discrete States

A random process can be thought of as the transition of a system from one
state to another occurring in a random fashion. We shall consider random
processes with discrete states in this chapter and so our system will be sup-
posed to have a set of discrete states, either finite or infinite. The random
transitions of the system from one state to another are assumed to take place
instantaneously.

State graphs. Randomprocesses with discrete states can be conveniently
considered using a diagram called a state graph. The diagram shows the
possible states a system may be in and indicates the possible transitions using
arrows.

S1

S3S2

S4

Figure 2.1: A state graph for system with four
states.

Let us take an example. Suppose a system consists of two machine tools,
each of which produces identical products. If a tool fails its repair is started
immediately. Thus, our system has four states: 𝑆1 both tools are operating;
𝑆2 the first tool is under repair after a failure while the second is operating; 𝑆3,
the second tool is under repair while the first is operating; 𝑆4, both tools are
being repaired.

The state graph is given in Figure 2.1. The transitions 𝑆1 → 𝑆2, 𝑆1 →
𝑆3, 𝑆2 → 𝑆4 and 𝑆3 → 𝑆4 occur as a result of failures in the system. The
reverse transitions take place upon termination of the repairs. Failures occur
at unpredictable moments and the moments when the repairs are terminated
are also random. Therefore, the system’s transition from state to state is
random.

Note that the figure does not show transitions𝑆1 → 𝑆4 and𝑆4 → 𝑆1. The
former corresponds to the simultaneous failure of both tools and the latter
to the simultaneous termination of repair of both tools. We shall assume that
the probabilities of these events are zero.

Event arrival. Suppose that we have a situation in which a stream of
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uniform events follow each other at random moments. They may be tele-
phoned orders for taxi, domestic appliances being switched on, the failures
in the operation of a device, etc.

(a)

(b)

(c)

(d)
t

t

t

t

t t+𝛥t

Figure 2.2: A record of taxi orders at a taxi depot.
Suppose the dispatcher at a taxi depot records the time each taxi order

is made over an interval of time, for instance, from 12 a.m. to 2 p.m. We
can show these moments as points on the time axis, and so the dispatcher
might get the pattern illustrated in Figure 2.2 (a). This is the realization of
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the taxi-call arrivals during that interval of time. Three more such realizations
are shown in Figure 2.2 (b), (c), and (d), and they are patterns recorded on
different days. The moments when each taxi order is made in each realization
are random. At the same time, the taxi-order arrivals possess statistical stability,
that is, the total number of events in each interval of time varies only slightly
from experiment to experiment (from one arrival realization to another). We
can see that the number of events in the arrival realisations presented are 19,
20, 21, and 18.

In the preceding chapter, a random event in an experiment was an out-
come which has a definite probability. When we are considering arrivals of
events, we must have another meaning for the term “event”. There is no use
speaking about the probability of an outcome (event) because each event is
uniform, i.e. indistinguishable from the others. For instance, one taxi-order
is a single event in a stream and is indistinguishable from another event. Now
let us consider other probabilities, for instance, the probabilities that an event
will occur during a given interval of time (suppose, from 𝑡 to 𝑡 +Δ𝑡, as shown
in the figure) exactly once, twice, thrice, etc.

The notion of “event arrival” is applied to random processes in systems
with discrete states. It is assumed that the transitions of a system from one
state to another occur as a result of the effect of event arrivals. Once an
event arrives, the system instantaneously changes state. For the state graph
in Figure 2.1 transitions 𝑆1 → 𝑆2 and 𝑆3 → 𝑆4 occur due to the arrival of
events corresponding to failures in the first tool, while transitions 𝑆1 → 𝑆3
and 𝑆2 → 𝑆4 occur due to failures of the second tool. The reverse transitions
are caused by the arrival of events corresponding to the “terminations” of
repair: transitions 𝑆2 → 𝑆1 and 𝑆4 → 𝑆3, are caused by the arrivals of repair
terminations of the first tool, and transitions 𝑆3 → 𝑆1 and 𝑆4 → 𝑆2 to the
arrivals of repair terminations of the second tool.

The system transfers from state 𝑆𝑖 to state 𝑆𝑗 every time the next event
related to the transition arrives. The natural conclusion is that the probability
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of transition 𝑆𝑖 → 𝑆𝑗 at a definite moment in time 𝑡 should equal the proba-
bility of an event arrival at this moment. There is no sense in speaking of the
probability of a transition at a concrete moment 𝑡. Like the probability of
any concrete value of a continuous random variable, this probability is zero,
and this result follows from the continuity of time. It is therefore natural
to discuss the probability of a transition (the probability of an event arrival)
occurring during the interval of time from 𝑡 to 𝑡 + Δ𝑡, rather than its occur-
rence at time 𝑡. Let us designate this probability 𝑃𝑖𝑗(𝑡, Δ𝑡). As Δ𝑡 tends to
zero, we arrive at the notion of a transition probability density at time 𝑡, i.e.

𝜆𝑗(𝑡) = lim
Δ𝑡→0

𝑥 =
𝑃𝑖𝑗 (𝑡, Δ𝑡)

Δ𝑡 . (2.1)

This is also called the arrival rate of events causing the transition in question.

In the general case, the arrival rate depends on time. However, it should
be remembered that the dependence of the arrival rate on time is not related
to the location of “dense” or “rare” arrival realisations. For simplicity’s sake,
we shall assume that the transition probability density and therefore the event
arrival rate does not depend on time. i.e. we shall consider steady-state
arrivals.S1

S2 S3

S4

𝜇1

𝜆1

𝜆2

𝜇2

𝜆2 𝜇1

𝜆1𝜇2

Figure 2.3: A state graph for system with four
states with arrival rates.

The Chapman-Kolmogorov equations for steady state. Let us use 𝑝𝑖
to denote the probability that a system is in state 𝑆𝑖 (since our discussion is
only for steady-state arrivals, the probabilities 𝑝𝑖, are independent of time),
Let us consider the system whose state graph is given in Figure 2.1. Suppose
𝜆1 is the arrival rate for failures of the first tool and 𝜆2 that for the second tool;
let 𝜇1 be the arrival rate for repair terminations of the first tool and 𝜇2 that for
the second tool. We have labelled the state graph with the appropriate arrival
rates, see Figure 2.3.

Suppose there are𝑁 identical systems described by the state graph in
Figure 2.3. Let𝑁 ≫ 1. The number of systems with state 𝑆𝑖, is𝑁𝑝𝑖 (this
statement becomes more accurate the larger𝑁 is). Let us consider a concrete
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state, say, 𝑆1. Transitions are possible from this state to states 𝑆2 and 𝑆3 with
probability 𝜆1+𝜆2, per unit time. (Under steady state, the probability density
is the probability for the finite time interval Δ𝑡 divided by Δ𝑡.) Therefore,
the number of departure: from state 𝑆1, per unit time in the considered set
of systems is𝑁𝑝1 (𝜆1 + 𝜆2), We can discern a general rule here: the number
of transitions 𝑆𝑖 → 𝑆𝑗 per unit time is the product of the number of systems
with state𝑆𝑖 (the initial state) by the probability of the transition per unit time,
We have considered departures from state 𝑆1. The system arrives at this state
from 𝑆2 and 𝑆3, The number of arrivals at 𝑆1 per unit time is𝑁𝑝2 𝜇1+𝑁𝑝3 𝜇1.
Since we are dealing with steady states, the number of departures and arrivals
for each particular state should be balanced. Therefore.

𝑁𝑝1(𝜆1 + 𝜆2) = 𝑁𝑝2 𝜇1 + 𝑁𝑝3 𝜇2.

By setting up similar balances of arrivals and departures for each of the four
states and eliminating the common factor𝑁 in the equations, we obtain the
following equations for probabilities 𝑝1, 𝑝2, 𝑝3 and 𝑝4:

for state 𝑆1 ∶ (𝜆1 + 𝜆2) 𝑝1 = 𝜇1𝑝2 + 𝜇2𝑝3,
for state 𝑆2 ∶ (𝜆2 + 𝜇1) 𝑝2 = 𝜆1𝑝1 + 𝜇2𝑝4,
for state 𝑆3 ∶ (𝜆1 + 𝜇2) 𝑝3 = 𝜆1𝑝1 + 𝜇1𝑝4,
for state 𝑆4 ∶ (𝜇1 + 𝜇2) 𝑝4 = 𝜆2𝑝2 + 𝜆1𝑝3.

It is easy to see that the fourth equation can be obtained by summing the first
three. Instead of this equation, let us use the equation

𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 = 1,

which means that the systemmust be in one of the four states. Therefore, we
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have the following system of equations:

𝑆1 ∶ (𝜆1 + 𝜆2) 𝑝1 = 𝜇1𝑝2 + 𝜇2𝑝3,
𝑆2 ∶ (𝜆2 + 𝜇1) 𝑝2 = 𝜆1𝑝1 + 𝜇2𝑝4,
𝑆3 ∶ (𝜆1 + 𝜇2) 𝑝3 = 𝜆2𝑝1 + 𝜇1𝑝4,
𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 = 1.

} (2.2)

These are the Chapman-Kolmogomv equations for the system whose state
graph is shown in Figure 2.3.

Which innovation should be chosen? Let us analyze a concrete situa-
tion using equations (2.2). The state graph (see Figure 2.3) corresponding
to these equations describes a system which, we assumed, consists of two
machine tools each producing identical goods Suppose the second tool is
more modern an its output rate is twice that o the first tool. The first tool
generates (per unit time) an income of five conventional units, while the
second one generates one of ten units. Regretfully, the second tool fails, on
the average, twice as frequently as does the first tool: hence 𝜆1 = 1 and 𝜆2 = 2.
The arrival rates for repair termination are assumed to be 𝑢1 = 2 and 𝑢2 = 3.
Using these arrival rates for failure and repair termination. let us rewrite (2.2)
thus

3𝑝1 = 2𝑝2 + 3𝑝3,
4𝑝2 = 𝑝1 + 3𝑝4,
4𝑝3 = 2𝑝1 + 2𝑝4,

𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 = 1.

}

This system of equations can be solved to yield 𝑝1 = 0.4, 𝑝2 = 0.2, 𝑝3 =
0.27 and 𝑝4 = 0.13. This means that, on the average, both tools operate
simultaneously (state 𝑆1 in the figure) 40 per cent of the time, the first tool
operates while the second one is being repaired (state 𝑆2) 20 per cent of the
time, the second tool operates while the first one is being repaired (state 𝑆3)
27 per cent of the time, and both tools are simultaneously being repaired
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(state 𝑆4) 13 per cent of the time. It is easy to calculate the income this tool
system generates per unit time: (5 + 10) × 0.4 + 5 × 0.2 + 10 × 0.27 = 9.7
conventional units.

Suppose an innovation is suggested which would reduce the repair time
of either the first or second tool by a factor of two. For technical reasons, we
can only apply the innovation to one tool. Which tool should be chosen, the
first or the second? Here is a concrete example of a practical situation when,
using probability theory, we must justify our decision scientifically

Suppose we choose the first tool. Following the introduction of the
innovation, the arrival rate of its repair termination increases by a factor of
two, whence 𝑢1 = 4 (the other rates remain the same, i. e. 𝜆1 = 1, 𝜆2 = 2 and
𝜇2 = 3). Now equations (2.2) are

3𝑝1 = 4𝑝2 + 3𝑝3,
6𝑝2 = 𝑝1 + 3𝑝4,
4𝑝3 = 2𝑝1 + 4𝑝4,

𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 = 1.

}

After solving this system, we find that 𝑝1 = 0.48, 𝑝2 = 0.12, 𝑝3 = 0.32, and
𝑝4 = 0.08. These probabilities can be used to calculate the income our system
will now generate: (5 + 10) × 0.48 + 5 × 0.12 + 10 × 0.32 = 11 conventional
units.

If we apply the innovation to the second tool, the rate 𝜇2, will be doubled.
Now 𝜆1 = 1, 𝜆2 = 2, 𝜇1 = 2 and 𝜇2 = 6, and equations (2.2) will be

3𝑝1 = 2𝑝2 + 6𝑝3,
4𝑝2 = 𝑝1 + 6𝑝4,
7𝑝3 = 2𝑝1 + 2𝑝4,

𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 = 1.

}

This system yields: 𝑝1 = 0.5, 𝑝2 = 0.25, 𝑝3 = 0.17, and 𝑝4 = 0.08, whence the
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Income is (5 + 10) × 0.5 + 5 × 0.25 + 10 × 0.17 = 10.45 conventional units.
Therefore it is clearly more profitable to apply the innovation to the first too.

Queueing Systems

The problem of queueing.Modern society cannot exist without a whole
network of queueing systems. These include telephone exchanges, shops,
polyclinics, restaurants, booking offices, petrol stations, and hairdressers.
Despite their diversity, these systems have several things in common and
common problems.

When we seek the assistance of a doctor or service from a cafe, restaurant,
or barber, we must wait for our turn in a queue, even if we telephone to
make an appointment, that is, reserve our place in a queue without actually
attending physically. Clearly, we wish to be served straight away and waiting
can be frustrating.

It is clear that the source of the problem is the random nature of the
demands for attention in queueing systems. The arrival of calls at a telephone
exchange is random as is the duration of each telephone conversation. This
randomness cannot be avoided. However, it can be taken into account and, as
a consequence, we can rationally organize a queueing system for all practical
purposes. These problems were first investigated in the first quarter of this
century. The mathematical problems for simulating random processes in
systems with discrete states were formulated and considered, and a new field
of investigation in probability theory was started.

Historically, queueing theory originated in research on the overloading
of telephone exchanges, a severe problem in the early 20th century. The
initial period in the development of the queueing theory can be dated as
corresponding to the work of the Danish scientist A. Erlang in 1908-1922.
Interest in the problems of queueing rapidly increased. The desire for more
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rational servicing of large numbers of people led to investigations of queue
formation. It soon became evident that the problems dealt with in queueing
theory went well beyond the sphere of rendering service and the results are
applicable to a wider range of problems.

Suppose a workman is operating several machine tools. Failures requiring
urgent repairs occur at randommoments, and the duration of each repair is
a random variable. The result is a situation similar to a common queueing
system. However, this is a problem of servicing many tools by a worker rather
than servicing many people by a queueing system.

The range of practical problems to which queueing theory can be applied
is uncommonly wide. We need the theory when we want, say, to organize the
efficient operation of a modern sea port, when, for instance, we analyze the
servicing rate of a large berth. We apply to queueing theory when we look at
the operation of a Geiger-Müller counter. These devices are used in nuclear
physics to detect and count ionizing particles. Each particle entering a tube in
the counter ionizes gas in the tube, the ionization being roughly independent
of the particle‘s nature and energy, and so a uniform discharge across the tube
is generated. But when one discharge is under way, a new particle cannot be
registered (“serviced”) by the same counter. The moment each particle enters
the tube 5 random, as is the duration of the discharge (the “servicing” time).
This is a situation typical for queueing systems.

Basic notions. A queueing system is set up to organize the service of a
stream of requests. The request may be a new passenger in a booking office,
a failure in a machine tool, a ship mooring, or a particle entering a Geiger-
Müller counter. The system may have either one or several servers. When
you go to a large barbershop or hairdresser and want to know the number
of barbers or hairdressers, you are in effect asking for the number of servers
in the establishment. In other situations, the servers may be the number of
cashiers in a booking office, the number of telephones at a post office for
making trunk calls, the number of berths in a port, or the number of pumps
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at a petrol station. If, on the other hand, we wish to see a particular doctor,
we are dealing with a single-server queueing system.

When we consider the operation of a queueing system, we must first take
into account the number of servers, the number of requests arriving at the
system per unit time, and the time needed to service a request. The number of
requests arriving at the system, the moments they arrive, and the time needed
to service a request are, as a rule, random factors. Therefore, queueing theory
is a theory of random processes.

Random processes of this type (i. e. with discrete states) were discussed
in the preceding section. A system transfers from state to state when each
request arrives at the system and when the requests are serviced. The latter
is given by the rate at which requests can be served by a single, continuously
occupied server.

Queueing systems. There are two sorts of queueing system: systems
with losses and systems with queues. If a request arrives at a system with losses
when all the servers are occupied, the request is “refused” and is then lost to
the system. For example, if we want to telephone someone and the number is
engaged, then our request is refused and we put down the receiver. When we
dial the number again, we are submitting a new request.

Themore common types of system are those with queues or systems with
waiting. This is why it is called the theory of queueing. In such a system, if a
request (or customer) arrives when all the servers are occupied, the customer
takes a place in a queue and waits for a server to become free. There are
systems with infinite queues (a queueing customer is eventually served and
the number of places in the queue is unlimited) and systems with finite
queues. There are different sorts of restriction, i.e. the number of customers
queueing at the same time may be limited (the queue cannot be longer than a
certain number of customers and any new customer is refused); the duration
of a customer’s stay in the queue may be limited (after a certain length of
time queueing, an unserved customer will leave the queue); or the time the
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system operates for may be restricted (customers may only be served for a
certain interval of time).

The service order is also important. Customers are commonly served
“first come first served”. However, priority servicing is also possible, i.e. a
newcomer to a queue is served first irrespective of the queue. A customer
with a high priority may arrive at the system and interrupt the servicing of a
customer with a lower priority, whichmay already start, or the higher priority
customer may have to wait until the servicing has been completed. The
priority is absolute in the first case and relative in the second. Queueing
systems are always multi-critical, that is, they have a set ofmeasures by which
their effectiveness can be estimated. These may be the average number of
customers served by the systemper unit time, the average number of occupied
servers, the average number of customers in the queue, the average time of
waiting for servicing, the average percentage of refused customers, and the
probability a customer arriving at the system is immediately served. There are
other measures of such systems’ effectiveness. It is quite natural that when
organizing the operation of a queueing system we should strive to reduce
the average number of customers in the queue, and to reduce the time of
waiting for servicing. It is also desirable to maximize the probability that a
customer arriving at the s stem is served immediately, to minimize the average
percentage of refused customers, and so on.

This eventually means that the productivity of the system must be in-
creased (i.e. the time needed to service each customer be decreased), the
system’s operation be rationalized, and the number of servers made as large as
possible. However, by raising the number of servers, we cannot avoid decreas-
ing the average number of occupied servers. This means that the duration of
the time for which a server is not occupied will increase, i.e. the server will
be idle for some time. The result is that the system’s operational efficiency is
lowered. Therefore we must in some way optimize the system’s operation.
The number of servers should not be too small (to eliminate long queues and
to keep the number of refusals small), but it should also not be too large (so
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that the number and duration of idle periods for each server is small).

Systems with losses. The simplest type of queueing system is a single-
server system with losses. Here are some examples: a system with only one
telephone line or a particle detector consisting of only one Geiger-Müller
counter. The state graph for such a system is shown in Figure 2.4 (a). When
the server is unoccupied, the system is in state 𝑆0, and when the server is
occupied, it is in state 𝑆1. The customer’s arrival rate is 𝜆, and the service
completion rate is it 𝜇. This state graph is very simple. When the system is
in state 𝑆0 a customer arriving at the system transfers it to state 𝑆1, and the
servicing starts. Once the servicing is completed, the system returns to state
𝑆0 and is ready to serve a new customer.

(a)

(b)

Figure 2.4: State graph of a system with losses.
We shall not go into detail on this type of system and go straight over to a

re general case, an n-server systemwith losses. An example is a system consisting
of 𝑛 telephone lines. Erlang, the founder of the queueing theory, considered
precisely this system. The corresponding state graph is given in Figure 2.4 (b).
The states of the system are designated as follows: 𝑆0 when all servers are
unoccupied, 𝑆1 when one server is occupied and the others are unoccupied,
𝑆2, when two servers are occupied while the others are unoccupied, and so
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on, and 𝑆𝑛 is the state when all 𝑛 servers are occupied. As in the preceding
example, 𝜆 is the customer arrival rate, and 𝜇 is the service-completion rate.

Suppose the system is in state 𝑆0. When a customer request arrives, one
of the servers becomes occupied, and the system is transferred to state 𝑆1.
If the system is in state 𝑆1, and a new customer arrives, two servers become
occupied, and the system is transferred from 𝑆1 to 𝑆2. Thus, each customer
(with the rate of arrivals 𝜆) transfers the system from one state to the adjacent
one from left to right (see the state graph in the figure). The arrival of events
leading to transitions to adjacent states from right to left is somewhat more
complicated. If the system is in the state 𝑆1 (only one server is occupied),
the next service-completion event will disengage the server and transfer the
system to state 𝑆0. Let me remind you that the service-completion rate is 𝜇.
Now suppose the system is in 𝑆1, i.e. two servers are occupied. The average
time of service for each server is the same. Each sewer is disengaged with the
rate it when services are completed. As to the transition of the system from 𝑆2
to 𝑆1, it is indifferent as to which of the two servers is unoccupied. Therefore.
events which transfer the system from 𝑆2 to 𝑆1 arrive at the rate 2𝜇. As to the
transition of the system from 𝑆3 to 𝑆2, it is indifferent as to which of the three
occupied servers is disengaged. Events which transfer the system from 𝑆3 to
𝑆2 arrive at the rate 3𝜇, and so forth. It is easy to see that the rate of event
arrival which transfers the system from 𝑆𝑘 to 𝑆𝑘−1 is 𝑘𝜇.

Let us assume that the system is in a steady state. Applying the rule
from the preceding section and using the state graph in Figure 2.4 (b), we
can compile the Chapman-Kolmogorov equations for the, probabilities
𝑝0, 𝑝1, 𝑝2, … 𝑝𝑛, (recall that 𝑝𝑖 is the probability that the system is in the state
𝑆𝑖). We obtain the following system of equations:
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𝜆𝑝0 = 𝜇𝑝1,
(𝜆 + 𝜇)𝑝1 = 𝜆𝑝0 + 2𝜇𝑝2,
(𝜆 + 2𝜇)𝑝2 = 𝜆𝑝1 + 3𝜇𝑝3,

… … … … ,
(𝜆 + 𝑘𝜇)𝑝𝑘 = 𝜆𝑝𝑘−1 + (𝑘 + 1)𝜇𝑝𝑘+1,

… … … … ,
[𝜆 + (𝑛 − 1)𝜇]𝑝𝑛−1 = 𝜆𝑝𝑛−2 + 𝑛𝜇𝑝𝑛,

𝑝0 + 𝑝1 + 𝑝2 + … + 𝑝𝑛 = 1.

⎫
}}

⎬
}}
⎭

(2.3)

This set of equations can be solved easily, Using the first equation, we can
express 𝑝1 in terms of 𝑝0 and substitute it into the second equation. Then we
can express 𝑝2 in the second equation in terms of 𝑝𝑛 and substitute it into the
third one, and so forth. At the last but one stage, we express 𝑝𝑛 in terms of 𝑝0.
And finally, the results obtained at each stage can be substituted into the last
equation to find the expression for 𝑝0. Thus

𝑝0 = [1 + 𝜆
𝜇 +

(𝜆/𝜇)2

2! +
(𝜆/𝜇)3

3! + … +
(𝜆/𝜇)𝑛

𝑛! ]
−1

,

𝑝𝑘 =
(𝜆/𝜇)𝑘

𝑘! 𝑝0 (𝑘 = 1, 2, 3 𝑛).

(2.4)

A customer’s request is refused if it arrives when all 𝑛 servers are engaged, i.e.
when the system is in state 𝑆𝑛. The probability that the system is in 𝑆𝑛 equals
𝑝𝑛, This is the probability that a customer arriving at the system is refused
and the service‘is not rendered. We can find the probability that a customer
arriving at the system will he served,

𝑄 = 1 − 𝑝𝑛 = 1 −
(𝜆/𝜇)𝑛

𝑛! 𝑝0. (2.5)

By multiplying𝑄 by 𝜆, we obtain the service-completion rate of the system.
Each occupied server serves 𝜇 customers per unit time, so we can divide𝑄 by
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𝜇 and find the average number of occupied servers in the system,

𝐸(𝑁) = 𝜆
𝜇 (1 −

(𝜆/𝜇)𝑛

𝑛! 𝑝0) . (2.6)

How many servers are required? Let us consider a concrete example.
Suppose a telephone exchange receives 1.5 requests per minute on the average,
and the service completion rate is 0.5 request per minute (the average service
time for one customer is two minutes). Therefore, 𝜆/𝜇 = 3. Suppose the
exchange has three servers (three telephone lines). Using formulas (2.4)–(2.6)
for 𝜆/𝜇 = 3 and 𝑛 = 3, we can calculate that the probability of servicing the
arriving customers is only 65 per cent. The average number of engaged lines
is 1.96, which is 65 per cent of the total number of lines. Thus, 35 per cent of
the customers are refused and not served. This is too much.

We may decide on increasing the number of servers. Suppose we add one
more, a fourth line. Now the probability of a customer being served increases
to 79 per cent (the probability of being turned away decreases to 21 per cent).
The average number of engaged lines becomes 2.38, which is 60 per cent of
the total number of lines. It would appear that the decision to install a fourth
line is reasonable because a relatively small reduction in the percentage of
occupied servers (from 65 to 60 per cent) results in a significant rise in the
probability to be served, from 65 to 79 per cent. Any further increase in the
number of lines may become unprofitable because the effectiveness of the
systemmay fall due to the increasing idleness of the lines. A more detailed
analysis would then be required to allow for the cost of installing each new
line. Let me remark that at 𝑛 = 5we get𝑄 = 89 per cent and 𝐸(𝑁)/𝑛 = 53
per cent, while for 𝑛 = 6, 𝑄 = 94 per cent and 𝐸(𝑁)/𝑛 = 47 per cent.

Single-server systems with finite queues. Suppose the number of
queueing customers is restricted, and the queue may only accommodate𝑚
customers. If all places in the queue are occupied, a newcomer is turned
away. For example, a petrol station with only one pump (only one server)
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and a parking area for no more than𝑚 cars. If all the places at the station are
occupied, the next car arriving at the stationwill not stop andwill go on to the
next. The state graph for this system is shown in Figure 2.5 (a). Here𝑆0means

(a)

(b)

Figure 2.5: State graph for a system (a) with fi-
nite queues and (b) with infinite queues. the server is unoccupied, 𝑆1 the server is occupied, 𝑆2 the server is occupied

and there is one customer in the queue, 𝑆3 the server is occupied and there
are two customers in the queue, … , 𝑆𝑚+1 means the server is occupied and
there are𝑚 customers in the queue. As before, 𝜆 is the customer arrival rate
and 𝜇 is the service completion rate. The Chapman-Kolmogorov equations
for steady state are

𝜆𝑝0 = 𝜇𝑝1,
(𝜆 + 𝜇)𝑝1 = 𝜆𝑝0 + 2𝜇𝑝2,
… … … … ,
(𝜆 + 𝜇)𝑝𝑚 = 𝜆𝑝𝑚−1 + 𝜇𝑝𝑚+1,

𝑝0 + 𝑝1 + 𝑝2 + … + 𝑝𝑚 + 𝑝𝑚+1 = 1.

⎫

⎬

⎭

(2.7)

By solving this system and introducing the designation 𝜌 = 𝜆/𝜇we obtain

𝑝0 =
1

1 + 𝜌 + 𝜌2 + 𝜌3 + … + 𝜌𝑚+1
=

1 − 𝜌
1 − 𝜌𝑚+2

, 𝑝𝑘 = 𝜌𝑘𝑝0. (2.8)
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Acustomer is turned away if the server is engaged and there are𝑚 customers in
the queue, i.e. when the system is in the state 𝑆𝑚+1. Therefore, the probability
a customer is turned away is 𝑝𝑚+1. The average number of customers in the
queue is evidently

𝐸(𝑟) =
𝑚
∑
𝑘=1

𝑘𝑝𝑘+1

(𝑝𝑘+1 is the probability of 𝑘 customers being in the queue). The average
waiting time in the queue is the ratio 𝐸(𝑟)/𝜆.

Suppose one car arrives at the petrol station per minute (𝜆 = 1 customer
per minute) and a car is filled, on average, within two minutes (𝜇 = 1/2).
Therefore, 𝑝 = 𝜆/𝜇 = 2. If the number of places in the queue𝑚 = 3, it is
easy to calculate that the probability of a customer being refused is 51.6 per
cent while the average waiting time in the queue is 2.1 min. Suppose that in
order to decrease the probability of a customer being refused we double the
number of places in the queue. It turns out that at𝑚 = 6 the probability of
refusal is 50.2 per cent, i. e. it is, in fact, the same, but the waiting time in
the queue noticeably increases to 5 min. It is clear from (2.8) that if 𝜌 > 1,
the probability of being refused stabilizes with increasing 𝑚 and tends, to
(𝜌 − 1)/𝜌. In order to reduce the probability of being refused significantly, it
is necessary (if it is not possible to decrease 𝜌) to use multi-server systems.

Single-server systems with infinite queues. This sort of queueing
system is rather common: for example, a doctor receiving patients, a single
public telephone, or a port with only one berth at which a single ship can
unload. The state graph for the system is given in Figure 2.5 (b). Here So
means that the server is unoccupied, 𝑆1 the server is occupied, 𝑆2 the server is
occupied and there is one customer in the queue, 𝑆3 the server is occupied
and there are two customers in the queue, and 𝑆𝑘 means that the server is
occupied and there are 𝑘 − 1 customers in the queue, and so on.

Up till now,we considered graphswith afinite number of states. However,
here is a system with an infinite number of discrete states. Is it possible to
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discuss a steady state for such a system? In fact we can. It is only necessary that
the inequality 𝜌 < 1 holds true. If so, then the sum 1+𝜌+𝜌2+𝜌3+… +𝜌𝑚+1

in (2.8) can be substituted by the sumof the decreasing geometric progression
1 + 𝜌 + 𝜌2 + 𝜌3 + … = 1/(1 − 𝜌). The result is

𝑝0 = 1 − 𝜌 and 𝑝𝑘 = 𝜌𝑘𝑝0. (2.9)

If 𝜌 ⩾ 1, then the system does not have a steady state, i.e. the queue increases
infinitely as 𝑡 → ∞.

Method of Statistical Testing

A statistical testing involves numerous repetitions of uniform trials. The
result of any individual trial is random and is not of much interest. However,
a large number of results is very useful. It shows some stability ( statistical
stability) and so the phenomenon being investigated in the trials can be de-
scribed quantitatively. Let us consider a special method for investigating
a random process based on statistical testing. The technique is commonly
called the Monte Carlo method.

In fact neither the city of Monte Carlo, the capital of the independent
principality of Monaco nor its inhabitants nor guests are in any way related
to the considered method. Instead, the city is known for its casinos where
tourists pay good money playing roulette, and a roulette wheel could be the
city’s emblem. At the same time, a roulette is a generator of random numbers
and this is what is involved when the Monte Carlo method is used.

Two examples indicating the usefulness of statistical testing.

First example. Look at Figure 2.6. It contains a square with side 𝑟 in
which a quarter circle of radius 𝑟 is inscribed. The ratio of the yellow area to
the area of the square is (𝜋𝑟2)/4𝑟2 = 𝜋/4. This ratio and, therefore, the value
of 𝑛 can be obtained using the following statistical test. Let us place a sheet



77 method of statistical testing

of paper with the figure on a horizontal surface and let us throw small grains
on this paper. We should not aim so that any grain can fall on any part of
the paper with equal probability. It is possible, for instance, to blindfold the
person throwing the grains. The grains will be distributed over the surface of
the paper in a random fashion (Figure 2.6 (b)). Some will land outside the
square, but we shall not consider them. We now count the number of grains
within the square (and call this number𝑁1) and count the grains within the
yellow area (calling it𝑁2). Since any grain may land with equal probability
on any part of the figure, the ratio𝑁2/𝑁1 when the number of trials is large,
will approximate the ratio of the yellow area to the area of the square, i.e. the
number 𝜋/4. This approximation will become more accurate as the number
of trials increases. This example is interesting because a definite number (the

(a) (b)

Figure 2.6: Finding out value of 𝜋 using a ran-
dom distribution.number 𝜋) can be found following a statistical testing. It can be said that

randomness is used here to obtain a deterministic result, an approximation
of the real number 𝜋.

Second example. Statistical testing is used much more commonly to
investigate random events and random processes. Suppose someone assembles
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a device consisting of three parts (𝐴,𝐵, and𝐶). The assembler has three boxes
containing parts𝐴,𝐵, and𝐶, respectively. Suppose half the parts of each type
are larger than the standard and the other half are smaller. The device cannot
operate when all three parts are larger than the norm. The assembler takes
the parts from the boxes at random. What is the probability that a normally
operating device will be assembled?

Naturally, this example is rather simple and the probability can easily be
calculated. The probability of assembling a device that does not work is the
probability that all three parts will be larger than the norm, and this equals
1/2 × 1/2 × 1/2 = 1/8. Therefore, the probability that a normally operating
device will be assembled is 1 − 1/8 = 0.875.

Let us forget for a time that we can calculate the probability and instead
use statistical testing. We should choose trials such that each one has equally
probable outcomes, for instance, tossing a coin. Let us take three coins: 𝐴, 𝐵,
and 𝐶. Each coin corresponds to a part used to assemble the device. Heads
will mean that the respective part is larger than the normwhile tails will mean
that it is smaller. Having agreed on this, let us start the statistical testing. Each
trial involves tossing all three coins. Suppose after𝑁 trials (𝑁 ≫ 1) three
heads were recorded in 𝑛 trials. It is easy to see that the ratio (𝑁 − 𝑛)/𝑁 is
the approximation of the probability in question.

Naturally, we could use any other random number generator instead of
coins. It would also be possible, for instance, to throw three dice, having
agreed to relate three faces of each die with larger than normal parts and three
faces with smaller parts.

Let me emphasize that the randomness in these examples was a positive
factor rather than a negative one, and was a tool which allowed us to obtain a
needed quantity. Here chance works for us rather than against us.

Randomnumber tables come into play. Nobody uses statistical testing
in simple practical situations like the ones described above. It is used when it
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is difficult or even impossible to calculate the probability in question. Nat-
urally you might ask whether a statistical testing would be too complicated
and cumbersome. We threw grains or three coins in the examples. What
will be required in complicated situations? Maybe, there will be practically
unsurmountable obstacles?

In reality, it is not necessary to stage a statistical experiment with random
trials. Instead of real trials (throwing grains, dice, etc.), we need only use
random number tables. Let me show how this can be done in the above two
examples.
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Figure 2.7: Finding out value of 𝜋 using a ran-
dom number table.First example. Let us again discuss the picture in Figure 2.6. We now

plot two coordinate axes along the sides of the square and select the scales
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such that the side of the square equals unity (Figure 2.7). Now instead of
throwing grains, we take the random number table in Figure 1.6 and divide
each number by 10 000 so that we obtain a set of random numbers between
0 and 1. We take the numbers in the odd lines as 𝑥-coordinates and the ones
directly below as the 𝑦-coordinates of random points. We plot the points
onto the diagram, systematically moving along the random number table (for
instance, first down the first column from top to bottom, and then down the
second column, and so on). The first fifteen random points are shown in the
picture in red, and they have the coordinates as shown inTable 2.1.

(0.0655, 0.5255)
(0.6314, 0.3157)
(0.9052, 0.4105)
(0.1437, 0.4064)
(0.1037, 0.5718)
(0.5127, 0.9401)
(0.4064, 0.5458)
(0.2461, 0.4320)
(0.3466, 0.9313)
(0.5179, 0.3010)
(0.9599, 0.4242)
(0.3585, 0.5950)
(0.8462, 0.0456)
(0.0672, 0.5163)
(0.4995, 0.6751)

Table 2.1: Coordinates of fifteen random num-
bers shown in red in the Figure 2.7.

The figure
contains 85 random points in black. From the diagram, it is easy to calculate
that using the first fifteen points𝑁2/𝑁1 = 13/15 and therefore 𝜋 = 3.47
while for a hundred points𝑁2/𝑁1 = 78/100 and therefore 𝜋 = 3.12.

Second example. Instead of tossing coins, we can use the same random
number table (see Figure 1.6). Each number over 5000 can be replaced by a
“+” sign and the rest replaced by a “−” sign. The result is a table consisting of a
random set of pluses and minuses. We divide these signs into triples as shown
in Figure 2.8. Each triple corresponds to a set of three parts. A “+” signmeans
that a part is larger than the norm while a “−” sign means it is smaller. The
approximation of the sought probability is the ratio (𝑁 − 𝑛)/𝑁, where𝑁 is
the total number of triples and 𝑛 is the number of triples with three pluses
(they are shaded in the figure). It can be seen that (𝑁 − 𝑛)/𝑁 = 0.9 in this
case, and this is close enough to the accurate value 0.875.

Thus, we have reduced statistical testing to operations on a random num-
ber table and used our desk instead of an experimental bench. Rather than
performing very many trials, we just look at a random number table.

Computers come into play. Instead of sweating over a random number
table, we could program a computer to do the job. We place a random num-
ber table in the computer’s memory and program it to search the random
numbers and sort them as necessary. In our two examples, we would do the
following.
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Figure 2.8: Using a random number table in-
stead of coin tosses for statistical testing.

First example. The computer has to check the coordinates of each ran-
dom point to see whether 𝑥2 + 𝑦2 < 1. It counts the number of points for
which this is true (the number is𝑁2) and the number of points for which it
is false (this number of points will be the difference𝑁1 − 𝑁2).

Second example. All random numbers in the computer’s memory must
be divided into triples and the triples checked to find ones in which all three
numbers are over 5000. The number of such triples is 𝑛.
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The Monte Carlo method. The world changed when the computer
came into play. By processing a random number table the computer simu-
lates the statistical testing and it can do this many times faster than could be
done either experimentally or by working manually with a random number
table. And now we come to the Monte Carlo method, a very useful and effi-
cient method of probabilistic calculation which is applied to many problems,
primarily those that cannot be solved analytically.

Let me emphasize two points. Firstly, the Monte Carlo method utilizes
randomness not chance. We do not try to analyze the complicated random
processes, nor even simulate them. Instead, we use randomness, as it were, to
deal with the complications chance has engendered.

Chance complicates our investigation and so randomness is used to in-
vestigate it. Secondly, this method is universal because it is not restricted by
any assumption, simplification, or model. There are two basic applications.
The first is the investigation of random processes which cannot be dealt with
analytically due to their complexity. The second is to verify the correctness
and accuracy of an analytical model applied in concrete situations.

TheMonte Carlo method was first widely used in operations research, in
looking for optimal decisions under conditions of uncertainty, and in treating
complicated multi-criterial problems. The method is also successfully used
in modern physics to investigate complex processes involving many random
events.

A Monte Carlo simulation of a physical process. Let us consider
the flow of neutrons through the containment shield of a nuclear reactor.
Uranium nuclei split in the core of the reactor and this is accompanied by
the creation of high-energy neutrons (of the order of several million electron
volts). The reactor is surrounded by a shield to protect the working areas (and
therefore, the personnel) from the radiation. The wall is bombarded by an
intense flow of neutrons from the reactor core. The neutrons penetrate into
the wall and collide with the nuclei of the atoms of the wall. The result is that
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the neutrons may either be absorbed or scattered. If scattered, they give up
some of their energy to the scattering nuclei.

This is a complicated physical process involving many random events.
The energy and the direction of a neutron when it leaves the reactor core
and enters the wall are random, the length of the neutron path before it
first collides is random, the nature of collision (absorption or scattering) is
random, the energy and the direction of the scattered neutron are random, etc.
Let me show in general how theMonte Carlo method is applied to analyze
the process. Obviously the computer is first programmed with data on the
elementary collisions between neutrons and the wall nuclei (the probabilities
of absorption and scattering) the parameters of the neutron flow into the
wall, and the properties of the wall. The computer model simulates a neutron
with a randomly selected energy and direction (when it leaves the reactor core
and enters the wall) in line with appropriate probabilities. Then it simulates
(bearing in mind the relevant probabilities) the flight of the neutron until
it first collides. Then the first collision is simulated. If the neutron is not
absorbed, subsequent events are simulated, i.e. the neutron’s flight until its
second collision, the collision itself, and so on. The “history” of the neutron is
determined from the moment it penetrates the wall until it is either absorbed,
scattered back into the reactor core, or scattered into the working area.

The computer simulation is repeated for very many neutrons until a set
of possible trajectories of neutrons within the wall is obtained (Figure 2.9).
Each trajectory is the result of one statistical trial simulating the “history” of
Chance complicates our investigation and so randomness is used to investi-
gate it. Secondly, this method is universal because it is not restricted by any
assumption, simplification, or model. There are two an individual neutron.
Given an enormous set of trials the neutron flow through the containment
wall as a whole can be analyzed and recommendations for the thickness of
the wall and its composition can be made so as to guarantee the safety of the
personnel working at the reactor.
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Figure 2.9: A set of all possible trajectories for
the neutron.

Modern physics requires theMonte Carlo method on many occasions.
Physicists use it to investigate cosmic-ray showers in the Earth’s atmosphere,
the behaviour of large flows of electrons in electron discharge devices, and
the progress of various chain reactions.

Games and Decision Making

What is the theory of games? Suppose we must make a decision when
our objectives are opposed by another party, when our will is in conflict
with another will. Such situations are common, and they are called conflict
situations. They are typical for military actions, games, and every-day life.
They often arise in economics and politics.

A hockey player makes a decision that takes into account the current
situation and the possible actions of the other players. Every time a chess
player makes a decision, he (or she) has to consider the counteraction of the
opponent. A military decision should allow for the retaliation of the enemy.
In order to decide at what price to sell a product, a salesman must think over
the responses of the buyer. In any election campaign, each political party in
a capitalist country tries to foresee the actions of the other parties that are
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competing for power. In each case, there is a collision of opposing interests,
and the decision must be related with overcoming a conflict.

Decision making in a conflict situation is hampered by uncertainty about
the behaviour of the opponent. We know that the opponent will try to act in a
way that is least advantageous for us in order to ensure the greatest advantage
for himself. However, we do not know to what extent our opponent is able
to evaluate the situation and the possible consequences and, in particular,
how he evaluates our options and intentions. We cannot predict the actions
of the opponent accurately, and the opponent cannot predict our actions.
But nonetheless, we both have to make decisions.

Because someway of justifying an optimal decisionwas needed in conflict
situations, a new mathematical discipline arose, the theory of games. The
“game” here is a mathematical model of a conflict situation. Unlike a real
conflict, a game has definite rules which clearly indicate the rights and duties
of the participants and the possible outcomes of the game (a gain or loss for
each participant). Long before the emergence of game theory, simple models
of conflicts were used widely. I mean games in the literal sense of the word:
chess, checkers or draughts, dominoes, card games, etc. In fact, the name of
the theory and the various terms used in it are all derived from these simple
models. For instance, the conflicting parties are called players, a realization of
a game is a match, the selection of an action by a player (within the rules) is a
move.

There are two kinds ofmove, personal and chance ones. A personalmove
is when the player conscientiously selects an action according to the rules of
the game. A chance move does not depend on the player’s will: it may be
determined by tossing a coin, throwing a die, taking a card from a pack, etc.
Games consisting of only chance moves are called games of chance, or games
of hazard. Typical examples are lotteries and bingo. Games with personal
moves are called strategic. There are strategic games consisting exclusively of
personal moves, for instance, chess. There are also strategic games consisting
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of both personal and chance moves, for instance, certain card games. Let
me remark that the uncertainty in games with both personal and chance
moves involve both sorts of randomness: the uncertainty of the result of
the chance moves and the uncertainty of the opponent’s behaviour in his
personal moves.

Game theory is not interested in gambles. It only deals with strategic
games. The aimof the game theory is to determine the player’s strategy so as to
maximize his chances of winning. The following basic assumption underlies
the search for optimal strategies. It is assumed that the opponent is as active
and as reasonable as the player, and he or she also takes attempts to succeed.

Naturally, this is not always true. Very often our actions in real conflicts
are not as good as they could be when we assume reasonable behaviour from
our adversary; it is often better to guess at the “soft spots” of the opponent
and utilize them. Of course, we take a risk when doing so. It is risky to rely too
much on the soft spots of the opponent, and game theory does not consider
risk. It only detects the most cautious, “safe” versions of behaviour in a given
situation. It can be said that game theory gives wise advice. By taking this
advice when we make a practical decision, we often take a conscientious risk.
E. S. Wentzel writes in Operations Research:

“Game theory is primarily valuable in terms of the formulation of the
problem,which teaches us never to forget that the opponent also thinks
and to take into account his possible tricks and traps. The recommen-
dations following from the game approach are not always concrete or
realizable, but it is still useful, while taking a decision, to utilize a game
model as one of several possible ones. But the conclusions proceeding
from this model should not be regarded as final and indisputable.”

The payoff matrix of a game Finite two-person zero-sum games are
the best investigated types in game theory. A two-person game is a game in
which there are exactly two players or conflicting interests. A game is finite if
both players have a finite number of possible strategies, i.e. a finite number
of behaviours. When making a personal move, a player follows a strategy. A
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zero-sum game is a game where the gain by one player equals the loss by the
other.
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Figure 2.10: Strategies in a finite two-person
zero-sum game.Suppose there is a finite two-person zero-sum game where player𝐴 has𝑚

strategies and player𝐵 has 𝑛 strategies (an𝑚×𝑛 game). We use𝐴1, 𝐴2, … , 𝐴𝑚
to denote the strategies available to player𝐴 and 𝐵1, 𝐵2, … , 𝐵𝑛 the strategies
available to player 𝐵. Suppose player 𝐴makes a personal move and selects
a strategy 𝐴𝑖(1 ⩽ 𝑖 ⩽ 𝑚), and player 𝐵 at the same time selects strategy
𝐵𝑗(1 ⩽ 𝑗 ⩽ 𝑛). We use 𝑎𝑖𝑗 to denote the gain of player 𝐴. Let us identify
ourselves with player𝐴 and consider eachmove from his viewpoint. The gain
𝑎𝑖𝑗 may be either a real gain or a loss (a loss would be a negative gain). The
set of gains 𝑎𝑖𝑗 for different values of 𝑖 and 𝑗 can be arranged in matrix form
with the rows corresponding to player𝐴 strategies and the columns to player
𝐵 strategies (Figure 2.10). This is called the payoff matrix for the game.

Consider the following game. Each player,𝐴 and 𝐵, writes, simultane-
ously and independently, one of three numbers 1, 2, or 3. If the sum of the
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numbers is even, player 𝐵 pays player𝐴 the sum, while if the sum is odd,𝐴
pays it to 𝐵. Player𝐴 has three strategies: 𝐴1 to write 1,𝐴2 to write 2, and𝐴3
to write 3. Player 𝐵 has the same strategies. The game is a 3 × 3 one because
its payoff matrix contains three rows and three columns. This matrix is given
in Figure 2.11(a). Note that a gain by player𝐴 of, for instance, −3 is a loss in
reality because𝐴 pays 3 units to 𝐵.
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Figure 2.11: A payoffmatrix in a 3 × 3 finite two-
person zero-sum game. Some of the elements are positive and the others are negative in thematrix

in Figure 2.11(a). It is possible to make all the elements of the payoff matrix
positive by adding some number, say 6, to each element of the matrix. We
obtain the matrix in Figure 2.11(b). This matrix is equivalent to the initial
one from the viewpoint of analyzing optimal strategies.

Theminimax principleLet us analyze the game using. the payoffmatrix
in Figure 2.11(b). Suppose we (player𝐴) pick strategy𝐴𝑖. Then, depending
on the strategy selected by player 𝐵, our gain may be either 8 or 3 or 10. Thus,
strategy𝐴1 yields a gain of 3 in the worst case. If we choose either𝐴2 or𝐴3,
the worst gain is 1. Let us write down the minimum possible gains for each
strategy 𝐴𝑖 as an additional column in the payoff matrix (Figure 2.12). It
is clear that we should choose a strategy whose minimum possible gain is
greatest (as compared with the other strategies). This is strategy 𝐴1 in this
case. Three is the largest one out of the minimum gains for each strategy (viz.
3, 1, and 1). This is called the maximin gain, or the maximin, or just the
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maxim. It is also sometimes called the lower value of the gain. Thus, if we
select the maximin strategy (strategy𝐴1 in this case), our gain is guaranteed
to be, whatever the behaviour of the opponent, at least the lower value of the
game (a gain of 3 in this case). The opponent will reason in a similar way. If
he selects strategy 𝐵1, he will have to give us a gain of 10, which is his worst
case.
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Figure 2.12: A payoffmatrix in a 3 × 3 finite two-
person zero-sum game.

The same can be said of strategy 𝐵2. Strategy 𝐵3 yields the worst case for
the opponent corresponding to a gain of 12 for us. Numbers 10, 10, and
12 are the maximum values of our gains corresponding to the opponent’s
strategies 𝐵1, 𝐵2, and 𝐵3, respectively. Let us write these values as a row in the
payoff matrix (see Figure 2.12). It is clear that our opponent should select
the strategy which minimizes our maximum possible gain. This is either
strategy 𝐵1 or 𝐵2. Both strategies are minimax ones and both guarantee that
our opponent limits our gain to the minimax, or, in other words, the upper
value of the game is 10.

Our maximin strategy and the minimax strategy of the opponent are the
most cautious “safe” strategies. The principle of being cautious dictating that
the players select such strategies is called the minimax principle.

Now let us return to the matrix in Figure 2.12 and try some reasoning.
The opponent has two minimax strategies, 𝐵1 and 𝐵2. Which strategy should
he choose? If he knows that we are cautious and have selected the maximin
strategy𝐴1 he would not select strategy 𝐵1 because this would yield a gain of
8. Therefore, it is likely that he would choose strategy 𝐵2, and our gain would
then be 3. But if we perceived our opponent’s ideas correctly, shouldn’t we
take a risk and choose strategy𝐴2? If the opponent then selects strategy 𝐵2,
our strategy 𝐴2 will give us a gain of 10. However, our deviation from the
minimax principle may cost us dearly. If the opponent is even cleverer and
reasons in a similar way, he would answer our strategy 𝐴2 with strategy 𝐵3
rather than 𝐵2. And then, instead of a gain of 10, we would only gain 1.

Does this mean that game theory only recommends we adhere to a min-
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imax (maximin) strategy? It depends on whether the payoff matrix has a
saddle point.

A game with a saddle point. Consider the 3 × 3 game, whose payoff
matrix is given in Figure 2.13. Here both the maximin and minimax gain 4.
In other words, the lower and the upper value of the game coincide and both
are equal to 4. A gain of 4 is simultaneously the maximum of the minimum
gains for strategies𝐴1, 𝐴2, and𝐴3 and the minimum of the maximum gains
for strategies 𝐵1, 𝐵2, and 𝐵3. In geometry, the point on a surface which is at
the same time a minimum along one coordinate axis and a maximum along
the other is called a saddle point. Point 𝐶 on the surface in Figure 2.13 is a
saddle point. It is the maximum along the 𝑥-axis and the minimum along the
𝑦-axis. It is easy to see that the surface in the vicinity of this point is actually
like a saddle. Just as in geometry, element 𝑎22 = 4 of the payoff matrix in
question is called the saddle point of the matrix, and the game is said to have
a saddle point.
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Figure 2.13: A 3 × 3 game with saddle point. We need only look through the matrix in Figure 2.13, to see that each
player should adhere to his maximin (minimax) strategy. These strategies
are optimal in a game with a saddle point. Any deviation from them will be
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disadvantageous for the player who took the risk.

However, if a game does not have a saddle point (see the matrix in Fig-
ure 2.11), neither of strategies𝐴𝑖 or 𝐵𝑗 is optimal.

The necessity of a random change of strategy in a game without
a saddle point. Suppose that we and our opponent repeatedly play the
game whose matrix is given in Figure 2.11. If we choose a definite strategy,
for instance, the maximin strategy𝐴1, and adhere to it turn after turn, our
opponent will see it and select strategy 𝐵2 each time, so that our gain will
not exceed the lower value of the game, i.e. it will equal 3. However, if we
suddenly (for the opponent) choose strategy𝐴2 instead of𝐴1, we receive a
gain of 10. Having guessed our new strategy (naturally, if we later adhere
to it), our opponent will go from strategy 𝐵2 to strategy 𝐵3 right away, thus
decreasing our gain to 1. And so forth. We can see here a general rule for
games without a saddle point: a player using a certain strategy will be worse
off than a player who changes strategy at random.

However, the random changes in strategies should be done wisely rather
than haphazardly. Suppose𝐴1, 𝐴2, … , 𝐴𝑚 are the possible strategies of player
𝐴 (see Figure 2.10). To obtain the greatest benefit, the strategies should
be chosen at random but with different (specially calculated) probabilities.
Suppose strategy𝐴1 is used with probability 𝑝1, strategy𝐴2 with probability
𝑝2 etc. Player𝐴 is now said to have a mixed strategy 𝑆𝛢(𝑝1, 𝑝2, … , 𝑝𝑚). Unlike
𝑆𝛢, the 𝐴𝑗 strategies are called pure strategies. By correctly selecting the
probabilities 𝑝𝑗 a mixed strategy may be optimal. The gain of player𝐴will
then be no less than a certain value 𝜈 called the value of the game. This value
is greater than the lower value of the game, but less than the upper one.

Player 𝐵 should behave in a similar manner. His optimal strategy is also
a mixed strategy. Let us designate it 𝑆𝛣(𝑞1, 𝑞2, … , 𝑞𝑛), where 𝑞𝑗 are specially
selected probabilities with which player 𝐵 uses strategies 𝐵𝑗. When player 𝐵
selects an optimal mixed strategy, the gain of player𝐴will be no more than
game value 𝜈.
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The search for an optimalmixed strategy. Let us use𝑆𝛢(𝑝1, 𝑝2, … , 𝑝𝑚)
to denote an optimal mixed strategy for player𝐴. We must now find proba-
bilities 𝑝1, 𝑝2, … , 𝑝𝑚 and calculate the game value 𝜈 once the payoff matrix of
the game is known (see Figure 2.10). Suppose player 𝐵 selects pure strategy
𝐵1. Then the average gain of player𝐴will be 𝑎11𝑝1 +𝑎21𝑝2 +… +𝑎𝑚1𝑝𝑚 This
gain should be no less than the game value 𝜈, and hence

𝑎11𝑝1 + 𝑎21𝑝2 + … + 𝑎𝑚1𝑝𝑚 ⩾ 𝜈.

If player 𝐵 selects strategy 𝐵2, the average gain of player𝐴 should also be no
less than the game value 𝜈, and hence

𝑎12𝑝1 + 𝑎22𝑝2 + … + 𝑎𝑚2𝑝𝑚 ⩾ 𝜈.

Whichever strategy player 𝐵 chooses, the gain of player𝐴 should always be
no less than the game value 𝜈. Therefore, we can write the following system
of 𝑛 inequalities (recall that 𝑛 is the number of 𝐵’s pure strategies):

𝑎11𝑝1 + 𝑎21𝑝2 + … + 𝑎𝑚1𝑝𝑚 ⩾ 𝜈,
𝑎12𝑝1 + 𝑎22𝑝2 + … + 𝑎𝑚2𝑝𝑚 ⩾ 𝜈,

… … … … ,
𝑎1𝑛𝑝1 + 𝑎2𝑛𝑝2 + … + 𝑎𝑚𝑛𝑝𝑚 ⩾ 𝜈.

} (2.10)

Recall that
𝑝1 + 𝑝2 + … + 𝑝𝑚 = 1. (2.11)

Introducing designations 𝑥1 = 𝑝1/𝜈, 𝑥2 = 𝑝2/𝜈, … 𝑥𝑚 = 𝑝𝑚/𝜈we can rewrite
(2.10) and (2.11) as

𝑎11𝑥1 + 𝑎21𝑥2 + … + 𝑥𝑚1𝑝𝑚 ⩾ 1,
𝑎12𝑥1 + 𝑎22𝑥2 + … + 𝑎𝑚2𝑥𝑚 ⩾ 1,

… … … … ,
𝑎1𝑛𝑥1 + 𝑎2𝑛𝑥2 + … + 𝑎𝑚𝑛𝑥𝑚 ⩾ 1.

⎫

⎬

⎭

(2.12)
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𝑥1 + 𝑥2 + … + 𝑥𝑚 = 1
𝜈 . (2.13)

It is desirable that the game value 𝜈 should be as large as possible, and hence
1/𝜈 should be as low as possible. Therefore, the search for the optimal mixed
strategy is thus reduced to the solution of the following mathematical prob-
lem: find non-negative values 𝑥1, 𝑥2, … 𝑥𝑚 such that they meet inequalities
(2.12) and minimize the sum 𝑥1 + 𝑥2 + … + 𝑥𝑚.

Airplanes against antiaircraft guns. Let us find the optimal mixed
strategy for a concrete game. Suppose “player”𝐴wants to attack “player” 𝐵.
𝐴 has two airplanes each carrying a large bomb. 𝐵 has four antiaircraft guns
defending an important military base. To destroy the base, it is sufficient for
at least one airplane to approach it. To approach the base the airplanes may
choose one of four air corridors (Figure 2.14, where 0 is the base and I, II,
III, and IV are the air corridors). 𝐴may send both airplanes along the same
corridor or along different corridors. 𝐵may place his four antiaircraft guns
to cover the corridors in different ways. Each gun can only shoot once, but it
will hit the airplane if it is in that corridor.

I

II

III

IV

Figure 2.14: Strategies with aeroplanes and anti-
aircraft guns.

𝐴 has two pure strategies: strategy𝐴1 to send the airplanes along different
corridors (no matter which ones), and𝐴2, to send both airplanes along the
same corridor. 𝐵’s strategies are 𝐵1 to put an antiaircraft gun into each corri-
dor, 𝐵2 to put two guns into two corridors (leaving the other two corridors
unprotected), 𝐵3 to put two guns into one corridor and one gun into two
of the other corridors, 𝐵4 to put three guns into a corridor and one gun into
another corridor, and 𝐵5 to put all four guns into one corridor. Strategies 𝐵4
and 𝐵5 are certainly bad because three or four guns in a single corridor are
not needed, since𝐴 only has two airplanes. Therefore, we need only discuss
strategies 𝐵1, 𝐵2, and 𝐵3.

A1

A2

B1 B2 B3

0

1

56/ 12/

12/ 34/

Figure 2.15: Matrix of probable with aeroplanes
and anti-aircraft guns.

Suppose𝐴 chooses strategy𝐴1 and 𝐵 chooses strategy 𝐵1. It is clear that
neither airplane will reach base: the𝐴’s gain will be zero (𝑎11 = 0). Suppose
strategies𝐴1 and 𝐵2 are chosen. Let us assume that the guns are in corridors I
and II. If the aircrafts are flying along different corridors, then six variants are
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equally probable: they fly along corridors I and II, along corridors I and III,
along corridors I and IV, along II and III, along II and IV, or along III and
IV. In only one of the six cases will neither plane reach the base (when they
fly along corridors I and II). Whichever corridor 𝐵 chooses to place his guns
in, airplanes will always have six equally probable variants and only one does
not yield a winning move. Therefore, if strategies𝐴1 and 𝐵2 are chosen, the
probable gain for𝐴will be 5/6 (𝑎12 = 5/6). Reasoning in the same manner,
it is easy to find the rest of the elements of the payoff matrix for this game.
The resultant 2 × 3matrix is shown in Figure 2.15. Note that the elements of
the matrix are probable gains; so here even the pure strategies involve chance.
The lower value of the game is 1/2, and the upper one is 3/4. The maximin
strategy is𝐴2 while the minimax strategy is 𝐵3. There is no saddle point, and
the optimal solution for the game will be a mixed strategy.

In order to find the optimal mixed strategy, let us use the payoff matrix
and relations (2.12) and (2.13). The relations for this case are

𝑥2 ⩾ 1, 5
6𝑥1 +

1
2𝑥2 ⩾ 1, 1

2𝑥1 +
3
4𝑥2 ⩾ 1, (2.14)

𝑥1 + 𝑥2 =
1
𝜈 . (2.15)

The solution can be conveniently represented as a diagram. We plot the
positive values 𝑥1 and 𝑥2 along the coordinate axes (Figure 2.16). The first
inequality in (2.14) corresponds to the area above the straight line 𝐶𝐶; the
second inequality is the area above𝐷𝐷; and the third inequality in (2.14) is
the area above 𝐸𝐸. All three inequalities are satisfied inside the area shaded
red in the figure. The equation 𝑥1 + 𝑥2 = const defines a family of straight
lines, some of which are shown in figure as dash lines. The straight line 𝐹𝐹
has the least sum 𝑥1 + 𝑥2 of all the lines in the family with at least one point
within the red area. Point 𝐺 indicates the solution corresponding to the
optimal mixed strategy. The coordinates of this point are 𝑥1 = 3/5 and
𝑥2 = 1. Hence we find 𝜈 = 5/8, 𝑝1 = 3/8, and 𝑝2 = 5/8. Thus,𝐴’s optimal
mixed strategy would be to use strategy𝐴1 with probability 3/8 and strategy
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𝐴2 with probability 5/8.

x2

0

2

x1

F

1

1 2

E
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D4 3/

3 5/ 6 5/
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Figure 2.16: Solution for the game of aircrafts
and anti-aircraft guns.How could we use this recommendation in practice? If there is only

one bombing raid in the “game”. A clearly should select strategy𝐴2 because
𝑝2 > 𝑝1. Suppose now the game has many raids (for instance, raids on many
bases). If the game is run𝑁 times (𝑁 ≫ 1), then𝐴 should choose strategy
𝐴1 3𝑁/8 times and strategy𝐴2 5𝑁/8 times.

We have so far only discussed the behaviour of𝐴, allowing 𝐵 to act arbi-
trarily. If𝐴 selects his optimal mixed strategy, his average gain will be between
the upper game value of 3/4 and the game value 𝜈 = 5/8. If 𝐵 behaves un-
reasonably, the 𝐴’s gain may rise to the upper value of the game (or even
greater). However, if 𝐵 in turn adheres to his optimal mixed strategy, the
𝐴’s gain will equal the game value 𝜈. The optimal mixed strategy for 𝐵 pre-
cludes his use of strategy 𝐵3 and is to use strategy 𝐵1 with probability 1/4 and
strategy 𝐵2 with probability 3/4. That strategy 𝐵3 should not be used can
be seen from Figure 2.16: the straight line 𝐸𝐸 corresponding to this strategy
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does not have any points in the red area. To determine the probabilities with
which to apply strategies 𝐵1 and 𝐵2, we use the game value 𝜈 = 5/8, and
get 𝑞1 × 0 + (1 − 𝑞1) × 5/6 = 5/8. It is clear from this that 𝑞1 = 1/4 and
𝑞2 = 1 − 𝑞1 = 3/4.



Chapter 3

Control and Self-control

Cybernetics penetrated and continues to penetrate every area of
man’s work and daily life. This is the science of the optimal
control over complex processes and systems.

A.I. Berg

The Problem of Control

Control against disorganization. Although the world around us is full
of chance, it nonetheless proves to be organized and ordered in many ways.
The disorganizing effect of chance is countered by the organizing influence of
control and self-control.

Suppose an airplane flies fromMoscow to Leningrad. Various random
factors affect it during the flight. Therefore, all three space coordinates of the
airplane are random functions of time. The flight trajectory is a realization

97
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of these random functions. However, these “subtleties” do not bother the
passengers; they fasten their belts before takeoff confident that whatever thun-
derstorms might occur on the way and whichever winds affect the airplane, it
will arrive at Leningrad airport. The basis for this confidence lies in the air-
craft’s control system and the actions of the pilot. We met queueing systems
above, and although there is a great deal of chance, they comply with their
objectives. This is because the organization of the system and the control of
its operation is well-designed.

Controls take on a variety of guises. Suppose we want a set of books to
serve public for a long time. This is impeded by chances both purely physical
in nature and those related to the attitudes of some readers. So we control
matters: we take care of the binding, regulate the temperature, humidity, and
illuminance in the rooms where the books are stored, give the book a library
card, and set up the rules governing the use of the books.

No one is safe from disease, and although each disease has a definite cause,
the prevalence and lethality of a disease on the scale, say, of a town is governed
by chance. When fighting it, we must control matters by improving working
and living conditions, taking preventive medical measures, constructing sta-
diums, swimming pools, sport complexes, ordering pharmacies to supply the
necessary drugs, etc.

Thus, there is a confrontation of two powerful factors in the world,
two basic trends. On the one hand, there is randomness, a tendency to
disorganization, disorder, and destruction in the long run. On the other
hand, there is control and self-control, a tendency to organization, order,
development, and progress.

Choice as a prerequisite of control. If all the processes and phenomena
in the world were strictly predetermined, it would be meaningless even to
speak of the possibility of control. In order to control something, there must
be some choice. Howmay we make a decision if everything is predetermined
in advance? Every phenomenon must have several probable lines of devel-
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opment. One may say that a world built on probability is the only world in
which control is possible.

Control acts against chance, even though the possibility of control is
brought about by the existence of chance. It is random occurrences that help
us avoid predetermination. We can say that randomness “brings to life” its
own “grave-digger”, i. e. control. This is a manifestation of the dialectic unity
of the necessary and the random in the real world.

Control and feedback. Two different control schemes are shown in
Figure 3.1 , where 𝑆 is the controlled system, 𝐶𝑈 is the control unit, 𝑉 is
the input to the controlled system (the control signal), 𝑃 are random pertur-
bations affecting the controlled system, and 𝑤 is the final output from the
system. Scheme (𝑏) differs from scheme (𝑎) in having a feedback loop, that is
the control unit receives information about the results of control.

v

v w

w

(a)

(b)

P

P

Feedback

CD

CD S

S

Figure 3.1: Two different control schemes.

What is feedback for? In answering this question, let me remark that the
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“relationship” between randomness and control is one of active confrontation.
Control acts against chance, and chance acts against control. The latter fact
requires flexible control, the possibility for adjustment. The control unit
must be able continuously to receive data about the results of the control and
correct its signals to the system appropriately.

In point of fact, any real control system supposes the presence of a feed-
back loop. Control without feedback is not only ineffective, it is actually
unviable.

Take for example someone driving amotor-car. Imagine for aminute that
the feedback suddenly disappeared, that is, the driver stopped attending to
the motion of the car. The car would continue to be controlled, but without
any feedback. The car is immediately affected by a variety of random events.
A small bump or bend in the road, a car moving in the opposite direction all
are random and could lead to an accident in only a few seconds.

The control algorithm. Nowwhat should be done and how should the
system be controlled? It depends on the situation and the goal being pursued.
In fact the answer lies in the algorithm of control.

A control algorithm is a sequence of actions that must be carried out to
reach a set of goals.

In the example with the car and a driver, the control algorithm contains
rules on how to start the engine, how to brake, how to turn, how to shift
gears, and so on. The algorithm also contains the traffic regulations and good
driving practice.

In some cases the control algorithm is simple. For instance, in order to
use a coffee machine, only the following two actions need be carried out: put
a coin in the slot, and press the appropriate buttons. This is the complete
control algorithm for this machine. In other cases, the control algorithm is
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much more complicated. For instance, it is more difficult to drive a car, while
flying a jet is even more complicated. In very complicated cases, the control
algorithm cannot even be defined in full. For instance, complete control
algorithms for managing a large enterprise or industry simply do not exist.

From the “Black Box” to Cybernetics

Despite the diversity of algorithms, the processes of control canbe investigated
from general positions, irrespective of the details of the considered system. A
typical example is the simulation of a system using the “black box” model.

What is a “black box”? Suppose we consider a controlled system, where
𝑉1, 𝑉2, … , 𝑉𝑚 are its inputs (control signals), 𝑃 is a random perturbation, and
𝑊1,𝑊2, … ,𝑊𝑛 are its outputs (Figure 3.2). Now let us suppose that we do
not know or do not care what is inside the system. We only need investi-
gate the relationships between the inputs ( 𝑉1, 𝑉2, … , 𝑉𝑚) and the outputs
(𝑊1,𝑊2, … ,𝑊𝑛). It is said in this case that the given system is a “black box”.

V1

V2

V3

Vm

W1

W2

W3

Wm

P

Figure 3.2: A black box is a systemwhose inputs
and outputs are known, but internal structure
is not.
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Any controlled system is a “black box” if its internal structure is not con-
sidered, and only the responses of the outputs to the inputs are investigated.

Man surrounded by black boxes. The advance of science and technol-
ogy has surrounded mankind by a vast number of controlled systems. As a
rule, we are not a bit bothered by this because we quickly get accustomed
(sometimes unconsciously) to considering these systems as black boxes. We
find out how, what, and where to turn, press, or switch the buttons to obtain
the desired effect. If you want to watch a TV show, there is no need to know
the structure or workings of a television. We need only press the proper but-
ton and select the channel. To make a telephone call, we do not have to be
telephone engineers; we just pick up the receiver, wait for the call signal, and
dial the telephone number. We use television, telephone, and many other
systems and consider them to be black boxes. Naturally, we could learn what
is inside the system and how it works if we want to, but in our modern world
we often think it’s a waste of time to study what we can quite do without in
practice. More and more often we prefer to use black boxes and when they
fail we call in a professional technician.

We should recognize the validity of the complaints that as modern people
we have become less curious, that we do not want to see things in depth
because there are too many things to see, and it is not difficult to use them.
However, I should not make things appear to be worse than they are. Firstly,
there is a system of universal secondary education at least in the developed
countries, which ensures each person has a basic minimum knowledge. Sec-
ondly, from the viewpoint of the development of society, the knowledge
available to the society as a whole is more important than what a single person
may know.

Complex systems as black boxes. Modern systems are becoming more
and more sophisticated as their functional capacities become more and more
diverse. Naturally, themore we need to know about the functions of a system,
the further we push our investigation of its inner structure into the back-
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ground, and in many cases such a total investigation would prove infeasible
because of the complexity of the system.

This shift of emphasis leads us to a qualitatively new viewpoint, in which
the main aim is to investigate control and self-control as general processes
irrespective of the concrete devices comprising the systems. This point of view
brings about cybernetics as the science of control (self-control) in complex
systems.

Curiously this point of view reveals an interesting fact and makes us look
at the black-boxmodel in anotherway. It turns out thatwe do not need under-
stand every structural subtlety of a complex system, indeed its separation into
component parts can obscure essential information. The black-box model
becomes fundamental as the only acceptable way of analyzing a complex
system.

What is cybernetics? The science of cybernetics was founded by the
American scientist Norbert Wiener (1894-1964) and dates from 1948 when
he published his famous book Cybernetics, or Control and Communication
in the Animal and theMachine. Wiener wrote:

“We have decided to call the entire field of control and communication
theory, whether in the machine or in the animal, by the name cyber-
netics, which we form from the Greek 𝜘𝜐𝛽𝜖𝜌𝜈𝜂𝜏𝜂𝜁, or steersman.”

It should be noted that the term “cybernetics” was not new. Plato used it
meaning the art of controlling ships. The French physicist Ampére classified
sciences in the first half of the 19th century and placed a science, which was
the study of the methods of government, in section 83. Ampére called this
science cybernetics. Today we only use the term “cybernetics” in the sense
given to it byWiener.

Cybernetics is the science of the control and communication in complex
systems, be they machines or living organisms.
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The Soviet scientist L.A. Rastrigin wrote a book called This Chancy,
Chancy, Chancy World (Mir Publishers, Moscow, 1984), in which he re-
marked:

“Until cybernetics made its appearance, control processes in an elec-
tric generator were investigated by electrical engineering, control of
the motion of a clock pendulum (in effect a swing) was dealt with in
mechanics, and control of population dynamics in biology. Norbert
Wiener was the first to point to the universal nature of control and to
show that the organizing of an object (the lowering of its entropy) could
be achieved by means of standard procedures, that is, by applying the
methods of cybernetics independently of the physical characteristics
of the object.”

L.A. Rastrigin imaginatively calls cybernetics a science which fights random-
ness, thus emphasizing the idea of control counteracting disorganization and
destruction caused by diverse random factors.

Cybernetics and robots. One of the central topics of cybernetics con-
cerns process automation, in particular, self-control in complex systems. In-
vestigations into this area resulted in the appearance of a discipline called
“robotics”. Modern cybernetics literature discusses the possibility of design-
ing automata that can reproduce and teach themselves. Artificial intelligence
is also a topic being investigated. The following questions are being studied:
Is the machine capable of creativity? Could a machine become cleverer than
its designer? Could the machine think?

The more sophisticated types of robots are still in the realms of science
fiction, although we often hear discussions about the possibilities of robotics,
or rather whether artificial “men” might be possible. The layman now seems
to believe that cybernetics is indeed simply the science of robots, automata, or
thinking machines. The true purpose of cybernetics as the science of control
is nowmasked by the fantastic technological promise.

True, cybernetics does include the problems of automation, and thus
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contributes to scientific and technological progress. The automation of
various processes, the design of automatic Lunar explorers, automatic space
docking are all achievements of cybernetics. Cybernetics also investigates
computer creativity and artificial intelligence. However, this is not so as to
evolve an artificial person. When we programme computers to “compose”
music or “write” a poem or play chess or give a “talk”, we are attempting
to simulate creativity and so find out more about these processes. It could
be said that we are investigating the limit of computer abilities, but not that
we want to substitute them for human beings in the future: we just want
to understand several important topics thus making it possible to go deeper
into the control processes occurring in human beings. The reader should
remember this and not consider cybernetics to be just the “science of robots”.

We may now start discussing the central notion of cybernetics, i. e. in-
formation. Let me say right away that cybernetics investigates control and
self-control primarily from the viewpoint of information. It investigates the
collection, conversion, transmission, storage, and retrieval of information.
In a certain sense of the word, cybernetics can be regarded as the “science of
information”.

Information

Let me begin with an excerpt from the immortal poem De RerumNatura
(On the Nature of Things) by Carus Lucretius (ca. 99-55 B.C.):

“ …if things came to being from nothing,
Every kind might be born from all things,
Nought would need a seed.
First men might arise from the sea, and from the land,
The race of scale creatures, and birds burst forth
The sky. Cattle and other herds, and all the tribe
Of wild beasts with no law of birth,
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Would haunt tilth and desert …”

It is interesting that there is here a hint of the conservation of not only matter
and energy, but also of something else, which is neither matter nor energy.
There is no shortage of energy and matter in the sea, but people do not
appear in the sea. Nor too does the dry land produce fish. Truly, “if things
came to being from nothing, … nought would need a seed”. In the modern
terminology of science, we might say that this is a hint of the conservation
of information. The information needed by plants and animals to live and
reproduce cannot appear “from nothing”. It is stored in “seeds” and thus
handed down from generation to generation.

The term “information” is now encountered everywhere in science and
everyday life. In fact, every activity is related to the collection, conversion,
transmission, storage, and retrieval of information. We live in a world filled
with information, and our very existence is impossible without it. Academi-
cian A.I. Berg once said: “Information penetrates every pore of the life of
human beings and their societies … Life is impossible in a vacuum of either
mass-energy or information.”

The bit, the unit of information.What is information? What units
is it measured in? Let us start with a simple example. A train approaches a
station. By remote control, a signalman can switch a train from one track
(𝐴) to another (𝐵). If the switch is up, the train goes along track𝐴, and if it
is down, the train goes along track 𝐵. Thus, the signalman, by moving the
switch up or down, is sending a control signal containing 1 bit of information.
The word “bit” is an abbreviation of “binary digit”.

To see what we mean by “binary digit”, recall how digits are used to write
numbers. We commonly use the decimal number system, i.e. a system with
ten digits (0, 1, 2, …, 9). Take a number written in the decimal system, say
235. We say “two hundred and thirty five” and, as a rule, do not pause to
think that this means the sum of two hundreds, three tens, and five units,
i. e. 2 × 102 + 3 × 10 + 5 × 100. The same number (235) can also be in the
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binary system, which only has two digits, 0 and 1, as 11101011, which means
1 × 27 + 1 × 26 + 1 × 25 + 0𝑡𝑖𝑚𝑒𝑠24 + 1 × 23 + 0 × 22 + 1 × 21 + 1𝑡𝑖𝑚𝑒𝑠20.
Since 27 = 128, 26 = 64, 25 = 32, 23 = 8, 21 = 2, and 20 = 1, we have our
number 128 + 64 + 32 + 8 + 2 + 1 = 235. Any number can be written in
either the decimal or the binary system. If you don’t follow this explanation
try looking at Figure 3.3.

1×102+3×101+5×100

1×27+1×26+1×25+0×24+1×23+0×22+1×21+1×20

Figure 3.3: Representing the number 235 in
decimal and binary systems.Let us return to the railway example. Remember we have two choices:

the switch is either up (track𝐴) or down (track 𝐵). We could write the digit
0 for switch up and digit 1 for switch down. It can be said that the control
signal can thus be coded by one of the two binary digits, zero or unity. The
signal thus contains one binary digit, or 1 bit of information.

Consider a more interesting example. The railway lines near a station are
shown in Figure 3.4.

The railway switches are labelled by the letters 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, and 𝑔. If
a switch receives a control signal of 0, it opens the left-hand track, and if it
receives a signal of 1, it opens the right-hand track. The signalman has three
control switches: the first one sends a signal (0 or 1) to railway switch 𝑎, the
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A B C D E F G H

a

b c

d e f g

0 1

0 1 0 1

0 10 10 10 1

011

Figure 3.4: Controlling railway lines by using
switches. second one sends a signal simultaneously to switches 𝑏 and 𝑐, and the third

one simultaneously to switches 𝑑, 𝑒, 𝑓, and 𝑔. The station has eight tracks:
𝐴, 𝐵, 𝐶,𝐷, 𝐸, 𝐹, 𝐺, and𝐻. To send a train along track 𝐴, all three control
switches must be turned to the 0 position, i.e. send the three-digit signal 000.
To direct a train to track 𝐵, it is necessary to send the three-digit signal 001.
Each track thus has its own three-digit signal, i.e.

A B C D E F G H

000 001 010 011 100 101 110 111

We see that to select one of the eight outcomes requires a set of elementary
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signals, each of which carries 1 bit of information. Therefore, to choose a
track in this example requires three bits of information.

Thus, in order to select one option out of two, 1 bit of information is
required; in order to select one option out of eight, 3 bits of information
are required. In order to select one of𝑁 options, 𝐼 bits of information are
required, where

𝐼 = log2𝑁. (3.1)

This is the Hartley formula. It was suggested in engineer RalphHartley, who
was interested information.

The Bar Kohba game. A rebellion against Romans broke in 135 A. D.
in the ancient Judea led by one Bar Kohba. As the legend has it, Bar Kohba
sent a spy into the camp ofRomans, and the spy discovered a great deal before
being caught. He was tortured and his tongue was cut out. However, the
spy managed to escape, but without his tongue he could not report what
he had found out in the enemy’s camp. Bar Kohba resolved the problem by
asking the spy questions that only required a “yes” or ‘no” answer (it was only
necessary to nod or shake the head). Bar Kohba was able to obtain all the
information he wanted from his spy, even though the spy had no tongue.

A similar situation is described in Le comte deMonte Christo by Alexan-
dre Dumas pére. An old man in the novel had been paralyzed and could
neither speak nor move his hands. Nonetheless, his relatives were able to
communicate with him asking him questions which required only a “yes” or
a “no”. If “yes”, the old man would close his eyes; if he blinked several times,
it was “no”.

It turns out that any information can be transmitted in the form of
“yes” and “no” answers if the questions are constructed properly. This idea
underlies the BarKohba game, which first appeared at the turn of the century
inHungary and then spread to other countries. A player thinks of something.
He may, for instance, make a wish or even think up a sentence. The other
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player must guess the wish or sentence by asking questions, which must
be honestly answered. However, the questions may only require a “yes” or
“no” answer. The quantity of information needed for a correct guess can be
measured by the number of questions, given that the most rational method
of interrogation is used. Each answer can be enciphered by a binary digit,
for instance, we could use a one for a “yes” and a zero for a “no”. Then the
information needed for a correct guess would be a combination of zeroes and
unities.

Let us play a Bar Kohba game with the railway signalman at the station
whose tracks are given in Figure 3.4. The signalman thinks of a track along
which a train should travel to the station. We want to guess the track. The
game would go as follows.

question: Should switch 𝑎 open the track on the right?

answer: No. (let us cipher this answer by digit 0).

question: Should switch 𝑏 open the track on the right?

answer: Yes (we cipher: 1).

question: Should switch 𝑒 open the track on the right?

answer: Yes (we cipher: 1).

Having asked these three questions, we see that the signalman decided on
track𝐷. The information needed to answer was the chain of answers “no-
yes-yes” or, in other words, by the set of binary digits 011. We know that the
information capacity of the signalman’s “riddle” was three bits long. Each of
the signalman’s three answers contained one bit of information.

Let me cite one more example of the Bar Kohba game. There are 32
pupils in a class. The teacher decides on one of them. How can we find out
which one? Let us take the class register, in which the surnames of all the
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pupils are listed in alphabetical order and enumerated. Let us start asking
questions.

question: Is the pupil among those listed from 17 to 32?

answer: Yes (we cipher: 1).

question: Is the child among those listed from 25 to 32?

answer: No (0).

question: Is the child among those listed from 21 to 24?

answer: No (0).

question: Is the child among those listed either 19 or 20?

answer: Yes (1).

question: Is it number 20?

answer: No (0).

Consequently, the teacher meant pupil number 19 in the class register. This
information required the chain of answers “yes-no-no-yes-no” or, in other
words, the set of binary digits 10010. It is clear from Figure 3.5 that the area
in which the surname was searched for gradually decreased with each answer.
To solve the problem, it only required to ask five questions. According to the
Hartley formula, the selection of the option out of 32 requires log, 32 = 5
bits of information. Therefore, each of the answers in this game contained 1
bit of information.

Perhaps I have created the impression that each answer in the Bar Kohba
game always contains 1 bit of information. It is easy to see that this is not so.
Suppose that we established that a surname was listed from 17 to 32 and then
ask: Is it the surname listed from 9 to 16? It is dear that the answer to this
question must be negative. The fact that the answer is obvious means that it
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After answering

The �rst question

The second question

The third question

The fourth question

The �fth question

17 32

17 24

17 20

2019

19

Figure 3.5: Finding out the selected pupil from
a group of 32. does not contain any information at all. Naturally, we might have a situation

without “silly” questions.

question: Is the surname listed from 1 to 8?

answer: No.

question: Is it listed from 25 to 32?

answer: No.

question: Is it listed from 9 to 16?

answer: No.
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question: Is it listed from 17 to 24?

answer: Yes.

question: Is it listed either 23 or 24?

answer: No.

question: Is it listed either 19 or 20?

answer: Yes.

question: Is it listed 19?

answer: Yes.

Having chosen this strategy, we extracted the needed information using eight
questions rather than five. The quantity of information in the final answer
equals 5 bits as before. Therefore, each individual answer in this case con-
tained, on the average, 5/8 bit of information.

Thus, we see that “yes-no” answers do not always contain 1 bit of infor-
mation. Running ahead of ourselves, we can note that 1 bit is the maximum
information that such an answer may contain.

“Just a minute,” you might say, “if this is so, does then a binary digit not
always carry one bit of information?”

“Quite true,” I would answer.

“Then how about the definition of a bit of information given above?
Can we use the Hartley formula?”

All that has been said about a bit of information (and about the Hartley
formula) remains valid, although with a reservation that every option should
be equally probable. I did not want to discuss this topic too early, but now
the time has come to do so.
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Information and probability. The Shannon formula. I have empha-
sized that control is only possible in a world where necessity is dialectically
confronted with chance. In order to control something, there must be choice.
Any situation we want to control carries with it uncertainty. This uncertainty
can be compared with a shortage of information. While we control an object,
we introduce information and thus decrease the uncertainty.

For instance, a trainmay arrive along any of the eight tracks in our example
above, so there is uncertainty. By sending a control signal with three bits
of information, the signalman eliminates this uncertainty, and the train is
directed along one particular track. The teacher could have thought of any
of his 32 pupils, so there was uncertainty which surname had been chosen.
Having listened to the answers for a number of questions with an overall
quantity of information of five bits, we can eliminate this uncertainty and
identify the pupil.

Now let us return to the starting point of our reasoning and to the pres-
ence of choice. Until now, we assumed that each option was equally probable.
The signalman could have chosen any of the eight tracks with equal proba-
bility. The teacher could have picked anyone of his 32 pupils. However, we
often have to choose between options that are not equally probable, and then
it is necessary to pay due attention to the probability associated with each
option. Suppose the answer to a question may be either “yes” or “no” and
both outcomes are equally probable. The answer then will carry precisely 1
bit of information. However, if the “yes” or “no” outcomes have different
probabilities, then the answer will contain less than 1 bit of information. And
the greater the difference between the probabilities of the two outcomes, the
smaller the quantity of information. In the limit of the probability of a “yes”
(or a “no”) being unity, the answer will not contain any information at all.

Now, let us look at what happens when different outcomes (different
options) have different probabilities. I do not want to cram this book with
mathematics, so I shall only discuss the basic results. Suppose 𝜉 is a random
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discrete variable thatmay assume the values 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝛮with probabilities
𝑝1, 𝑝2, 𝑝3, … , 𝑝𝛮, respectively. We have𝑁 outcomes (𝑁 different values of
the random variable) which appear with different probabilities. Given an
observation of the variable 𝜉 and its value, howmuch information does this
observation carry?

This problemwas investigated by theAmerican scientist Claude Shannon
in the mid-1940s. He came to the conclusion that we obtain the quantity of
information equal (in bits) to

𝐼(𝜉) =
𝛮
∑
𝑖=1

𝑝𝑖 log2
1
𝑝𝑖
. (3.2)

This is a fundamental relation in information theory. It is called the Shannon
formula.

Suppose that the outcomes are equally probable, and the random variable
may take on the values 𝑥𝑖 with the same probability 𝑝. This probability is
clearly 1/𝑁 and so from (3.2) we obtain

𝐼 = 1
𝑁

𝛮
∑
𝑖=1

log2 𝑁 = 1
𝑁 𝑁 log2𝑁 = log2 𝑁,

i.e. the Hartley formula (3.1). Consequently, we see that the Hartley for-
mula is a special case of the Shannon formula when all outcomes are equally
probable.

Using the Shannon formula, let us find howmuch information can be
contained in a “yes” or “no” answer. Suppose 𝑝 is the probability of a “yes”.
Then the probability of a “no” answer is 1 − 𝑝. According to (3.2), the
information obtained from the answer to a question is

𝐼 = 𝑝 log2
1
𝑝 + (1 − 𝑝) log2

1
1 − 𝑝 . (3.3)

The graph of 𝐼 versus 𝑝, as defined by (3.3), is given in Figure 3.6.
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Maximum information (1 bit) is obtained when 𝑝 = 1/2, i.e. when a
“yes” and a “no” are equally probable. Now we can refine our notion of “1
bit of information”. This is the information contained in a digit that may
take on only two values provided both values are equally probable.

It follows that the best strategy in the Bar Kohba game is to ask “yes” or
“no”questions, the answers towhich are nearly or equally probable. Recall the
question: “Is the surname listed from 17 to 32?” Here the answers “yes” and
“no” are equally probable because there are 32 pupils and the numbers from
17 to 32 cover half of the pupils. Therefore, the answer to this question gives 1
bit of information. But for the question: “Is the surname listed from 1 to 8?”
the range of numbers only covers a quarter of all the numbers and therefore
the probability of a “yes” is 1/4, while that of a “no” is 3/4. The answer to this
question would contain less than 1 bit of information. According to (3.3), in
which we substitute 𝑃 = 1/4, each answer contains 0.8 bit of information.

0

1

11/2 p

Figure 3.6: Graph of Shannon distribution.

Once again I emphasize that control processes should be regarded in a
dialectical unity with the random processes of disorganization. There is a
deep relationship between information theory and probability theory. The
Shannon formula (3.2) illustrates this point. The probabilistic approach pro-
vides a scientific, objective notion of information that is free from a subjective
substitution of the quantity of information by its significance or importance.

Information in communication channels with noise.When infor-
mation is transmitted, some loss is unavoidable. This happens because of the
action of random factors, which are commonly lumped together as noise. A
communication channel for transmitting information from input set 𝐴 to
output set𝐵 is represented in Figure 3.7. The information is affected by noise
𝑃 as it is transmitted. Suppose that 𝜉 is an input discrete random variable
whichmay assume values 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝛮. with probabilities 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝛮,
and 𝜂 is the output variable, which may assume values 𝑦1, 𝑦2, 𝑦3, … , 𝑦𝛭. with
probabilities 𝑞1, 𝑞2, 𝑞3, … , 𝑞𝛭. Let 𝑃𝑖(𝑗) denote the probability that 𝜉 = 𝑦𝑗
is the output variable if 𝜉 = 𝑥𝑖 was transmitted. The probability 𝑃𝑖(𝑗) is
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determined by noise in the communication channel. It has been proved in
information theory that the quantity of information about the random vari-
able 𝜉 that can be obtained by observing the random variable 𝜂 is described
by the formula

𝐼𝜂 (𝜉) =
𝛮
∑
𝑖=1

𝛭
∑
𝑗=1

𝑃𝑖(𝑗) 𝑝𝑖 log2
𝑃𝑖(𝑗)
𝑞𝑖

. (3.4)

Here the information 𝐼 is in terms of two types of probability, the probabili-

P

A B 𝜂𝜉

Figure 3.7: A communication channel for trans-
mitting information.ties 𝑝𝑖 and 𝑞𝑗 on the one hand and the probability 𝑃𝑖(𝑗) on the other. While

the first two probabilities reflect the probabilistic nature of the information
at the input of the communication channel and that “yes” or “no” questions,
the answers to which are nearly or equally probable. Recall the question: “Is
the surname listed from 17 to 32?” received at the output, probability 𝑃𝑖(𝑗)
reflects the random nature of the noise in the channel.

Suppose there is no noise. Then the random variable values at the input
and the output of the channel will be the same. Hence

𝑁 = 𝑀, 𝑝𝑖 = 𝑞𝑖, and 𝑃𝑖(𝑗) = 𝛿𝑖𝑗, (3.5)

where 𝛿𝑖𝑗 = 1 for 𝑖 = 𝑗 and 𝛿𝑖𝑗 = 0 for 𝑖 = 1 = 𝑗. Substituting (3.5) into
(3.4) and noting that lim

𝑧→0
𝑧 log2 𝑧 = 0, we get the Shannon formula. This

should have been expected because when there is no noise, there is no loss of
information in its transmission.

Protection against noise in a communication channel. There are
many sorts of communication channel. Information can be transmitted by
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sound waves propagating in a medium, electric signals running along wires,
electromagnetic waves propagating in a medium or in vacuum, etc. Each
communication channel is affected by its own sorts of noise. There are general
techniques for handling noise that can be applied to any communication
channel. First of all, it is desirable tominimize the level of noise andmaximize
the amount of information in the signals, so that the signal-to-noise ratio is
large. The ratio can be increased by coding the transmitted information ap-
propriately, e. g. transmitting it in terms of “symbols” (for instance, impulses
of a certain shape) which can be distinctly identified against the background
of noise. Coding a signal increases its “noise immunity” or performance in
terms of error probability for the transmission.

(a)

(d)(b) (c)

A B

P

F

Figure 3.8: A communication channel with a
filter. A special measure against noise is filtering (both smoothing and correla-

tion) the information received at the output of communication channels. If
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the characteristic noise frequency in a communication channel is substan-
tially greater than the frequency typical for the time change in the signal, we
could use a smoothing filter at its output to “cut out” the high-frequency os-
cillations superimposed on the signal as it was transmitted. This is illustrated
in Figure 3.8, in which (a) is a diagram of the communication channel with a
filter (𝐴 is the channel input, 𝐵 is the channel output, 𝑃 is noise, and 𝐹 is a
smoothing filter), (b) is the signal at the input, (c) is the signal at the output
before filtering, and (d) is the signal after filtering.

P S

(a) (b) (c)

Figure 3.9: A communication channel with a
filter and signal multiplier.Suppose we want to find out whether the output contains a signal of a

given shape. If the signal is very different (for instance, by frequency) from the
noise background, it will be easily identified. The situation is worse when the
signal is “masked” by noise. Correlation filtering is applied in these cases: a
device is placed at the outputwhich multiplies the output signal by the known
signal. If the desired signal is present in the output signal, the multiplication
creates a very clear (large) final (correlation) signal; otherwise no correlation
signal will appear. This is illustrated in Figure 3.9, in which (a) is a diagram of
the channel (Λ is the signal multiplier, 𝑃 is noise, and 𝑆 is the signal shape to
be recognized), (b) is the multiplied signal if the recognized signal 𝑆 is present
in the output (the correlation signal), and (c) is the multiplied signal if signal
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𝑆 is absent in the output. Correlation filtering is used, for instance, in radar
scanners to recognize the radiation signal emitted by the radar antenna.

Selection of Information from Noise

Where does information come from and some unsatisfactory answers.
Any control signal carries certain information. The signal is formed using
an algorithm which itself incorporates information, and this algorithm was
compiled in turn using information contained in other algorithms. Thus we
have a sort of relay race in which information is transmitted from algorithm
to algorithm. This idea can be illustrated by a simple example. A teacher
educates you, and in turn your teacher had a teacher, who had a teacher, and
so on.

This argument leads inevitably to the questions: Whence the “original
information”? Whence the first algorithm? An inability (or reluctance) to
investigate scientifically the fundamental topic of where information comes
from leads to serious misconceptions.

One such misguided hypothesis is that the original information was
brought to the Earth by space travellers, who visited us in some long-forgotten
past. This hypothesis is materialistic, but it is unsatisfactory because it begs
the question of where the aliens got the information. Modern science indi-
cates where the information comes from. The modern scientific answer is
that there is no “original information”: the generation of information is a
continuous and continuing process.

Chance at the forefront again. The idea of information being handed
over like a relay baton in a race is simplistic. I pointedout that any transmission
of information is accompanied by loss caused by random factors. However,
random factors not only “steal” information, they also generate it.
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Atfirst glance, this seems implausible. Wewitness the continuous creation
of information as a result of human creativity. Newmachines are designed,
spacecraft are launched, new books are published, and new drugs become
available: these are all a testimony to the explosive generation of information
in which everybody participates. So it would seem strange to speak of the
fundamental role of chance in generating information.

However, consider the process of thinking, how a problem is solved, how
an intuition appears, or how a melody or image emerges. If these examples
are too philosophical, try and think at least about associative perception, that
is how we recognize objects and distinguish them. Just try, and you will
step into a domain of complicated links, probabilistic relationships, chance
guesses, and sudden “revelations”. There are no deterministic algorithms
for making discoveries or solving problems. Everything we know about the
processes occurring in the brain indicates the fundamental role of random
factors. Later I shall illustrate this by the example of perceptron, a cybernetic
device which can recognize patterns.

Chance and selection. Howcan chance generate information? Howcan
order appear from disorder? It turns out that the generation of information
from noise can be easily observed. You can see this for yourself using the game
of scrabble, or rather the small lettered blocks. Put one block with each letter
of the alphabet into a bag, mix them, and take one out at random. Write
down each randomly taken letter and return the block to the bag. Each time
shake the bag. This simple generator of random letters can be used to generate
a long chaotic string. If you look closely, youwill find some three-letter words,
perhaps even words with more letters. Information is being generated from
noise.

My son, for example, helped me do an experiment and in a string of 300
random letters found nine three-letter words and two four-letter. This argu-
ment leads inevitably to the questions: Whence the “original information”?
Whence the first algorithm? An inability (or reluctance) words. The more
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letters there are in a word, the smaller the probability of generating the word
from “letter noise”. The generation of a sentence, let alone a line from a
well-known work, is less probable. Nonetheless, the probability of doing is
nonzero, and so there is the possibility of any information being generated
randomly from noise.

Thus, we can say (although this sounds strange) that chance generates in-
formation by chance. The greater the information, the smaller the probability
of its random generation. That random information can be generated does
not solve the basic problem. This randomly generated information must be
detected from the enormous flow of meaningless “signals”. In other words,
the information must be selected from the noise. In the example of taking
lettered blocks out, the information is selected from the noise by the person
who wrote out the letters and looked through the string.

Selection amplifier Is it possible to use chance conscientiously to gener-
ate information? It is, so long as we amplify the selection.

You can do a simple experiment to demonstrate the amplification of
selection using the random letter generator described above. In order to
amplify the selection, we take into account the frequency with which letters
appear in each word. Letter frequencies in English are often given when
you buy a commercial game of scrabble. To allow for the frequencies, first
eliminate the rare letters, e. g. 𝑍,𝑄, 𝐽, 𝑉,𝑋 and add extra blockswith frequent
letters, e. g. four blocks with 𝐸 and 𝑇, three with𝐴, 𝐼, 𝑂, 𝐿,𝑁,𝐺, 𝑅, 𝑆, two
with𝐷,𝑈, and one of all the rest. I cannot vouch that this selection is optimal,
in a similar experiment I found 21 three-letter words, 4 four-letter words and
1 five-letter word in a succession of 300 random letters.

In order to amplify the selection still greater, we should use words rather
than letters. It is curious that a similar device was suggested in the early 18th
century by the English satirist Jonathan Swift in Gulliver’s travels. When
Gulliver visited theAcademy inLagado (the capital of an imaginary kingdom),
he met a professor who had an interesting apparatus. Swift wrote:
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“He then led me to the frame, about the sides whereof all his pupils
stood in ranks. It was twenty feet square, placed in the middle of
the room. The super faces were composed of several bits of wood,
about the bigness of a die, but some larger than others. They were all
linked together by slender wires. These bits of wood were covered on
every square with papers pasted on them, and on these papers were
written all the words of their language in their several moods, tenses,
and declensions, but without any order. The professor then desired
me to observe, for he was going to set his engine at work. The pupils at
his command took, each of them, hold of an iron handle, there were
forty fixed around the edges of the frame, and given then a sudden
turn, the whole disposition of the word was entirely changed. He then
commanded six and thirty of the lads to read the several lines softly
as they appeared on the frame; and where they found three or four
words together they might make part of a sentence, they dictated to
the four remaining boys who were scribes. This work was repeated
three or four times, and at every turn the engine was so contrived, that
the words shifted into new places, as the square bits of wood moved
upside down.”

True, Swift wrote satirically, laughing about such inventions. However, why
should we not believe that a talented popular-science writer disguised himself
behind mask of a satirist so as not to be laughed at and misunderstood by his
contemporaries?

What seemed absurd and laughable in the 18th century has now become
the subject of scientific investigation in the mid-20th century. The English
scientist W. Ross Ashby suggested a cybernetics device in the early 1950s
which could be a selection amplifier. Ashby called it an intelligence amplifier.
A diagram of this amplifier is given in Figure 3.10.

1 2 3

4

5

Ampli�er's �rst
stage

Second
stage

Figure 3.10: A selection amplifier.

Noise generator 1 supplies “rawmaterial” to the first stage of the amplifier.
The noise converter 2 produces various random variants of the subjects to be
selected. The selection is performed in unit 3 in compliance with criteria of se-
lection put into this device. In a concrete case, if the result of a selectionmeets
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a criterion, control unit 4 opens valve 5 and lets the selected information into
the converter of the next stage of the amplifier. One can easily imagine that
the first stage of the amplifier, supplied with random letters, selects separate
randomly emerging words or separate typical syllables; the second stage of
the amplifier selects word combinations; the third stage selects sentences, the
fourth stage selects ideas, etc.

Random search-related self-organization. The homeostat. Suppose
a system is in a state which a allows it to carry out certain functions. Let us
call this state normal. It corresponds to external. conditions in which the
system operates. Suppose these conditions change all of a sudden, and the
result is that the system departs from the normal state. The new conditions
correspond to a new normal state. It is desirable to transfer and where they
found three or four words together they might make part of a sentence, they
dictated to the four remaining boys whowere scribes. This workwas repeated
three or four times, and at every turn the system to this new state. How is it
to be done? Information is needed firstly on the new state, and, secondly, on
how the transition of the system to the new state can be carried out. Since
the change in the environment is random in nature, we know neither the
new normal state nor how to organize a transition to it. A random search
may help in such situations. This means that we should randomly change the
system’s parameters until it randomly matches the new normal state, which
can be immediately recognized by monitoring the system’s behaviour.

It can be said that the process of random search generates the information
needed to transfer the system to the new normal state. This is nothing else
but the selection of information from noise about which we have been talking.
The selection criterion here is the change in the system’s behaviour: once
in the new normal state, the system “calms down” and starts functioning
normally.

In 1948 Ashby designed a device which possessed the property of self-
organization on the basis of random search. He called the device a homeostat.
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A diagram of a homeostat is shown in Figure 3.11.

1

2

3 4

Figure 3.11: A homeostat is a device which pos-
sessed the property of self-organization on the
basis of random search.

A homeostat is often
compared to a sleeping cat. If the cat is bothered, it wakes up, chooses a new
more comfortable position, and goes to sleep again. A homeostat behaves
in a similar manner: when it is “woken up”, it carries out random search for
new values for its parameters, and when it finds them, it “goes to sleep” again.

System 1 in Figure 3.11may be either in a stable or unstable state. Without
going into detail, let me note that system 1 consists of four electromagnets
whose cores can move and control the rheostats which control the voltages
across the electromagnets. Therefore, the rotation angle of each electromag-
net is dependent on all the other ones. These angles are the parameters of
this dynamic system. The magnet cores do not rotate when the system is in
a stable state. However, if an external disturbance takes the system out of
its stable state, control unit 2 switches on generator 3 of random changes of
parameters, and the random search starts. Once system 1 finds a stable state
(by chance), the system to this new state. How is it to be done? Information
is needed firstly on the new state, and, secondly, on how the transition of the
system to the new state can he carried out. Since the chance in the unit 4
having verified the stability sends a signal to control unit 2, which switches
off the random parameter generator 3.

Figure 3.12: A selection of different ways of writ-
ing letter A.

On the Way to a Stochastic Model of the Brain

The pattern recognition problem. We do not commonly think about the
brain’s ability to recognize patterns, although it is amazing. Several characters
differing in size, shape, and line breadth are shown in Figure 3.12. Despite this,
we immediately recognize the same character, the letter 𝐴, in every image.
It is still more amazing when there is a crowd of variously dressed people
with poorly distinguishable faces (because of the distance) and yet we usually
manage to distinguish between men and women without error.
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The ability to recognize patterns is called associative perception, i.e. when
certain general, characteristic features are perceived while other more indi-
vidual aspects recede into the background. Is associative perception possible
for a machine? Is it possible to simulate the processes occurring in the brain
and relate them to pattern recognition? These questions were answered in
the affirmative in 1960 when the American scientist F. Rozenblutt designed a
device he called a perceptron.

What is a perceptron? A perceptron can be regarded as an oversimpli-
fied model of the eye-brain system. The role of the eye, or, more accurately,
the retina of the eye, is played by a grid consisting of a large number of photo-
electric cells, or receptors. Each receptor converts the light incident on it into
electric signals which are collected by the analysis unit within the perceptron.
Before going into detail on the perceptron, let me make two fundamental
points. Firstly, the relations between the receptors and the perceptron’s inter-
nal units which process the information recorded by receptors should not be
rigidly defined. If they were so defined, the signals from the images shown in
Figure 3.13 (a) and (b) would be “perceived” by the perceptron as different
patterns (only five excited receptors shown in red coincide in these images),
while the images in Figure 3.13 (a) and (c) would be “perceived”, by contrast,
to be the same pattern because there are 28 excited receptors in common. In
reality, a perceptron should “perceive” the images in Figure 3.13 (a) and (b)
as the same pattern while those in Figure 3.13 (a) and (c) as different patterns.
Thus, we must accept that the internal relations in a perceptron should be
random. They have to be probabilistic relations.

Secondly, the random nature of these relations suggests the adjustment
of the perceptron to the patterns being recognized. A perceptron should he
presentedwith different images of the recognized patterns in turn (and several
times), and we should teach it, the perceptron’s parameters being adjusted as
needed in the process. A perceptron should take into account its progress at
each stage (at each presentation of the image), so a perceptron should have a
memory.
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( a ) (b ) (c )

Figure 3.13: Signals and their interpretations by
a perceptron.

Considering both these points, we can define perceptrons to be devices
which have a memory and a random structure of the links between its units.
A perceptron can be thought of as a simplified model of the brain, and this
model is promising because it is probabilistic, or, in other words, stochastic.
Some scientists believe that stochastic models will be best able to simulate
the processes occurring in the brain. Various sorts of perceptron have been
designed. Below we shall consider a simple perceptron which can distinguish
two patterns.

The arrangement of the simplest perceptron. A diagram of this
perceptron is given in Figure 3.14. Here the 𝑆𝑖, are photoelectric cells (recep-
tors), the 𝐼𝑘 are phase inverters, which change the sign of the electric voltage,
the 𝐴𝑗 are associative units (𝐴-units), the A. 𝜆𝑗 are amplifiers with varying
gain factors, Σ is a summator, and 𝑅 is the receiver, Suppose that the total
number of receptors 𝑆𝑖, is 𝑁, (𝑖 = 1, 2, 3, … ,𝑁). In the first models, 𝑁
was 20 × 20 = 400 receptors. The number of inverters is not fixed in that
it can be different in different copies of the same device. The total number
of associative units 𝐴𝑗 and amplifiers 𝜆𝑗 equals𝑀 (𝑗 = 1, 2, … , 𝑀). The
receptors are wired to the 𝐴-units either directly or via the inverters. It is
essential that the choice of which receptor is connected to which𝐴-unit and
the selection of the potential sign are random. Thus when a circuit is being
assembled, the wires connecting the receptors to the 𝐴-units are soldered
together randomly, for instance, in accordance with instructions from a
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random number generator.

Figure 3.14: Schematic diagram of the simplest
perceptron. Suppose that an image is projected onto the perceptron’s sensor grid.

Since the intensity of the light at each point is different, some of the receptors
will be excited, generating a logic signal of 1, while others will not, generating
an electric signal of 0 at the output of the receptor. If the signal passes through
an inverter, a 1 is transformed into a−1. The systemof random links transmits
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the signals from the receptors to the𝐴-units. Each𝐴-unit algebraically adds
up the signals at its input. If the sum is above a threshold, the output of the𝐴-
unit goes to logic + 1, otherwise it goes to logic 0. Let us designate the signals
leaving the𝐴-units 𝑦𝑗. Each 𝑦𝑗 is either + 1 or 0. The signal at the output of
unit𝐴𝑗 goes to the input of amplifier 𝜆𝑗 and the amplifier transforms signal
𝑣𝑗 to a signal 𝜘𝑗𝑦𝑗: The gain factor 𝜘𝑗 may vary both in absolute value and in
sign. The signals from all the amplifiers are summed up in the summator Σ,
and hence we get

𝛭
∑
𝑗=1

𝜘𝑗𝑦𝑗.

Then it is sent to the input of the𝑅-unit, which checks its sign. If∑𝑗 𝜘𝑗𝑦𝑗 ⩾ 0,
the 𝑅-unit output is + 1, otherwise the 𝑅-unit output is 0.

This perceptron is designed to recognize only two patterns. Irrespective
of the concrete images of the patterns, the perceptron will respond to one
pattern with an output signal of + 1 and with a signal of 0 to the other. The
perceptron must learn this ability.

Teaching a perceptron. Let us call the two patterns 𝐵 and 𝐶. Suppose
pattern 𝐵 corresponds to an output signal of + 1 and pattern 𝐶 to an output
signal of 0. Suppose 𝜘1, 𝜘2, 𝜘3, … , 𝜘𝑗, … , 𝜘𝛭 are the perceptron’s gain factors
before it is taught. Let us designate this ordered set {𝜘}. To teach the per-
ceptron, we present it with an image of pattern 𝐵. This will excite a certain
set of𝐴-units, i. e. we get a succession of signals 𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑗, … , 𝑦𝛭, or, in
short, {𝑦}. Now suppose the sum∑𝑗 𝜘𝑗𝑦𝑗 is non-negative, so the perceptron’s
output signal is + 1. If so, then everything is true, and we can present the
perceptron with a second image of pattern 𝐵. The second image will excite a
new set of𝐴-units, i.e. a new succession of signals {𝑦′}. The set of gain factors
{𝜘} remains yet the same, but the sum∑𝑗 𝜘

′
𝑗𝑦
′
𝑗 may be negative, and then the

signal at the perceptron’s output will be 0. This is not good, and therefore
the perceptron is “discouraged”: the gain factors of the excited𝐴-units are
incremented by, say, unity, so that a new set of gain factors {𝜘′} ensures that
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the sum∑𝑗 𝜘
′
𝑗𝑦
′
𝑗 is non-negative. Now the perceptron responds correctly to

the second image of pattern 𝐵. But what about the first image? The set of
gain factors has been changed, so that the sign of the sum∑𝑗 𝜘

′
𝑗𝑦𝑗 may be

changed. We present the perceptron with the first image of pattern 𝐵 again
and identify the sign of the sum∑𝑗 𝜘

′
𝑗𝑦𝑗 by the output signal.

If the sum is non-negative, we are satisfied because the set of gain factors
{𝜘′} has caused the perceptron to respond correctly to both the first and the
second images of pattern 𝐵. Now we can present the perceptron with a third
image of pattern 𝐵. If the sum is negative, the gain factors of the excited𝐴-
units should be incremented by unity again (set {𝜘′} is replaced by set {𝜘″}),
and so on.

Gradually, by varying the set of gain factors step by step, we will find a
set of factors such that the perceptron will produce a signal of + 1 for any
presented image of pattern 𝐵. However, our job is not yet over. It is quite
possible that aftermany increments of the various gain factors, the perceptron
will produce a + 1 signal for both pattern 𝐵 and pattern 𝐶 images. However,
the perceptron should produce a + 1 signal for all pattern 𝐵 images and a 0
signal for all pattern 𝐶 images. This means that while the perceptron is being
taught, we should alternate between both patterns and when presenting an
image of pattern 𝐶, we should (if need be) decrement rather than increment
the gain factors of the excited𝐴-units to get∑𝑥𝑦 below zero.

Ultimately, we will find a set of gain factors {𝜘0} such that the perceptron
will always recognize patterns 𝐵 and 𝐶. Suppose {𝑦(𝑛)} is the set of excited
𝐴-units corresponding to an 𝑛th image of pattern 𝐵 and {𝑌(𝑚)} is a set
corresponding to an𝑚th image of pattern𝐶. The𝑀 gain factors {𝜘0} should
be such that

𝛭
∑
𝑗=1

𝜘0𝑗 𝑦𝑗(𝑛) ⩾ 0 for all 𝑛 and
𝛭
∑
𝑗=1

𝜘0𝑗 𝑦𝑗(𝑚) ⩾ 0 for all 𝑚
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The teaching (and the learning) is over when such gain factors have been
found.

Conclusion. In concluding this chapter, I went to emphasize the main
point, i.e. the deep, intrinsic relationship between information theory and
probability theory. The very notion of information is underlain by probability.
And this is natural because control processes and random processes are always
dialectically united. Randomness both “steals” information and generates it,
because the most complicated information devices are fundamentally based
on random internal structures.

We see that the phrase “theworld is built on probability”, which is the title
of this book, has a deeper meaning. Mankind lives and acts in a world filled
with information. This information arises by nature through probability
and, moreover, is created in probabilistic processes. Thus, a world filled with
information is naturally a world built on probability.





Part II

Fundamentality of the
Probability Laws





Chapter 4

Probability in Classical
Physics

Probability theory is used in physics, and its first application of
fundamental importance for our understanding of the laws of
nature can be found in the general statistical theory of heat
founded by Boltzmann and Gibbs … The most elegant and
important advantage of this theory is the understanding of
thermodynamical “irreversibility” as a picture of transition to
more probable states.

W. Pauli
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Thermodynamics and Its Puzzles

All bodies consist of molecules in chaotic thermal motion. This fundamental
point can be disregarded when considering the basic problems of thermody-
namics, the branch of physics which seeks to derive, from a few basic postu-
lates, relationships between the properties of matter, especially those which
are affected by changes in temperature, and a description of the conversion
of energy from one form to another.

Thermodynamics is a branch of physics in which the energy transfers
between macroscopic bodies and their environment are investigated from
the most general positions (without using molecular concepts). Thermody-
namic considerations are underlain by a description of the states of the bodies
using thermodynamic variables or the thermodynamic functions of state or
state parameters, and the use of several basic principles called the laws of
thermodynamics. You already know about such thermodynamic variables as
temperature and pressure.

Thermodynamic equilibrium. Let us perform a simple experiment.
Take a vessel with hot water into a room and put a thermometer into the
water. By recording the readings of the thermometer over time, we will see
that the temperature of the water gradually decreases until finally equals the
air temperature in the room, after which the temperature will remain con-
stant. This means that the water in the vessel has reached a thermodynamic
(heat) equilibriumwith the environment. If a system is in a thermodynamic
equilibrium, its thermodynamic functions of state (temperature and pres-
sure) remain constant until disturbed. Another feature of a thermodynamic
equilibrium is that the temperature is constant at all points of the system.

If a system does not exchange energy with bodies around it, it is a closed
system. When we talk about a thermodynamic equilibrium of a closed system,
we mean an equilibrium between its various parts, each of which can be
regarded as a macroscopic body.
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Suppose we heat a body unevenly and then put it in a vessel which does
not conduct heat. It can be said that we first disturb the thermodynamic
equilibrium in the body and then leave it. The temperature of the hotter
regions will decrease, and that of cooler ones will increase, and finally the
temperature will become the same throughout the body: they will reach a
thermodynamic equilibrium with each other. An unperturbed macro-system
will always reach a state of thermodynamic equilibrium and remain there
until some external action brings it out of this state. If this action stops, the
system will again reach a thermodynamic equilibrium.

And here is the first puzzle of thermodynamics. Why does a system
brought out of thermal equilibrium and left to itself return to an equilibrium
state, while systems in a thermal equilibrium and left to themselves do not
leave it? Why is it not necessary to spend energy to maintain thermal equi-
librium, while energy is needed to maintain a system in a thermodynamic
equilibrium? By the way, this is a far from futile question. The weather
outside may be below freezing, e.g. −1 °C, while it’s warm in the room,
25 °C. The walls of houses conduct heat fairly well, and therefore, there is a
non-equilibrium “room-outside” system. To maintain this thermodynamic
non-equilibrium state, it is necessary to spend energy continuously to heat.

The first law of thermodynamics. A system may exchange energy
with its environment in many ways, or, as is said, along many channels. For
simplicity’s sake, let us limit ourselves to a consideration of two channels,
namely, the transfer of energy by heat conduction and the transfer of energy
by performing work. The first law of thermodynamics is simply the law of
the conservation of energy involving the possible energy transfer between a
body and its environment via different channels, i.e.

Δ𝑈 = 𝐴 + 𝑄, (4.1)

where Δ𝑈 = 𝑈2 − 𝑈1 is the change in the internal energy of the body (𝑈1
and𝑈2 being the internal energies of the initial and final states of the body,
respectively), 𝐴 is the work performed by external forces with respect to
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the body, and 𝑄 is the amount of heat transferred to or from the body by
conduction. Note that unlike internal energy, which is a function of state
of the body (it varies when the body transfers from one state to another),
neither work nor heat are functions of state. It is equally absurd to say that
a body in a state has so much heat or so much work. The heat𝑄 and work
𝐴 in formula (4.1) are the changes in the body’s energy carried out through
different channels. Let us consider a simple macro-system, an ideal gas (𝑚
is the mass of the gas). The internal energy of an ideal gas is proportional to
the absolute temperature 𝑇 of the gas and does not depend on the volume
𝑉 it occupies. Let us change the gas volume using a piston. By pushing
a close-fitting piston down a cylinder and thus compressing the gas in the
cylinder, we perform some work𝐴. When the gas expands, it performs work
𝐴′ to move the piston back: 𝐴′ = −𝐴. This work is related to the change in
the gas volume. It is numerically equal to the area under the pressure-volume
curve, which describes the process, from𝑉 = 𝑉1 to𝑉 = 𝑉2, where𝑉1 and𝑉2
are the initial and final volumes of the gas.

Let us consider, from the viewpoint of the first law of thermodynamics,
two types of gas expansion, isothermal and adiabatic. The former process
occurs at constant gas temperature while the latter occurs when there is no
heat exchange between the gas and the environment. The change in the gas
volume should be carried out very slowly (compared to the rate at which
thermal equilibrium is reached within the gas), and so the gas can be regarded
at any moment in time as being in thermodynamic equilibrium. In other
words, we assume that the gas passes from one thermodynamic equilibrium
state to another, as it were, via a succession of intermediate equilibrium states.

If the expansion is isothermal, the gas’s temperature remains constant,
and therefore, Δ𝑈 = 0 (𝑈1 = 𝑈2). Noting this, we obtain from (4.1):

−𝐴 = 𝑄 or 𝐴′ = 𝑄. (4.2)

The expanding gas performs as much work as it receives heat from the envi-
ronment during its expansion.
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When the expansion is adiabatic, there is no heat exchange with the
environment (𝑄 = 0). Therefore,

Δ𝑈 = 𝐴 or 𝐴′ = −Δ𝑈. (4.3)

The expanding gas performs work owing to a decrease in its internal energy,
and the gas’s temperature therefore falls.

V0

p

V2V1

Adiabat

Isotherm

Q

A

Isothermal expansion

A

Adiabatic expansion

Figure 4.1: Isothermal and adiabatic processes.

Both of these processes are conventionally shown in Figure 4.1. The
processes are also represented on 𝑝 −𝑉 diagrams (where 𝑝 is the gas pressure).
The work𝐴′ performed by the gas in an isothermal expansion from volume
𝑉 = 𝑉1 to𝑉 = 𝑉2 equals numerically the yellow area under the plot of 𝑝(𝑉)
in the figure:

𝐴′ =
𝑉2

∫
𝑉1

𝑝(𝑉) d𝑉. (4.4)

Using an equation of state for an ideal gas (the Mendeleev-Clapeyron equa-
tion), we get

𝑝 = 𝑚𝑅𝑇
𝑀𝑉 , (4.5)

where𝑀 is the molar mass of the gas and 𝑅 is the universal gas constant.
Substituting (4.5) into (4.4) and given that the temperature of the gas is
constant, we obtain

𝐴 = 𝑚𝑅𝑇
𝑀𝑉

𝑉2

∫
𝑉1

1
𝑉 d𝑉 = 𝑚𝑅𝑇

𝑀𝑉 ln
𝑉2
𝑉1
, (4.6)

(the symbol ln designates a logarithm to base 𝑒 = 2.71828… ).

The Carnot cycle. In 1824, a 28-year-old engineer called Sadi, Carnot
published a book in Paris entitled Refléxions sur la puissance moteurice du feu
et Ie machine propre à developper cette puissance (Reflections on the Driving
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Force of Fire and Machines Capable of Developing This Force). Unfortu-
nately, his ideas as presented in the book were only appreciated many years
later, and long after he had died. Carnot was investigating the work obtained
from heat engines. He showed that a heat machine not only needs a hot body,
it also requires a second body with a lower temperature. The first body is
conventionally called the heat source, and the second is called the heat sink.
Besides the heat source and heat sink, there must be a working substance (a
liquid, steam, or gas), which transmits the heat from the heat source to the
heat sink and performs work in the process. Carnot considered a closed cycle
consisting of two isotherms and two adiabats. Later this cycle was called the
Carnot cycle. It is shown in Figure 4.2 for an ideal gas.

V0

p 1

2

3

4

Isothermal
Path T1

Isothermal
Path T2

Figure 4.2: Carnot cycle for an ideal gas.

Suppose𝑇1, is the temperature of the heat source and𝑇2 is that of the heat
sink. Moving from point 1 to point 2 (the isotherm for 𝑇1 ), the gas receives a
heat𝑄1 from the heat source and expands, thus spending energy to perform
work𝐴. From point 2 to point 3 (along an adiabat), the gas performs work
𝐴; and its temperature falls to 𝑇2. From point 3 to point 4 (the isotherm for
𝑇2) the gas gives a heat𝑄2 to the heat sink, and this heat equals the work𝐴2
performed to compress the gas. From point 4 to point 1 (another adiabat),
the work𝐴4 is expended to compress the gas, and this goes to increasing the
internal energy of the gas, so its temperature rises to 𝑇1. The result is that the
working substance returns to its initial state 1.

Suppose that a heat engine operates following the Carnot cycle. The gas
receives a heat𝑄1 from the beat source and gives a heat𝑄2 to the heat sink. In
compliance with (4.2), we can write𝑄1 = 𝐴′ and |𝑄2| = 𝐴2. Note here that
𝑄 > 0when heat is given to the gas, and that𝑄 < 0when the heat is taken
from the gas. It is clear from Figure 4.2 that the area under isotherm 3-4 is
smaller than that under isotherm 1-2, and therefore,𝐴2 < 𝐴′1. Consequently,
|𝑄2| < 𝑄1 i.e. the gas gives the heat sink less heat than it receives from the
heat source. At the same time, the internal energy of the gas, when the cycle
is completed, remains the same. Therefore, the difference𝑄1 − |𝑄2| equals
the work performed by the heat engine during its cycle. Hence the efficiency
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of the heat engine is

𝜂 =
(𝑄1 − |𝑄2|)

𝑄1
. (4.7)

Carnot showed that
𝑄1
𝑇1

=
(|𝑄2|)
𝑇2

. (4.8)

This allows us to rewrite (4.7) in the form

𝜂 =
(𝑇2 − 𝑇1)

𝑇1
. (4.9)

The efficiency of a heat engine, as defined by (4.7) and (4.9), is the best
possible efficiency. The efficiency of real heat engines is always less because of
unavoidable irreversible processes.

Reversible and irreversible processes. The notions of reversible and
irreversible processes are essential for thermodynamics. A process is said to be
reversible if the system (the working substance) is in thermal equilibrium all
the time, continuously passing from one equilibrium state to another. This
process is completely controlled, while it lasts, by the changes in its parameters,
for instance, the temperature or volume. If the parameters are changed in the
reverse direction, the process will also go backwards. Reversible processes are
also called equilibrium processes.

Boyle’s (Mariotte’s) and Gay-Lussac’s (Charles’) laws define reversible
processes in an ideal gas. The expressions (4.7) and (4.9)we have just obtained
are related to a reversible Carnot cycle, which is also called the ideal Carnot
cycle. Each part of the cycle and the whole cycle can be reversed if desired.

An irreversible process is a process that cannot be controlled. It proceeds
independently, or, in other words, spontaneously. The result is that we
cannot reverse such a process. It was noted above that once a system is moved
from its thermodynamic equilibrium, it tends spontaneously to another
thermodynamic equilibrium state. Processes related to transition of a system
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from a non-equilibrium state to an equilibrium one are irreversible. They are
also called non-equilibrium processes.

Here are some examples of irreversible processes: conduction of heat from
a hotter body to a cooler one, mixing of two or more gases in the same vessel,
expansion of a gas in vacuum. All of these processes occur spontaneously,
without any external control. Heat does not spontaneously transfer from
a cooler body to a hotter one. The components of a gas mixture do not
spontaneously separate. A gas cannot spontaneously compress. I wish to
emphasize: every irreversible process is characterized by a definite direction.
It develops in a certain direction and does not develop in the opposite one.
Which direction a process can develop along andwhich it cannot are problems
related to the second law of thermodynamics.

The second law of thermodynamics. One of the first formulations of
the second law of thermodynamics was given by the English physicist William
Thompson (Lord Kelvin):

“It is not possible that, at the end of a cycle of changes, heat has been
extracted from a reservoir and an equal amount of work has been
produced without producing some other effects.”

This means that it is impossible to design a machine to carry out work by
reducing the internal energy of a medium, sea water, for instance. Kelvin
called such a machine a perpetuum mobile of the second kind. While some
perpetuamobile violate the law of the conservation of energy ( perpetuamobile
of the first kind), those of the second kind do not contradict the first law of
thermodynamics; they are instead forbidden by the second law.

In 1850, the German physicist Rudolf Clausius formulated the second
law of thermodynamics as follows:

“The transfer of heat from a cooler body to a hotter one cannot proceed
without compensation.”

It is useful to demonstrate the equivalence of the formulations given byKelvin



143 thermodynamics and its puzzles

and Clausius. If we could, despite Kelvin’s formulation, “extract” heat from
a medium and, using a cyclic process, turn it into work, then, using friction,
transform this work into heat at a higher temperature, we would contradict
Clausius’s formulation because it would involve the conduction of heat from
a cooler body to a hotter one within a closed cycle without any external force
performing work.

On the other hand, suppose that, despite Clausius’s formulation, we
succeed in getting some quantity of heat𝑄 to conduct itself from a cooler
body (at a temperature 𝑇2) to a hotter one (𝑇1), and subsequently, allow this
heat to go naturally from the hotter body to the cooler at the same time
performing some work𝐴′ while the rest of the heat𝑄1 = 𝑄 − 𝐴′ returns to
the cooler body. This process is shown in Figure 4.3 (a). It is clear that this
process corresponds to direct transformation of heat 𝑄 − 𝑄1 into work 𝐴
(Figure 4.3 (b)), which evidently contradicts Kelvin’s formulation.

Q

Q (a)

(b)

Figure 4.3: Work done in transfer of heat from
bodies at different temperatures.

Entropy. Ashewas studyingCarnot’s investigations, Clausius discovered
that relationship (4.8) is similar to a conservation law. The value of𝑄1/𝑇1
“taken” by the working substance from the heat source equals the |𝑄2|/𝑇1
“conducted” to the heat sink. Clausius postulated a variable 𝑆, which like the
internal energy is a state function of the body. If the working substance (an
ideal gas in this case) receives heat𝑄 at temperature 𝑇, then 𝑆 is incremented
by

Δ𝑆 = 𝑄/𝑇. (4.10)

Clausius called 𝑆 entropy.

From point 1 to point 2 of the Carnot cycle (see Figure 4.2), a heat𝑄1 is
conducted from the, heat source to theworking substance at a temperature𝑇1,
and the entropy of the working substance increases by Δ𝑆1 = 𝑄1/𝑇1. From
point 2 to point 3 and from point 4 to point 1, there is no conduction of heat,
and therefore, the entropy of the working substance does not vary. From
point 3 to point 4, a heat 𝑄2 is conducted from the working substance to
the heat sink at temperature 𝑇2, and the entropy of the body is decreased by
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|Δ𝑆2| = |𝑄2|/𝑇2 (Δ𝑆2 < 0). According to (4.8) and (4.10)),

Δ𝑆1 + Δ𝑆2 = 0. (4.11)

Consequently, when an ideal (reversible) Carnot cycle comes to an end, the
working substance’s entropy returns to its initial value.

Note that entropy can be defined as the state function of a body (system)
whose value remains constant during an adiabatic process. Similarly, temper-
ature can be regarded as the state function of a system whose value remains
constant during an isothermal process.

We shall later need to deal with a property of entropy called its additivity.
This means that the entropy of a system is the sum of the entropies of the
system’s parts. Mass, volume, and internal energy are also additive. However,
neither temperature nor pressure are additive.

The second law of thermodynamics as the law of increasing entropy
in irreversible processes within closed systems. Using the notion of
entropy, we can formulate the second law of thermodynamics as follows:

Any irreversible process in a closed system proceeds so that the system’s
entropy increases.

Consider the following irreversible process bywayof an example. Suppose
a closed system consists of two subsystems 1 and 2 which are at temperatures
𝑇1 and 𝑇2, respectively. Suppose that an infinitesimal amount of heat Δ𝑄 is
conducted from subsystem 1 to subsystem 2, so that the temperatures of the
subsystems almost remain the same. The entropy of subsystem 1 reduces
by Δ𝑄/𝑇1, (𝑆1 = −Δ𝑄/𝑇1) while the entropy of subsystem 2 increases by
Δ𝑆2 = Δ𝑄/𝑇2 The entropy of the whole system is the sum of its subsystems’
entropies, and therefore, the change in the system’s entropy will be

Δ𝑆 = Δ𝑆1 + Δ𝑆2 = Δ𝑄 ( 1𝑇2
− 1
𝑇1
) . (4.12)
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Heat conduction from subsystem 1 to subsystem 2 is irreversible if 𝑇1 > 𝑇2.
Using this inequality, we can conclude from (4.12) that Δ𝑆 > 0. Thus, we
see that the process of heat conduction from a heated body to a cooler one
is accompanied by an increase in the entropy of the system consisting of the
two.

A gain in entropy during irreversible processes is only a necessary law
for closed systems. If a system is open, a reduction in its entropy is possible.
Thus, if some external body does work with respect to the system, heat can be
transferred from a heat sink to a heat source. It is essential that if the system
includes a heat source, a heat sink, a working substance, and all the bodies
that perform work (i.e. if we consider a closed system again), then. the total
entropy of this system will increase.

I shall now formulate the basic conclusions concerning the change in the
system’s entropy.

The first conclusion. If a system is closed, its entropy does not decrease
over time:

Δ𝑆 ⩾ 0. (4.13)

The system’s entropy does not vary if the processes within it are reversible.
If the processes are irreversible, the system’s entropy increases. The gain in
entropy can be regarded as a measure of the irreversibility of the processes
occurring in it.

The second conclusion. Generally, nothing can be said about the change
in entropy in an open system. It can either remain constant or increase or
even decrease.

The puzzles of thermodynamics. These puzzles focus on the second
law of thermodynamics. Since it gives a definite direction to the processes in
nature, it introduces a fundamental irreversibility. How can this irreversibility
be explained by physics? Why can heat be transferred from a hotter body
to a cooler one while it cannot be spontaneously conducted in the opposite
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direction? Why does any gas expand in vacuum but does not compress spon-
taneously? Why, when in the same vessel, do two or more gases mix, but
not spontaneously separate? A hammer strikes an anvil. The temperature
of the anvil rises a bit. But however strongly we might heat the anvil with
the hammer resting on it, the reverse will not happen: the hammer will not
jump off the anvil. Why? Very many similar “whys” can be asked. Thermo-
dynamics does not answer these questions in principle. The answer must be
sought in the kinetic theory of matter. We should now look into the picture
of chaotically moving molecules.

Molecules in a Gas and Probability

A dialogue with the author. Imagine that we are talking with a physicist of
the 1860s. We do not need a “time machine”. We shall just believe that my
partner adheres to the views typical of physicists in the mid-19th century, the
same physicists, many of whom later, in the 1870s, could not understand or
accept the ideas of the Austrian physicist Ludwig Boltzmann (1844-1906).
Anyway, let us imagine that it is 1861.

author: “Let us consider a gas to be an ensemble of very many
chaotically moving molecules.”

partner: “Good. I’m aware of the recent investigations of James
ClerkMaxwell, who calculated the velocity distributionofmolecules
in a gas.”

author: “I would like to discuss some thing more fundamental
than the distribution established byMaxwell. The point is that
there is a qualitative difference between considering thermody-
namic equilibria and considering the motion of molecules. In
the first we have dynamic laws with strictly determined depen-
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dences, and in the second we have the probabilistic laws that
govern processes in large ensembles of molecules.”

partner: “But the movements of molecules are governed by New-
ton’s laws of classical mechanics rather than by probabilistic
laws. Suppose we assign coordinates and velocities to all the
molecules in a gas at a certain moment. Suppose that we can
follow all the collisions of the molecules with each other and
with the walls of the vessel. It is clear that in this case we will be
able to predict where a molecule will be at some other moment
and what velocity it will have.”

author: “Why aren’t you bothered by the fact that you’re very
much like the superbeing of which Laplace wrote?”

partner: “I have a concrete problem inmechanics. True, the num-
ber of bodies is extremely great.”

author: “There are about 1019 molecules in a cubic centimetre
of gas under normal conditions. You have a problem in which
some 1020 bodies have to be accounted for.”

partner: “Naturally, it would be exceptionally difficult. But the
difficulty is purely technical and not fundamental. So long as
our calculational abilities are limited, we shall have to resort to
probabilities, the probability of a molecule arriving in a volume,
its probability of having a velocity in a certain range, etc.”

author: “Thus, you believe that the use of probabilities is only re-
lated to our practical inability to perform a very cumbersome cal-
culation, but that in principle an ensemble ofmolecules behaves
according to Newton’s laws as applied to individual molecules.”

partner: “Precisely. This is why I do not see the qualitative differ-
ence you mentioned.”
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author: “I have at least three hefty arguments to support my po-
sition that the probabilistic description of large ensembles of
molecules is necessary in principle, that chance is present in the
very nature of these ensembles rather than simply being related,
as you seem to believe, with our inadequate knowledge and
inability to perform cumbersome calculations.”

partner: “I’d like to know of these arguments.”

author: “I’ll start with the first. Suppose there is, as you postulate,
a rigid system of strictly determined links (as given byNewton’s
laws) between the molecules in a gas. Now imagine that some
of these molecules suddenly escape from this system (e.g. they
escape from the vessel through a slit). Clearly the disappear-
ance of these molecules will bring about the disappearance of
all that is predetermined by their presence, I mean their later
collisions with other molecules, which, in its turn, will change
the behaviour of the other molecules. All this will affect the
whole system of rigid relationships and, as a consequence, the
behaviour of the ensemble as a whole. However, we know that
from the viewpoint of gas as awhole you can suddenlywithdraw
a large number of molecules without any noticeable effect (for
instance, 1012molecules ormore). The properties of the gas and
its behaviour do not change in the least. Does this not indicate
that the dynamic laws governing the behaviour of individual
molecules do not actually interfere with the behaviour of the
gas as a whole?”

partner: “Still, it is hard to believe that molecules obey some laws
while the ensemble of the same molecules obeys quite different
laws.”

author: “But this is exactly so. And my second argument will
emphasize this fundamental point. I’ll give you some simple
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examples. A stone is thrown from point 𝐴 at some angle to
the horizontal (Figure 4.4 (a)). Imagine that we can change the
direction of the stone’s velocity to the opposite at point 𝐵 of
its trajectory. It is clear that the stone should return to point𝐴
and have the same velocity (in absolute value) it had when it was
thrown. The flying stone, as it were, ‘remembers’ its history.”

partner: “This is natural because each state of the thrown stone
is determined by its preceding one and, in its turn, determines
the subsequent one.”

A B

( a )

A B

( b )

Figure 4.4: Bounce of a stone and an elastic ball.

author: “Another example: a ball hits awall elastically andbounces
off (Figure 4.4 (b)). If you change the direction of the ball’s
velocity to the opposite one at point 𝐵, the situation will recur
in the reverse order: the ball will hit the wall and return to point
𝐴.

“I cited these examples in order to illustrate an essential idea: the
movements determined by the laws of classical mechanics have
a kind of “memory” of the past. This is why these movements
can be reversed.”

“Another thing is the behaviour of gas. Imagine the following
situation. There is a beam of molecules whose velocities are
parallel. After entering a vessel, themolecules collidemany times
with each other and the walls. The result is that the molecules
reach a state of thermodynamic equilibrium, and they lose all
‘memory’ of their past. It can be said that any gas in a state
of thermal equilibrium, as it were, ‘forgets’ its prehistory and
does not ‘remember’ how it arrived at the equilibrium state.
Therefore, it is absurd to think of reversing the situation: the
molecules could not recollect into a beam and depart from,
the vessel in one definite direction. Many examples of such
forgetfulness can be cited.”
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“Suppose there is some gas on one side of a partition in a vessel
and another gas is on the other side. If you take away the parti-
tion, the molecules of both gases will mix. Evidently, we should
not expect this picture to reverse: the molecules will not move
back into their own halves of the vessel. We might say that the
mixture of two gases does not remember its prehistory.”

partner: “Do you want to say that the equilibrium state of a gas
is not predetermined by the preceding states of the gas?”

author: “When we use the word predetermined, we mean strictly
unambiguous predetermination. There is no such predeter-
mination here. A gas may arrive in an equilibrium state from
different initial states. No information may be obtained about
the initial states by studying the gas in thermal equilibrium.
This means that the gas forgets its prehistory.”

partner: “Yes, this is true.”

author: “And when does this loss of memory occur? It occurs
when chance comes into play. You throw a die, and, say, a
four turns face up. You throw again and a two appears. The
appearance of the two is not related to the appearance of the
four before it. You throw the die many times and obtain a set of
digits. This set possesses stability (for instance, the four occurs
approximately in one-sixth of all trials). This stability does not
have any prehistory, it is not related to the occurrence of any
other digit in the previous trials.”

“The same happens in a gas. The loss of prehistory indicates
that we must deal with statistical laws, laws in which chance
plays a fundamental role.”

partner: “It seemed to me before that everything was clear. New-
ton developed his mechanics. Then the temperature and pres-
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sure of gas appeared. Using the notion ofmolecules, we reduced
these physical variables to mechanical ones by relating tempera-
ture to the energy of molecules and the pressure of the gas to
the impulses transferred to the wall by the molecules striking
it. Therefore, the laws of mechanics were and continue to be
fundamental laws. Are you suggesting we put probabilistic laws
on the same level as the laws of mechanics?”

author: “I believe that you are aware of the fact that some thermo-
dynamic variables do not have analogues in classical mechan-
ics. And here is my third argument. Entropy does not have a
mechanical analogue. The very existence of a variable such as
entropy is sufficient to disprove the thesis of the total funda-
mentality of the laws of classical mechanics.”

partner: “I would not like to discuss entropy at all …”

Let us finish with this dialogue because it has become a bit too long.
We agreed that it referred to 1861. Therefore, I could not use arguments
that were unknown at the time. But here I can cite two more arguments
in favour of my position. Firstly, note that entropy is explicitly expressed
in terms of probability, and that namely this makes it possible to explain
every puzzle of thermodynamics. We shall discuss this in detail in the next
sections. Secondly, it follows from quantum physics that the assumption
(made by my partner) that he can assign coordinates and velocities to all the
molecules simultaneously proves to be inconsistent. This cannot be done
due to fundamental considerations, which we shall talk about in detail in
Chapter 5.

And now let us discuss molecules moving in a gas.

Movements of gas molecules in thermodynamic equilibrium. Sup-
pose a gas of mass𝑚 is in thermal equilibrium. The gas occupies volume𝑉
and has temperature 𝑇 and pressure 𝑝.
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Each gas molecule moves with a velocity which is constant in magnitude
and direction until the molecule collides with either another molecule or
the wall. On the whole, the picture of molecular movements is chaotic:
the molecules move in different directions with different velocities, there
are chaotic collisions leading to changes in the direction of movement and
the absolute value of the velocities of molecules. Let us take an imaginary
“photograph” of themolecules’ positions at a singlemoment in time. It might
look like the one in (Figure 4.5), where for simplicity’s sake only two rather
than three dimensions are considered (the “photograph” is flat). It is clear
that the points (molecules) fill the volume of the vessel uniformly (the vessel
in the figure is the square). Suppose𝑁 is the total number of molecules in the
vessel;𝑁 = 𝑁𝛢𝑚/𝑀, where𝑁𝛢 is Avogadro’s number. At any site within the
vessel and at anymoment in time, the number ofmolecules per unit volume is
the same (on average),𝑁/𝑉. Molecules may be found with equal probability
at any point within the vessel.

x

y

Figure 4.5: A snapshot of the molecules in mo-
tion.

Let us use𝐺(𝑥, 𝑦, 𝑧) Δ𝑑𝑥Δ𝑑𝑦Δ𝑑𝑧 to denote the probability of finding
a molecule within a volume Δ𝑉 = Δ𝑥Δ𝑦Δ𝑧 in the vicinity of a point with
coordinates (𝑥, 𝑦, 𝑧). To be more accurate, this is the probability that the 𝑥-
coordinate of the molecule will take a value from 𝑥 to 𝑥+Δ𝑥, its 𝑦-coordinate
from 𝑦 to 𝑦+Δ𝑦, and its 𝑧-coordinate from 𝑧 to 𝑧+Δ𝑧. At smallΔ𝑥, Δ𝑦, and
Δ𝑧, the function𝐺(𝑥, 𝑦, 𝑧)will be the density of the probability of finding
a molecule at point (𝑥, 𝑦, 𝑧). The probability density in this case does not
depend on the coordinates, hence𝐺 = const. Since the probability of finding
a molecule somewhere within the vessel is unity, we have

∫
𝑉

𝐺 d𝑉 = 1, or 𝐺∫
𝑉

d𝑉 = 𝐺𝑉 = 1.

Consequently,𝐺 = 1/𝑉.

Wherever a unit volume is taken within the vessel, the probability of
finding a molecule within the unit volume is 1/𝑉, i.e. the ratio of the unit
volume to the volume of the vessel. Generalizing this conclusion, we can state
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that the probability of finding a molecule within volume𝑉0 is𝑉0/𝑉.

vx

vy

Figure 4.6: A snapshot of molecular velocity
distribution.

Now let us discuss the velocities of the gas molecules. It is clear from
the start that the velocities cannot all be equally probable: there should be
few molecules with very high and very small velocities. When considering
the velocities of molecules, it is convenient to use the concept of a velocity
space, i.e. the molecular velocities are projected onto the coordinate axes
𝑣𝑥, 𝑣𝑦, 𝑣𝑧. For simplicity’s sake, Figure 4.6 shows only two axes: the 𝑣𝑥-axis and
the 𝑣𝑦-axis (a two-dimensional velocity space). The figure shows a molecular
velocity distribution in a gas for some moment in time. Each point in the
figure relates to a molecule. The abscissa of the point is the 𝑥-projection of
the molecule’s velocity and the ordinate is its 𝑦-projection.

It is interesting to compare Figure 4.5 and Figure 4.6. The points in
Figure 4.5 arewithin a certain area and the distribution is uniform. The scatter
of points in Figure 4.6 is unlimited in principle. These points clearly focus
around the origin. This means that although the projection of a molecule
velocity may be as large as you wish, the projections of the velocities in the
neighbourhood of zero are the most probable. The scattering in Figure 4.6
is rotationally symmetric for any angle about the origin. This means that
all directions of movement are equally probable: a molecule may be found
moving in any direction with equal probability.

In order to have a correct picture of the molecular movements in a gas,
we should use both figures. It is still better, instead of each figure, to consider
a sequence of snapshots taken at regular intervals in time.

We should then see that the points in Figure 4.5 move in different direc-
tions: the trajectories change during collisions. The points in Figure 4.6 do
not move; however, some suddenly disappear and some appear. Each time a
pair of points disappears another pair of new points appears: this is the result
of collision between two molecules.

Maxwell’s distribution law. Suppose 𝐹(𝑣𝑥)Δ𝑣𝑥 is the probability that a
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certain molecule (at a certain moment in time) has an 𝑥-velocity component
from 𝑣𝑥 to 𝑣𝑥 + Δ𝑣𝑥 the other two velocity components taking any arbitrary
value. At small Δ𝑣𝑥 the function 𝐹(𝑣𝑥) is the density of the probability of
finding a molecule with velocity component 𝑣𝑥.

The English physicist James Clerk Maxwell (1831 -1879) showed that the
probability density 𝐹(𝑣𝑥) corresponds to Gauss’s law:

𝐹(𝑣𝑥) = 𝐴 exp(−𝛼 𝑣2𝑥 ), (4.14)

where 𝛼 is a parameter (𝛼 > 0) and the constant𝐴 is determined from

∞

∫
−∞

𝐹(𝑣𝑥)d𝑣𝑥 = 1, (4.15)

which is a reflection of the fact that the probability of a molecule having
an 𝑥-component in its velocity is unity. Substituting (4.14) into (4.15), we
obtain

𝐴
∞

∫
−∞

exp(−𝛼 𝑣2𝑥 )d𝑣𝑥 = 1.

The integral in this expression is known in mathematics as Poisson’s integral
and, evaluates to √𝜋/𝛼. Consequently, 𝐴 = √𝜋/𝛼. Thus, we can rewrite
(4.14) as

𝐹(𝑣𝑥) = √𝜋/𝛼 exp(−𝛼 𝑣2𝑥 ). (4.16)

Similar functions can be derived for the probability densities for the 𝑦- and
𝑧-components of a molecule’s velocity. The function 𝐹(𝑣𝑥) is plotted in
Figure 4.7. Suppose 𝑓 (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) is the density of the probability of finding
a molecule with velocity components 𝑣𝑥, 𝑣𝑦, and 𝑣𝑧. Using the theorem of
probability multiplication, we can write:

𝑓 (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) Δ𝑣𝑥 Δ𝑣𝑦 Δ𝑣𝑧 = [𝐹(𝑣𝑥Δ𝑣𝑥)][𝐹(𝑣𝑦Δ𝑣𝑦)][𝐹(𝑣𝑧Δ𝑣𝑧)].
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Whence

𝑓 (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) = ( 𝛼𝜋)
3/2

exp(−𝛼(𝑣2𝑥 + 𝑣
2
𝑦 + 𝑣

2
𝑧 )) = ( 𝛼𝜋)

3/2
exp(−𝛼𝑣2). (4.17)

F

vx0

Figure 4.7: The Gauss velocity distribution.We see that the probability density depends on the squares of the velocity
components, viz. 𝑣2𝑥 + 𝑣

2
𝑦 + 𝑣

2
𝑧 = 𝑣2. This we might have expected because, as

it was already noted, each velocity direction is equally probable, and so the
probability density may only depend on the absolute value of a molecule’s
velocity.

Thus, the probability of finding a molecule with velocity components
taking the values 𝑣𝑥 − 𝑣𝑥 + Δ𝑣𝑥, 𝑣𝑦 − 𝑣𝑦 + Δ𝑣𝑦, 𝑣𝑧 − 𝑣𝑧 + Δ𝑣𝑧, is:

Δ𝑤𝑣 = ( 𝛼𝜋)
3/2

exp(−𝛼𝑣2)Δ𝑣𝑥Δ𝑣𝑦Δ𝑣𝑧, (4.18)

where 𝑣2 = 𝑣2𝑥 + 𝑣
2
𝑦 + 𝑣

2
𝑧 .

Let us take onemore step: since each velocity direction is equally probable,
let us look at the probability of finding a molecule with an absolute velocity
from 𝑣 to 𝑣 + Δ𝑣, irrespective of its direction. If we consider a velocity space
(Figure 4.8), then Δ𝑤𝑣 (see (4.18)) is the probability of finding a molecule in
the “volume”Δ𝑣, shown in (Figure 4.8 (a)) (the word “volume” is enclosed
in quotation marks to remind us that we are dealing with a velocity space
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(a) (b)
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Figure 4.8: The velocity space.

rather than with a normal space). Now we want to consider the probability
of finding a molecule within the spherical layer shown in Figure 4.8 (b) and
confined between spheres with radii 𝑣 and 𝑣 + Δ𝑣. The “volume” of this layer
is the surface area of a sphere of radius 𝑣multiplied by the thickness of the
layer Δ𝑣, i.e. 4𝜋𝑣2Δ𝑣. Therefore, the probability we want has the form:

Δ𝑤𝑣 = ( 𝛼𝜋)
3/2

exp(−𝛼𝑣2)4𝜋𝑣2Δ𝑣. (4.19)

This formula expresses the distribution of molecules in an ideal gas by the
absolute value of their velocities, i.e. the Maxwellian distribution. The
probability density 𝑔(𝑣) = Δ𝑤𝑣/Δ𝑣 is shown in Figure 4.9. It vanishes both
when 𝑣 tends to zero and when it tends to infinity. The “volume” of the
spherical layer shown in Figure 4.8 (b) vanishes when 𝑣 tends to zero and the
factor exp(−𝛼𝑣2) in the distribution law vanishes when 𝑣 tends to infinity.

Chance and necessity in the pattern of moving molecules. Suppose
we could record the position and velocity of every molecule in a volume of
gas at some moment in time. Imagine now that we divide the volume into
numerous identical cells, and look at our instantaneous “photograph” from
cell to cell. It will turn out that the number of molecules varies from cell
to cell in a random fashion. Let us only pay attention to those molecules
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V0

g

Figure 4.9: The Maxwellian velocity distribu-
tion.

whose velocities are within the range from 𝑣 to 𝑣 + Δ𝑣. The number of such
molecules varies randomly from cell to cell. Let us divide the solid angle for
all space at a point, i.e. 4𝜋 steradians, into many identical elementary solid
angles. The number of molecules whose velocities lie within an elementary
solid angle varies randomly from one such an angle to another.

We could look at the situation in another way, that is, we could focus
our attention on some cell or an elementary solid angle and take snapshots
at different moments in time. The number of molecules (in a cell or a solid
angle) at different times will also randomly change.

To emphasize the randomness in the picture of moving molecules, the
term “chaotic” is applied: chaotic collisions between molecules, chaotically
directed molecule velocities, or generally, the chaotic thermal movement of
molecules. However, there is some order in this “chaos” or, in other words,
necessity or what we have repeatedly called statistical stability.

The statistical stability shows itself in the existence of definite probabili-
ties: the probability of a molecule being in a volumeΔ𝑉 (the probability is
Δ𝑉/𝑉), the probability of a molecule moving within a solid angle ΔΩ (the
probability is ΔΩ/4𝜋), and the probability of a molecule having an absolute
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value of velocity from 𝑣 to 𝑣 + Δ𝑣 (the probability is defined by (4.19)).

The number of molecules per unit volume each possessing an absolute
value of velocity from 𝑣 to 𝑣 + Δ𝑣 is, to a great degree of accuracy,

Δ𝑛 = 𝑁
𝑉 Δ𝑤𝑣 = 4𝜋 𝑁

𝑉 (𝛼𝜋)
3/2

exp(−𝛼𝑣2) 4𝜋𝑣2Δ𝑣. (4.20)

Collisions between molecules push some molecules out of this range of veloc-
ity values; however, other collisions bring newmolecules into it. So order is
maintained: the number of molecules in a given interval of velocity values
remains practically constant and is defined by (4.20). Let me emphasize that
chance and necessity, as always, are dialectically united here. Collisions among
a great number of molecules give the picture of the moving molecules its ran-
domness. But at the same time the collisions maintain the thermodynamic
equilibrium in the gas, which is characterized by definite probabilities, and in
turn reveals statistical stability.

Pressure and Temperature of an Ideal Gas

Pressure as the result of molecular bombardment. The walls of a vessel
containing a gas are continuously struck by gas molecules. This molecular
bombardment results in the pressure exerted by a gas on a wall. Let us take
an 𝑥-axis at right angles to the wall. It is clear from Figure 4.10 (a) that the
𝑥-component of a molecule’s momentum in an elastic collision with the wall
changes by 2𝑚0𝑣𝑥 where 𝑚0 is the mass of the molecule. This means that
when it strikes the wall, the molecule gives it an impulse of 2𝑚0𝑣𝑥. Let us first
look at those gas molecules whose 𝑥-components of velocity lie between 𝑣𝑥
and 𝑣𝑥 + Δ𝑣𝑥 (note that 𝑣𝑥 > 0, otherwise the molecule will be moving away
from the wall rather than towards it); the other components of themolecule’s
velocity are not important. The number of collisions between the molecules
in question and an area 𝑠 of the wall per unit time equals the number of
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molecules in a volume equal to 𝑠𝑣𝑥 Figure 4.10 (b). (The reader should not
be confused by the fact that the product 𝑠𝑣𝑥 does not have the dimensions of
volume. In reality, we deal herewith the product 𝑠(cm2) × 𝑣𝑥(cm s−1) × 1(s).)
Regarding (4.16)), this number of collisions is

Δ𝑅 = 𝑁
𝑉 𝑠 𝑣𝑥𝐹(𝑣𝑥) Δ𝑣𝑥 =

𝑁
𝑉 𝑠 𝑣𝑥√

𝛼
𝜋 exp(−𝛼𝑣2𝑥 ) Δ𝑣𝑥.

s
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xvx
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v
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Figure 4.10: The collisions of molecules with
walls of the container.The wall receives an impulse of 2𝑚0𝑣𝑥 at each collision. The force acting

on an area 𝑠 of the wall per unit time is the impulse transferred to the area.
Dividing the force by the area 𝑠, we can find the pressure exerted by the gas on
the wall caused by the molecules whose 𝑥-velocity components take values
from 𝑣𝑥 to 𝑣𝑥 + Δ𝑣𝑥:

Δ𝑝 = 2𝑚0𝑣𝑥Δ𝑅
1
𝑠 = 2𝑚0

𝑁
𝑉
√𝛼
𝜋 exp(−𝛼𝑣2𝑥 ) 𝑣

2
𝑥 Δ𝑣𝑥. (4.21)

The only thing left is to sum up, or, more accurately, to integrate (4.21) over
all non-negative values of velocity 𝑣𝑥:

𝑝 = 2𝑚0
𝑁
𝑉
√𝛼
𝜋

∞

∫
−∞

exp(−𝛼𝑣2𝑥 ) 𝑣
2
𝑥 d𝑣𝑥. (4.22)
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The following is a standard identity:
∞

∫
0

exp(−𝛼𝑣2𝑥 ) 𝑣
2
𝑥 𝑑𝑣𝑥 =

1
4√

𝜋
𝛼3
.

Therefore,
𝑝 = 𝑚0𝑁/2𝛼𝑉. (4.23)

Maxwellian distribution finally becomes clear. We have long tried
the reader’s patience with the mysterious parameter 𝛼. It is clear from (4.23)
that 𝛼 = 𝑚0𝑁/2𝑝𝑉. Since the gas is in a thermal equilibrium, we can use
theMendeleev-Clapeyron equation 𝑝𝑉 = 𝑚𝑅𝑇/𝑀. Inasmuch as 𝑅 = 𝑁𝛢𝑘
(𝑁𝛢 is Avogadro’s number and 𝑘 is Boltzmann’s constant and equal to 1.38 ×
10−23 J C−1), and moreover𝑁𝛢𝑚/𝑀 = 𝑁, we can rewrite the Mendeleev-
Clapeyron equation in the form

𝑝𝑉 = 𝑁𝑘𝑇. (4.24)

Now we obtain from (4.23) and (4.24)

𝛼 =
𝑚0
2𝑘𝑇 . (4.25)

Consequently, (4.19) becomes

Δ𝑤𝑣 = 𝑔(𝑣) Δ𝑣 = 4𝜋 (
𝑚0
2𝜋𝑘𝑇)

3/2
exp (−

𝑚0𝑣
2

2𝑘𝑇 ) 𝑣2Δ𝑣. (4.26)

Temperature as a measure of mean molecular energy. The mean
value of the squared velocity of molecules in an ideal gas can be found using
(1.17) and (4.26):

𝐸(𝑣2) =
∞

∫
0

𝑣2𝑔(𝑣) d𝑣 = 4𝜋𝑖 (
𝑚0
2𝜋𝑘𝑇)

3/2 ∞

∫
0

exp (−
𝑚0𝑣

2

2𝑘𝑇 ) 𝑣4d𝑣. (4.27)
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Another standard integral is
∞

∫
0

exp (−𝛼𝑣2) 𝑣4𝑑𝑣 = 3
8√

𝜋
𝛼5
.

whence we obtain from (4.27):

𝐸(𝑣2) = 3
2𝛼 = 3𝑘𝑇

𝑚0
. (4.28)

Ifwe apply themodel of an ideal gas, we canneglect the energy of the collisions
between the molecules as compared with their kinetic energy, i.e. we can
present the energy of a molecule as 𝜀 = 𝑚0𝑣

2/2. From (4.28) we find the
following expression for the mean energy of a molecule in an ideal gas:

𝐸(𝜀) =
𝑚0
2 𝐸(𝑣2) = 3

2 𝑘𝑇. (4.29)

Therefore, we see that the temperature can be considered as a measure of the
mean energy of a molecule.

It follows from (4.29) that the internal energy of an ideal gas in equilib-
rium and containing𝑁molecules and possessing temperature 𝑇 is

𝑈 = 3
2 𝑁𝑘𝑇. (4.30)

Molecular kinetics has allowed us to explain why the internal energy of an
ideal gas is proportional to its absolute temperature and does not depend on
the volume occupied by the gas. We have used this fact while considering
some problems of thermodynamics.

Fluctuations

Fluctuations of micro-variables and macro-variables. Let us call the
variables governing a particularmolecule micro-variables and those governing
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a macroscopic body, for instance, a gas as a whole, macro-variables. The
velocity 𝑣 and energy 𝜀 of a molecule, are micro-variables; while the internal
energy of a gas𝑈, temperature 𝑇, and pressure 𝑝 are macro-variables.

Let us imagine that we are following the energy of amolecule in a gas. The
energy varies randomly from collision to collision. Knowing the function
𝜀(𝜏) for a long enough time interval 𝜏, we can find the mean value of the
molecule’s energy:

𝐸(𝜀) = 1
𝜏

𝜏

∫
0

𝜀(𝑡) d𝑡. (4.31)

Recall that we approached the notion of mean energy in another manner in
the section Pressure and Temperature of an Ideal Gas. Instead of following
the energy of amolecule during a time interval, we recorded the instantaneous
energies of all themolecules and divided the sum by the number ofmolecules;
this is the idea behind equation (4.27). It can be said that here we regarded
averaging over the collective (ensemble) of molecules. Now (4.31) corresponds
to averaging over time. Both lead to the same result.

However, let us return to the energy of a molecule in a gas. In the course
of time, the energy 𝜀(𝑡) varies randomly, or rather it fluctuates around a mean
value 𝐸(𝜀). In order to select a measure for the deviation of energy from the
mean value, we choose the variance

var 𝜀 = 𝐸(𝜀2) − (𝐸(𝜀))2. (4.32)

The variance var 𝜀 is called the quadratic fluctuation of energy 𝜀. Once we
know the distribution of molecules by velocities, we can calculate 𝐸(𝜀2) thus:

𝐸(𝜀2) =
∞

∫
0

(
𝑚0𝑣

2

2 )
2

𝑔(𝑣) d𝑣. (4.33)

By substituting here the probability density 𝑔(𝑣) from (4.26), we can find
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(the mathematical calculations are omitted for simplicity’s sake):

𝐸(𝜀2) = 15(𝑘𝑇)2

4 . (4.34)

From (4.29) we obtain

var 𝜀 = 𝐸(𝜀2) − (𝐸(𝜀))2 = 3
2(𝑘𝑇)

2. (4.35)

The ratio of the square root of the quadratic fluctuation to the mean value
of a variable is called its relative fluctuation. The relative fluctuation of the
energy is approximately unity:

𝜉 = √var 𝜀
𝐸(𝜀) = √2

3 . (4.36)

The amplitude of amicro-variable’s fluctuation proves to be of the same order
as its mean value.

Now let us consider the fluctuation of a macro-variable, for instance, the
internal energy of the gas consisting of𝑁monoatomic molecules. Suppose
𝑈(𝑡) is the instantaneous value of the gas internal energy at time 𝑡:

𝑈(𝑡) =
𝛮
∑
𝑖=1

𝜀𝑖(𝑡). (4.37)

The values of𝑈(𝑡) fluctuate around mean value 𝐸(𝑈). The fluctuations of
the gas internal energy can be related to the chaotic elementary exchanges of
energy between the gas molecules and the vessel wall. Since the mean of a
sum is the sum of the means, we have

𝐸(𝑈) =
𝛮
∑
𝑖=1

𝐸(𝜀) = 𝑁𝐸(𝜀). (4.38)

Wehavemade use of the fact that themean energy is the same for anymolecule.
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Let us first write the variance var 𝑈 in the form

var 𝑈 = 𝐸(𝑈2) − (𝐸(𝑈))2 = 𝐸((𝑈 (𝑡) − 𝐸 (𝑈))2.

We shall use 𝛿𝑈 to denote the difference𝑈(𝑡) − 𝐸 (𝑈),

var𝑈 = 𝐸(𝛿𝑈)2. (4.39)

Using (4.37) and (4.38), we can find:

𝛿𝑈 = 𝑈 (𝑡) − 𝐸 (𝑈) =
𝛮
∑
𝑖=1

𝜀𝑖(𝑡) − 𝑁𝐸(𝜀)

=
𝛮
∑
𝑖=1

(𝜀𝑖(𝑡) − 𝐸(𝜀)) =
𝛮
∑
𝑖=1

𝛿 𝜀𝑖.

Therefore,

var𝑈 = 𝐸 (
𝛮
∑
𝑖=1

𝛿 𝜀𝑖)
2

. (4.40)

Thus we have to square the sum of𝑁 terms and then average each of
the resultant terms. Squaring a sum of𝑁 terms yields𝑁 terms of the form
(𝛿𝜀𝑖)

2 (𝑖 = 1, 2, … ,𝑁), which after averaging yield𝑁𝐸(𝛿 𝜀)2. In addition,
squaring a sum of𝑁 terms generates a number of what are usually called
cross-terms, i. e. terms of the form 2 𝛿𝜀𝑖 𝛿 𝜀𝑗 where 𝑖 ≠ 𝑗. Each of these terms
will vanish after averaging. Indeed, 𝐸(𝛿 𝜀𝑖 𝛿𝜀𝑗) = 𝐸(𝛿𝜀𝑖) 𝐸(𝛿𝜀𝑗). As to the
averaged terms 𝐸(𝛿𝜀𝑖) and𝐸(𝛿𝜀𝑗), they vanish too because a variable is equally
likely to deviate from its mean on either side. Thus,

var𝑈 = 𝑁𝐸(𝛿 𝜀)2 = 𝑁 var𝜀. (4.41)

Using (4.35) we can obtain the following expression for the quadratic fluctu-
ation of the gas internal energy:

var 𝑈 = 3
2𝑁(𝑘𝑇)2. (4.42)
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The relative fluctuation of the internal energy is

𝜉 =
√var𝑈
𝐸(𝑈) = √2

3
1
√𝑁

. (4.43)

We can see, therefore, that the relative fluctuation of the internal energy of
a gas of 𝑁 molecules is proportional to 1/√𝑁, i.e. it is very small (recall
that a cubic centimetre of a gas contains about 1019 molecules at normal
pressure). In fact, 𝜉 ∝ 1/√𝑁 for all macro-variables, which allows us to
neglect their fluctuations for all practical purposes, and to regard the mean
values of macro-variables as the true values. The fluctuations of the micro-
variable 𝜀 and macro-variable𝑈 are compared in Figure 4.11.

𝜀

0 t t(a) (b)

Figure 4.11: A comparison of the fluctuations of
the micro-variable 𝜀 and macro-variable𝑈.Thus, the total internal energy𝑈 is not a fixed value for an equilibrium

state of a macroscopic body. It varies slightly in time, going through small
fluctuations around its mean value. Temperature, pressure, and entropy
fluctuate around their mean values too.

Brownian movement. Having seen (4.43), a reader may conclude that
under ordinary conditions, i.e. when we deal with macroscopic bodies and
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themacro-variables characterizing them, fluctuations do not show themselves.
However, we can actually observe fluctuations by eye. Consider the Brownian
movement as an example.

In 1827, the English biologist Robert Brown (1773-1858) used a micro-
scope to study small particles (plant pollen) suspended in water. He dis-
covered that they were in constant chaotic motion. He was sure that this
movement was due to the particles themselves rather than a result of flows in
the liquid or its evaporation.

A correct explanation of Brownianmovementwas given in 1905byAlbert
Einstein (1879-1955). He showed that the cause of the Brownian movement
is the chaotic bombardment of the small suspended particles by themolecules
of the surrounding liquid.

Imagine a small disc with a diameter of, for instance, 10−4 cm suspended
in a liquid. The number of collisions between the liquid molecules and one
side of the disc per unit time equals, on average, the number of collisions
on the other side. But this is only on the average. In reality, the number
of collisions on one side of the disc during a small interval of time may be
noticeably greater than the number of collisions on the other side. The
result is that the disc receives an overall unbalanced impulse and so moves
in the appropriate direction. We can say that the disc moves because of the
fluctuations in the pressure exerted by the liquid molecules on the two sides
of the disc.

Einstein considered a concrete physical model with a ball as a Brownian
particle. He showed that the mean square of the displacement of such a
particle during an observational period 𝜏 is defined by the following formula

𝐸(𝑙2) = 𝜏
8𝜋𝜂𝑟𝑘𝑇, (4.44)

where 𝑟 is the ball’s radius, 𝜂 is the viscosity coefficient of the liquid, 𝑇 is its
temperature.
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Why the sky is blue. The colour of the sky is due to the diffusion of
sunlight through the Earth’s atmosphere. Let us imagine the atmosphere
to be separated into a great number of small cubic cells each with an edge a
wavelength of light long (about 0.5 × 10−4 cm), The chaotic motion of the
air molecules results in that the number of molecules within the cell varies
randomly fromcell to cell. It will also vary randomlywithin a cell if we observe
it at different instants in time. Sunlight diffuses through these fluctuations of
air density.

The intensityΔ𝐼 of light diffused through a volume of airΔ𝑉 at distance
𝑅 from the observer is defined by the relationship

Δ𝐼 = 𝑎Δ𝑉
𝑅2

1
𝜆4
𝑘𝑇, (4.45)

where 𝜆 is the light wavelength, 𝑇 is the air temperature, and 𝑎 is a factor we
shall not deal with here. It is clear from (4.45) that the shorter the wavelength
the more light diffuses (Δ𝐼 ∝ 𝜆4). Therefore, the spectrum of the light which
diffuses through the Earth’s atmosphere proves to have a peak at the shortwave
end, which explains why the sky is blue.

The Nyquist formula. It follows from Ohm’s law that if there is no
electromotive force in an electric circuit, there is no current in it. However,
this is not quite true. The point is that fluctuations related to the thermal
movement of electrons in a conductor result in fluctuating currents, and
hence a fluctuating electromotive force. In 1927, the American physicist and
engineer Harry Nyquist (1889-1976) showed that if there is a conductor with
resistance 𝑅 and temperature 𝑇, a voltage fluctuation 𝛿𝑉 appears at the ends
of the resistor, the mean square of the fluctuation being

𝐸(𝛿𝑉)2 = 4𝑅𝑘𝑇Δ𝜈, (4.46)

where Δ𝜈 is the range of frequencies within which the voltage fluctuations
are measured.
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Fluctuating electrical variables play an essential role inmodern technology.
They are, in principle, an unavoidable source of noise in communication
channels and define the sensitivity limits of measuring instruments. Besides
fluctuations caused by the thermal motion of electrons in conductors, let me
mention another essential type of fluctuation, the fluctuation in a number of
electrons leaving the heated cathode of an electron tube.

Fluctuations and temperature. I would like to draw the reader’s atten-
tion to expressions (4.35) and (4.35). It is clear that a quadratic fluctuation is
related to the absolute temperature: √var ∝ 𝑇. The same result can be derived
from formulas (4.44)-(4.46). The relation between the quadratic fluctuation
of a physical variable and temperature has a deep meaning. The greater the
temperature of a body the more a physical parameter will fluctuate.

We noted above that the temperature of a body can be regarded as a
measure of the average energy of the body’s particles. Recall that this is only
valid if the body is in thermal equilibrium. If an ensemble of particles is
very far from equilibrium (suppose we are discussing a cosmic shower or the
beam of particles from an accelerator), then the average energy of the particles
cannot be measured by temperature. A more general approach to the notion
of a body’s temperature is its relation with the fluctuations of its physical
parameters rather than the average energy of its particles. Temperature can be
regarded as a measure of fluctuation. By measuring the fluctuations, we can
measure the absolute temperature of the body in principle. The fluctuations
in the electrical variables suit this purpose best.

The relationship between temperature and fluctuations indicates, in
particular, that the notion of temperature, strictly speaking, has no analogue
in Newtonian mechanics. Temperature involves probabilistic processes and
is a measure of the variance of random variables.
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Entropy and Probability

From the formula of the work done by a gas during an isothermal
expansion to Boltzmann’s formula. Suppose an ideal gas with mass 𝑚
and temperature 𝑇 expands isothermally from volume𝑉1 to volume𝑉2. Ac-
cording to (4.6), the work performed by the gas during the expansion is
(𝑚𝑅𝑇/𝑀) ln (𝑉2/𝑉1). During an isothermal expansion, the work is done
due to a quantity of heat𝑄 drawn by the gas from the environment. There-
fore,

𝑄 = 𝑚𝑅𝑇
𝑀 ln (

𝑉2
𝑉1
) . (4.47)

Using (4.24) for the equation of state of an ideal gas, we can transform (4.47)
into

𝑄 = 𝑁𝑘𝑇 ln (
𝑉2
𝑉1
) , (4.48)

where𝑁 is the number of molecules in the gas. Taking into account (4.10),
we can conclude that the increment of entropy in the gas is

Δ𝑆 = 𝑁𝑘 ln (
𝑉2
𝑉1
) . (4.49)

The isothermal expansion of a gas is a reversible process. The increase of
entropy in a reversible process should not surprise the reader: we consider
the entropy of a gas, and the gas here is an open system (it performs work on
a piston or draws heat from an external body). The same increase in entropy
is observed in an irreversible process of gas expansion from𝑉2 to𝑉1 when the
gas is a closed system. This irreversible process can be carried out as follows.
Suppose that a thermally insulated vessel of volume𝑉0 has a partition, and
first all the gas is on one side of the partition and occupies volume𝑉1. Then
the partition is removed and the gas expands into vacuum. The expansion is
considered to start when the partition is removed and to end when the gas
occupies volume𝑉2. The increment in the gas’s entropy during this process is
also defined by formula (4.49).
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Using the example of gas expansion into a vacuum, we can explain the
increase in entropy on the basis of probabilities. The probability that a gas
molecule occurs in volume 𝑉1 is evidently equal to 𝑉1/𝑉0. The probability
that another molecule will occur in volume𝑉1 simultaneously with the first
one is (𝑉1/𝑉0)

2. The probability that all𝑁molecules will gather in volume
𝑉1 is (𝑉1/𝑉0)

𝛮. Let us use 𝑤1 to denote the probability that all molecules are
in volume𝑉1 and 𝑤2 to denote the probability that all molecules will occur in
volume𝑉2. The first probability is (𝑉1/𝑉0)

𝛮 while the second one is (𝑉2/𝑉0)
𝛮.

Therefore,
𝑤2
𝑤1

= (
𝑉2
𝑉1
)
𝛮
. (4.50)

We can therefore obtain from (4.49):

Δ𝑆 = 𝑁𝑘 ln (
𝑉2
𝑉1
) = 𝑘 ln (

𝑉2
𝑉1
)
𝛮
= 𝑘 ln (

𝑤2
𝑤1
) . (4.51)

Thus, using rather simple reasoning, we have arrived at an essential result,
namely Boltzmann’s formula.

Boltzmann’s formula. In 1872, Ludwig Boltzmann (1844-1906) pub-
lished a formula in which the entropy of a system in a certain state is propor-
tional to the logarithm of the probability of the state. The proportionality
factor in this formula was refined later and was called Boltzmann’s constant.
Boltzmann’s equation is now given as

𝑆 = 𝑘 ln 𝑤. (4.52)

Formula (4.51) is obtained from (4.52) if we assume that 𝑆1 = 𝑘 ln 𝑤1, 𝑆2 =
𝑘 ln 𝑤2, and Δ𝑆 = 𝑆2 − 𝑆1.

Suppose a system consists of two subsystems, one of which is in state 1
with entropy 𝑆1 and probability 𝑤1 and the other is in state 2 with entropy
𝑆2 and probability 𝑤2. Let 𝑆 and 𝑤 be the entropy and the probability of the
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entire system’s state, respectively. Entropy is additive, and therefore

𝑆 = 𝑆1 + 𝑆2. (4.53a)

This state is realized when the first subsystem is in state 1 and the second sub-
system is in state 2 at the same time. According to the theorem of probability
multiplication,

𝑤 = 𝑤1 ⋅ 𝑤2. (4.53b)

It is clear that (4.53a) and (4.53b)) are in agreement with Boltzmann’s for-
mula:

𝑆 = 𝑘 ln(𝑤1 𝑤2) = 𝑘 ln𝑤1 + 𝑘 ln 𝑤2 = 𝑆1 + 𝑆2.

Macro-states and micro-states. Nowwhat is the “probability of the
system’s state”? Consider a simple system consisting of four particles, each of
which may be in either of two states with equal probability. We can imagine
a vessel divided into two equal parts (left and right) and only four molecules
inside the vessel. Each of the molecules may be found in the left or right half
with equal probability. This system has five possible macro-states: 1, there
are no molecules in the left half; 2, there is one molecule in the left half; 3,
there are two molecules in the left half; 4, there are three molecules in the left
half; and 5, there are four molecules in the left half. These macro-states may
be realized by different numbers of equally probable ways, or, in other words,
different macro states correspond to different numbers of micro-states. This
is clear fromFigure 4.12, where different colours are used tomark the different
molecules. We can see that macro-states 1 and 5may only occur in one way
each. Each therefore corresponds to one micro-state. Macro-states 2 and 4
correspond to four micro-states. Macro-state 3 corresponds to six equally
probable micro-states. There can be 16 equally probable micro-states in all.
The probability of amacro-state is proportional to the number of corresponding
micro-states, and this is the probability involved in Boltzmann’s formula. The
number of micro-states corresponding to a given macro-state is called its
statistical weight.
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1 2 3 4 5

Figure 4.12: Entropy as a measure of disorder in
the system.

Suppose that there are𝑁molecules rather than four in the vessel divided
into two equal halves. Now there are 𝑁 + 1 macro-states, which can be
conveniently designated by the numbers 0, 1, 2, 3, … ,𝑁, according to the
number of molecules present, say, in the left half. The statistical weight of
the 𝑛th macro-state equals the number of combinations of𝑁 things taken 𝑛
at a time:

(𝑁𝑛 ) =
𝑁!

(𝑁 − 𝑛)! 𝑛! . (4.54)
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This is the number of micro-states corresponding to the 𝑛th macro-state.

The total number of micro-states is defined by the sum

𝛮
∑
𝑛=0

(𝑁𝑛 )

The probability of the 𝑛th macro-state is

𝑤𝑛 = (𝑁𝑛 )/
𝛮
∑
𝑛=0

(𝑁𝑛 ) (4.55)

An example using Boltzmann’s formula. Suppose a gas consisting of
𝑁molecules expands into vacuum. Its volume doubles. Find the increase in
the gas’s entropy.

The initial state of the gas is the macro state with 𝑛 = 0 (all molecules
are in the right half of the vessel), and the final state is the macro-state with
𝑛 = 𝑁/2 (the molecules are uniformly distributed between both halves of
the vessel, which means the volume of the gas has doubled). Here we assume
that𝑁 is an even number (this reservation is not essential for large𝑁). In
agreement with (4.54) and (4.55), we can write:

𝑤𝛮/2
𝑤0

= ( 𝑁
𝑁/2)/ (

𝑁
0 ) = ( 𝑁

𝑁/2) =
𝑁!

(𝑁/2)! (𝑁/2)! . (4.56)

According to Boltzmann’s formula, the increase in the gas’s entropy is

Δ𝑆 = 𝑘 ln
𝑤𝛮/2
𝑤0

= 𝑘 ln 𝑁!
(𝑁/2)! (𝑁/2)! , (4.57)

Since𝑁 is a very large number, we can use the approximation

ln(𝑁!) = 𝑁 ln𝑁, (4.58)
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hence (4.57) takes the form

Δ𝑆 = 𝑘𝑁 ln 2. (4.59)

The same result follows from (4.49) if we assume𝑉2/𝑉1 = 2.

Entropy as a measure of disorder in a system. Let us return to Fig-
ure 4.12. Macro-states 1 and 5 clearly show the structure of the system, its
separation into two halves. There are molecules in one half and no molecules
in the other. On the contrary, macro-state 3 does not have this structure at all
because themolecules are evenly distributed in both halves. The presence of a
definite structure is related to the order in a systemwhile the absence of struc-
ture is related to disorder. The greater the degree of order in a macro-state,
the smaller its statistical weight (i.e. the number of corresponding micro-
states is smaller). Disordered macro-states with no inner structure have large
statistical weight. They can be realized inmanyways, in other words, bymany
micro-states.

All this allows us to regard entropy as a measure of disorder in a system.
If the disorder in a given macro-state is large, its statistical weight is large, and
therefore, its entropy is large.

A statistical explanation of the second law of thermodynamics.
Boltzmann’s formula makes it possible to explain the increase in entropy
during irreversible processes in a closed system as postulated by the second
law of thermodynamics. The increase in entropymeans the transition of the
system from a less probable state to a more probable one. The example of gas
expanding into vacuum illustrates this. While the gas expands, the system
moves from a less probable to a more probable macro-state.

Any process in a closed system proceeds in a direction such that the sys-
tem’s entropydoes not decrease. Thismeans that transitions tomore probable
states or, at least, transitions between equally probable states correspond to
real processes.
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When a probabilistic approach is used entropy becomes a measure of
the disorder in a system. The law requiring the increase of the entropy in a
closed system is, therefore, a law which demands that the degree of disorder
in these systems increases. In other words, a transition from a less probable
to a more probable state corresponds to an order-disorder transition. For
instance, when a hammer strikes an anvil, the ordered component of the
hammer’s molecular movement related to its overall downward movement is
transformed into the disordered thermal molecular movement of the anvil
and the hammer.

The quantity of energy in a closed system does not vary in time. How-
ever, the quality of the energy varies. In particular, its capacity to perform
usable work decreases. The increase of entropy in a closed system is, in its
essence, a gradual destruction of the system. Any closed system is unavoidably
disordered and degraded as time passes. The isolation of a system subjects
it to the power of destructive chance, which always sends the system into
disorder. As the French scientist Leon Brillouin once said, “the second law
of thermodynamics means death due to isolation”.

Maintaining or, moreover, increasing the order in a system requires that
the system be controlled, for which it is necessary, first of all, that the system
should not be isolated or closed. Naturally, when the system loses its “pro-
tecting envelope”, it is open to external disorganizing factors. However, it
also becomes available to control factors. The action of the latter can decrease
the system’s entropy. Of course, this does not contradict the second law of
thermodynamics: the decrease of entropy is local in nature, only the entropy
of the given system decreases. This decrease is more than compensated by an
increase in the entropy in other systems, in particular, those that control the
given system.

Fluctuations and the second law of thermodynamics. The prob-
abilistic approach both explained the second law of thermodynamics and
showed that the demands of this law are not absolute. The direction in which
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II process must proceed is dictated by the second law, but it is not strictly pre-
determined. It is only the most probable direction. In principle, violations of
the second law of thermodynamics are possible. However, we do not observe
them because their probability is low.

A gas expands into vacuum spontaneously. This is the most probable
direction of the process. However, there is another possible situation, viz.
the velocities of the molecules in the gas suddenly point in directions such
that the gas spontaneously compresses. This situation has an exceptionally
low probability because of the enormous number of molecules in any macro-
volume of gas. The spontaneous compression of the gas should be regarded
as a fluctuation of its density. If the number of molecules in the gas is large,
then, as is known, the characteristic value of the relative fluctuation is small
(recall that it is proportional to 1/√𝑁), and therefore, it is very improbable
that a fluctuation on the scale of the macrocosm would be observed.

Suppose a phenomenon requires the participation of a relatively small
number of molecules. Then it is not difficult to observe various kinds of
fluctuations that violate the second law of thermodynamics. In the preceding
section, we discussed density fluctuations in air inside volumes whose linear
dimensions are comparable to the light wavelengths. These fluctuations
appear as spontaneous compressions and rarefactions in the air, bringing
about the blue colour of the sky.

It is most probable for a Brownian particle to collide with the same num-
ber of liquid molecules on both sides per unit time. However, because of the
small dimensions of the Brownian particle, fluctuations of pressure due to
unbalanced number of collisions from different directions are quite proba-
ble such that the particle will randomly move. A moving Brownian particle
demonstrates the spontaneous transformation of heat taken from a liquid
into the kinetic energy of the particle’s motion.

Therefore, we see that the probabilistic explanations of entropy and the
second law of thermodynamics help comprehend more deeply the nature of
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processes in macro-systems. The probabilistic approach explains the puzzles
thermodynamics could not solve and, moreover, indicates that the second law
of thermodynamics itself has the probabilistic nature because it is only valid
on the average, and various fluctuations violate this law of thermodynamics.
We come to an essential conclusion:

probabilistic laws rather than strictly deterministic ones underlie the
second law of thermodynamics.

Entropy and Information

The relation between entropy and information. It was shown inChapter
3 that the notion of information is underlain by probability. Now we have
seen that probability is the basis of entropy. The unity of the nature of
information and entropy proves to be essential. An increase in the entropy
of a system corresponds to its transition from a less ordered state to a more
ordered one. This transition is accompanied by a decrease in the information
contained in the structure of the system. Disorder and uncertainty can be
regarded as a lack of information. In turn, information is nothing else but a
decrease in uncertainty.

According to the second law of thermodynamics, the entropy of a closed
system increases in time. This process corresponds to the loss of information
due to random factors, as was considered in Chapter 3. Fluctuations in physi-
cal parameters cause random violations of the second law of thermodynamics.
Random decreases of entropy are observed. These processes correspond to
the generation of information from noise which we discussed above. By
influencing the system in a certain way, we can decrease its entropy (by in-
creasing the entropy of another system). This is the process of control, which
demands definite information. All this speaks in favour of relation between
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information and entropy. The Hungarian physicist Leo Szilard (1898-1964)
was first to indicate this relation, doing so in 1929.

Thus, entropy is a measure of disorder and uncertainty in a system, and
information is a measure of order and structural certainty. An increase in
information corresponds to a decrease in entropy and, vice versa, a decrease
in information corresponds to an increase in entropy.

Boltzmann’s formula and Hartley’s formula.We came across Hart-
ley’s formula in Chapter 3 (see (3.1). According to this formula, the informa-
tion required to indicate which of𝑁1 equally probable outcomes is wanted is
𝐼 = log2 𝑁1. Suppose𝑁1 is the number of railroad tracks at a station. The
signalman has to send a signal indicating the track along which the train is
to approach the station. Sending the signal, the signalman selects from𝑁1
equally probable outcomes. This signal contains 𝐼1 = log2 𝑁1 bits of infor-
mation. Now suppose that some of the tracks must be repaired, so that the
signalmanmust select from𝑁2 outcomes (𝑁2 < 𝑁1). Now his signal contains
information 𝐼2 = log2 𝑁2 The difference

Δ𝐼 = 𝐼1 − 𝐼2 = log2 (
𝑁1
𝑁2

) , (4.60)

is information about the repair of the tracks. In other words, this is the
information required to decrease the number of equally probable outcome
from𝑁1 to𝑁2.

Let us compare the existence of𝑁 equally probable outcomes with the
presence of𝑁 equally probable micro-states, i.e. with the statistical weight
𝑁 of a certain macro-state. According to Boltzmann’s formula, a decrease in
the statistical weight of a macro-state from𝑁1 to𝑁2 means that the system’s
entropy is incremented by

Δ𝑆 = −𝑘 ln (
𝑁1
𝑁2

) . (4.61)
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I used a minus sign here because the entropy decreases (the increment is
negative) as the statistical weight decreases. In compliance with (4.60), to
realize this negative entropy requires an increment in the information of
Δ𝑁 = 𝐼1 − 𝐼2 = log2 (𝑁1/𝑁2).Comparing (4.60) with (4.61) and given that

log2 (
𝑁1
𝑁2

) =
ln (𝑁1/𝑁2)

ln 2 .

Therefore, an increment in the information Δ 𝐼 corresponds to a decrease in
the system’s entropy of Δ 𝐼 𝑘/ ln 2.

Norbert Wiener called information to be negative entropy. Louis Bril-
louin suggested using the term “negentropy” rather than “negative entropy”.

Maxwell’s demon and its exorcism. In 1871, Maxwell formulated
the following paradox. Suppose a vessel with a gas is separated into two
halves (𝐴 and 𝐵) by a partition with a trapdoor over a microscopic hole in it.
And suppose, Maxwell continued, a “being” (Maxwell called it a “demon”)
controls the trapdoor causing it to close andopen thehole so as to let the fastest
molecules from the𝐴 half of the vessel enter the 𝐵 half and to let the slowest
molecules from the 𝐵 half into the𝐴 half. Thus, the demon would increase
the temperature in the 𝐵 half and decrease it in the 𝐴 half without doing
any work, which evidently contradicts the second law of thermodynamics.
When looking at the illustration ofMaxwell’s demon (Figure 4.13), the reader
clearly should not think of an evil force. The point of contention is a device
that opens and closes a hole in the way the demon described above would act.

Three types of device couldbe suggested inprinciple. Thefirst typewould
be a device controlled by the gasmolecules present in the vessel. Imagine there
is a one-way trapdoor which responds to the energy of the molecules striking
it: fast molecules open the door and slow ones do not. So that it open when
struck by an individual molecule, the door would have to be exceedingly light.
However, such a door, if it could be produced, would be unable to carry out
the functions of the demon. The door would in fact be affected both by the
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A B

Figure 4.13: Maxwell’s demon controls the flow
of molecules from one section to another.

fluctuations due to the motion of the gas molecules and by the fluctuations
related to the thermal motion of the molecules of the material making up
the door. The door would therefore operate chaotically and would not sort
molecules by speed.

The second type of demonwould be a device controlled from the outside.
Suppose we could monitor the molecules arriving at the hole in the partition.
The monitoring device would signal at the right moment and the trapdoor
would open or close. If we ignore the technical problems, we might have to
admit that this way of sorting the molecules is possible in principle. However,
it will not be a substitute forMaxwell’s demon because the latter should work
in a closed system.

This is essential because it is a decrease in the entropy of a closed system
that violates the second law of thermodynamics. But our system is open,
the “demon” obtaining information from the outside. The reception of
information must be regarded as an inflow of negative entropy (negentropy)
into the system, which is equivalent to a decrease in the system’s entropy.

There is one more type of the demon, an intelligent demon. However,
such a demon would not be what we are looking for because, as Einstein said,
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an intelligent mechanism cannot act in an equilibrium medium. In other
words, life and intelligence are impossible in a closed system, that is in a state
of equilibrium.

Entropy and life. A living organism is a very ordered system with low
entropy. The existence of living organisms suggests a continuousmaintenance
of the system’s entropy at a low level, a continuous reaction to disordering
factors, and, in particular, the factors causing diseases. It may seem that an
organism does not obey the demands of the second law of thermodynamics.

Naturally, this is not so. We should take into account that any organism
is an open system in an essentially non-equilibrium state. This system actively
interacts with its environment, continuously drawing negentropy from it.
For instance, it is well-known that food has lower entropy than waste.

Man does not just live. He works, creates, and therefore, actively de-
creases entropy. All this is only possible because man obtains negentropy
(information) from the environment. It is supplied to him via two different
channels. The first one is related to the process of learning. The second
channel is related to physiological processes of metabolism occurring in the
“man-environment” system.





Chapter 5

Probability in the
Microcosm

To date quantum theory led us to a deeper comprehension: it
established a closer relation between statistics and the
fundamentals of physics. This is an event in the history of
human thought, whose significance is beyond science itself.

M. Born

Quantummechanics allowed us to postulate the existence of
primary probabilities in the laws of nature.

W. Pauli

183



184 probability in the microcosm

Spontaneous Micro-processes

Classical physics proceeded from that randomness only reveals itself in large
collections, for instance, in ensembles of molecules, in appreciable volumes
of gas. However, classical physics did not see randomness in the behaviour
of individual molecules. The investigations resulting in the appearance and
development of quantum physics showed that this viewpoint was invalid. It
turned out that randomness is seen both in ensembles of molecules and in
the behaviour of individual molecules. This is demonstrated by spontaneous
microprocesses.

Neutron decay. A typical example of a spontaneous microprocess is the
decay of a free neutron. Usually, neutrons are in a bound state. Together with
protons, they are the “bricks” from which atomic nuclei are built. However,
neutrons can also be observed outside nuclei, in the free state. For instance,
free neutrons appear when uranium nuclei split. It turns out that a free
neutron can randomly, without any external influence, transform into three
particles: a proton, an electron, and an antineutrino (more accurately, an
electron antineutrino). This transformation is called neutron decay, and it is
commonly written down as:

𝑛 → 𝑝 + 𝑒− + �̄�𝑒,

where 𝑛 is a neutron, 𝑝 is a proton, 𝑒− an electron, and �̄�𝑒 is an antineutrino.
Note that the term “decay” is not entirely suitable here because it conveys the
idea that a neutron consists of a proton, electron, and antineutrino. In reality,
all three particles are born at the moment the neutron annihilates, and it is
no use looking for them “inside” the neutron.

The very fact of spontaneous neutron decay is random, but there is also a
dialectic necessity here as well. In order to reveal it, we should consider a large
number of neutrons. Suppose there are𝑁0 neutrons in a volume at moment
𝑡 = 0, where𝑁0 ≫ 1. Let us measure the number of neutrons in the volume
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at different moments 𝑡, the result being a function𝑁(𝑡) whose plot has a
certain shape (Figure 5.1). The resultant function is

𝑁(𝑡) = 𝑁0 exp (− 𝑎 𝑡), (5.1)

where 𝑎 is a constant and is commonly given as 1/𝜏, measurements show that
𝜏 = 103 s.

N

N 0

0 t𝜏

N0/e

Figure 5.1: The number of neutrons decaying as
a function of time.The value 𝜏 is called the neutron’s lifetime. It is called this conventionally

not because it is the true lifetime of a neutron, but because it is the timeneeded
for the number of intact (un-decayed) neutrons to decrease e times. Whence
from (5.1) we have

𝑁(𝑡)
𝑁0

= exp (− 𝑡𝜏) =
1
𝑒 .

The true lifetimeof a neutronmay vary considerably from 𝜏 in bothdirections.
It is in principle impossible to predict when a neutron will decay. We can only
consider the probability that a neutron will live a while until it decays. When
the number of neutrons is large, the ratio𝑁(𝑡)/𝑁0 is the probability that a
neutron will survive for a time 𝑡. It follows from (5.1) that this probability is
exp(−𝑡/𝜏).

I would like to draw your attention to an interesting detail. When we
discuss the probability that a neutron will survive for a time 𝑡, we do not
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suppose that this interval is measured from the moment of the neutron’s
birth. It is not essential how long a neutron has lived by 𝑡 = 0. The probability
that it will survive a further time 𝑡 is always equal to exp(−𝑡/𝜏). It can be
said that neutrons “do not get old”. This means that there is no meaning in
looking for the cause of the neutron’s decay within its “internal mechanism”.

It is interesting that (5.1), which expresses a certain necessity, is nothing
but a direct consequence of the fact that the decays occur independently and
randomly. Since the decay is a random process, the decrease in the number
of neutrons (in other words, the number of decays) Δ𝑁 during an interval
of time from 𝑡 to 𝑡 + Δ𝑡 is proportional to the number of neutrons𝑁(𝑡) at
that instant and the lapse of time Δ𝑡, i.e. Δ𝑁 = −𝑎𝑁 (𝑡) Δ𝑡. Let us rewrite
this equality as Δ𝑁/Δ𝑡 = −𝑎𝑁 (𝑡). In the limit as Δ 𝑡 → 0, we obtain a
differential equation known as the equation of exponential decay:

𝑑𝑁
𝑑𝑡 = 𝑎𝑁 (𝑡). (5.2)

The function (5.1) is the solution of this equation given the initial condition
𝑁(0) = 𝑁0.

In conclusion, let me remark that if a neutron is not free but is bound
with protons and other neutrons in an atomic nucleus, it loses its ability to
decay. However, it regains this ability in some cases. The phenomenon of
beta decay is then observed (we shall discuss it below).

The instability of elementary particles. The neutron is not at all the
only elementary particle that turns spontaneously into other particles. Most
elementary particles possess this property, which might be called instability.
There are only several particles that are stable: the photon, the neutrino, the
electron, and the proton.

The instabilities of different particles teach us additional things of ran-
domness. For instance, let us take the particle called the sigma-plus-hyperon
Σ+. It has a positive electric charge equal in its absolute value to the charge
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of electron, and has a mass 2328 times that of an electron. Like the neutron,
this particle decays spontaneously. Its lifetime (this term is understood in the
same way as it was for a neutron) is 0.8 × 10−10 s. Unlike the neutron, the
hyperon may decay in two ways:

either Σ+ → 𝑝 + 𝜋0 or Σ+ → 𝑛 + 𝜋+.

(𝜋0 and 𝜋+ are neutral and positively charged pions, respectively). Approxi-
mately 50 per cent of the hyperons decay in one way, and the others decay in
the other way. We cannot unambiguously predict either when the hyperon
decays or how.

The instability of atomic nuclei (radioactivity). Each element may
have several types of atomic nuclei. They contain the same number of pro-
tons (the atomic number determining the position of the element in the
periodic table), but the number of neutrons in them differs; these different
nuclei are called isotopes. Most isotopes of an element are unstable. The
unstable isotopes of an element transform spontaneously into isotopes of
other elements simultaneously emitting particles. This phenomenon is called
radioactivity. It was first discovered by the French physicist Antoine Henry
Becquerel (1852-1908) in 1896. The term “radioactivity” was introduced
by Pierre Curie (1859-1906) andMarie Sklodowska-Curie (1867-1934) who
investigated the phenomenon and won the Nobel Prize for physics (with
A.H. Becquerel) in 1903.

Investigations showed that the lifetime of unstable isotopes is essentially
different for different isotopes and follow different decay routes (different
types of radioactivity). The lifetime of an isotope may be measured in mil-
liseconds, or it may be years or centuries. There are isotopes with lifetimes
of over 108 years. The study of long-lived unstable isotopes in nature have
allowed scientists to determine the age of rocks.

Let us discuss different types of radioactivity. Let us use 𝑍 to denote the
number of protons in a nucleus (the atomic number of an element) and use
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𝐴 to denote the sum of the number of protons and neutrons in the nucleus
(the mass number). One type of radioactivity is called alpha decay. During
the process, the initial nucleus (𝑍, 𝐴) decays into an alpha-particle (a helium
nucleus, which consists of two protons and two neutrons) and a nucleus with
two less protons (𝑍 − 2) and a mass number four units smaller (𝐴 − 4):

𝑋(𝑍,𝐴) → 𝛼 (2, 4) + 𝑌(𝑍 − 2, 𝐴 − 4).

Another type of radioactivity is beta decay. During this process, one of the
neutrons in the initial atomic nucleus turns into a proton, an electron, and
an antineutrino, like a free neutron does. The proton stays within the new
nucleus while the electron and the antineutrino escape. The scheme of beta
decay can be presented as:

𝑋(𝑍,𝐴) → 𝑌(𝑍 + 1, 𝐴) + 𝑒− + �̄�𝑒.

Proton radioactivity is also possible:

𝑋(𝑍,𝐴) → 𝑝 + 𝑌(𝑍 − 1, 𝐴 − 1).

Let me draw your attention to the spontaneous fission of atomic nuclei. The
initial nucleus disintegrates spontaneously into two “fragments” (two new
nuclei), approximately equal in mass, and several free neutrinos are formed
in the process.

A chain of consecutive spontaneous transformations is shown in Fig-
ure 5.2. The neptunium isotope 237Np (𝑍 = 93, 𝐴 = 237) finally turns into
the stable isotope of bismuth 20Bi (𝑍 = 83, 𝐴 = 209). The chain consists of
“links” corresponding to alpha decays (the blue arrows in the figure) and beta
decays (the red arrows). The lifetime (in the probabilistic sense) is indicated
by each arrow. These chains are called radioactive families (or series).

Induced and spontaneous transitions in an atom. The reader will
know that the energy of an atom can only have a set of discrete values that
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Figure 5.2: The number of neutrons decaying
as a function of time.

are specific to each atom. These allowed states of the atom are called energy
levels. When we excite atoms by irradiating them, they jump from low energy
levels to higher ones. The excited atoms return to the lower levels by emitting
light. These jumps are called quantum transitions.

A quantum transitionmay be either induced (stimulated) or spontaneous.
Transitions due to the excitation of an atom are always induced. The reverse
transitions may be both induced and spontaneous.
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For simplicity’s sake, let us only consider two atomic energy levels: ener-
gies 𝐸1 and 𝐸2 (Figure 5.3). The transition 𝐸1 → 𝐸2 is an induced and occurs
when an atom absorbs a photon with energy 𝜀12 = 𝐸2 − 𝐸1 The atom may
return to level𝐸1 either spontaneously or by being induced to. A photonwith
energy 𝜀12 is emitted in the process. The spontaneous transition 𝐸2 → 𝐸1 is
a random event. The induced transition 𝐸2 → 𝐸1 is caused when a photon
passes near the atom. The energy of the photon should be equal to 𝜀12. The
figure shows each of these three processes:

(a) the absorption of a photon with energy 𝜀12 by the atom (atom transi-
tion 𝐸1 → 𝐸2 ),

(b) the spontaneous emission of a photon with energy 𝜀12 by the atom
(atom transition 𝐸2 → 𝐸1) , and

(c) the induced emission of a photon possessing energy 𝜀12 by the atom
while it interacts with the stimulating primary photon also possessing
energy 𝜀12 (atom transition 𝐸2 → 𝐸1).

It should be noted that the photon emitted during an induced transition,
as it were, copies every property of the primary photon that caused the atom
transition. For instance, it moves in the same direction as the primary photon.

How does a laser generate radiation? Many books on science for the
general reader cover lasers and explain the induced emission of photons as
being due to simultaneous emission by a large number of specially selected
atoms or molecules (they are called active centres). The photons resulting
from induced radiation move in the same direction, thus forming laser radia-
tion (laser is the abbreviation for light amplification by stimulated emission
of radiation).

The explanation of how a laser generates is commonly given as follows.
First, the active centres are excited, for instance, by an intense flash of light. It
is necessary that the number of active centres in the higher energy level should
be greater than those in the lower one. Then photons begin to appear with
an energy equal to the difference between the energies of the higher and lower
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Figure 5.3: Induced and spontaneous emissions
in a two level quantum system.
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levels of the active centres, and the active centres radiate by induced emission
more often than the reverse process (the process of photon absorption) occurs.
This is easy to see if we take into account that each primary photon can cause
with equal probability the transition of an active centre both upwards (the
process of light absorption) and downwards (induced emission). Therefore,
everything depends on whether the number of active centres is greater in the
higher or in the lower level. If there are more centres in the higher level, more
downward transitions will occur i.e. induced emission prevails. The result is
an intense beam of laser photons.

Everything is correct in this explanation. However, most writers ignore
the appearance of the primary photons which induce emission of the new
photons and trigger the process of laser generation. The protons appear due
to the spontaneous transition of active centres from the higher level to the
lower one. Because they are so important for lasers, we should not forget the
primacy (and fundamentality) of the spontaneous emission processes. We
could stop discussing lasers at this point. However, a reader might want to
ask some questions.

reader: “You said that the induced photon copies every property
of the primary photon, in particular, its direction of motion.”

author: “Quite right.”

reader: “But spontaneous transitions yield photons moving in
random directions. Therefore, the induced photons should
also move in random directions. A photon that has appeared
spontaneously, passing by a number of excited active centres,
will induce an avalanche of photons in the direction it is moving
in. The second spontaneous photon will cause an avalanche of
induced photons in another direction, and so on. Now how
come a laser beam has a single direction?”

author: “You have made an essential point. Suppose 𝐴𝐴 is the
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Figure 5.4: A schematic explanation of howdoes
the laser emission works.
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beam direction (Figure 5.4). The active medium of a laser is
formed into a cylinder with its long axis in the 𝐴𝐴 direction.
Twomirrors (end plates) are placed at right angles to𝐴𝐴, one
mirror being partially silvered: it lets the emission out. Some
photons will be randomly born in the 𝐴𝐴 direction (or close
enough to it), and thenwill pass the active substance along a rela-
tively long path, which is increased because it might be reflected
many times from the mirrors at both ends. By interacting with
induced active centres, these photons, sooner or later, will cause
a powerful flux of induced photons to appear, and these form
the laser beam. Photons randomly born in other directions and
their associated induced photonswill only travel a short distance
along the active substance and will very soon be ‘out of play’.
This can be seen clearly in the figure.”

“Letme note that themirrors which set the direction of the laser
beam constitute the resonator of the laser.”

reader: “So the laser radiation appears from noise (spontaneous
radiation) owing to the selectivity of amplification, i.e. because
the amplification occurs mainly in a certain direction.”

author: “Exactly. Once again we encounter the selection of in-
formation from noise. The ordered (coherent) laser radiation
is, as it were, selected from noise by the mirrors (end plates)
of the resonator. The amplification of selection occurs owing
to induced emission: when the secondary photon copies the
properties of the primary one.”
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From Uncertainty Relations the Wave Function

As we discussed spontaneous micro-processes, we found that the random
in the microcosm reveals itself even in the behaviour of an individual body.
This brings us close to a discussion of the primacy and fundamentality of
the notion of probability in quantum mechanics. We shall start with the
uncertainty principle suggested in 1927 by the German physicist Werner
Heisenberg (1901-1976).

Uncertainty relations. Amicro-body moving according to the laws of
quantummechanics does not have, strictly speaking, a trajectory of motion.
This is because a micro-body does not have both a momentum and a set of co-
ordinates simultaneously. Suppose a micro-body has a certain 𝑥-component
of its momentum. It turns out that the 𝑥-coordinate of the micro-body in
this state does not have any certain value. The other extreme case corresponds
to the state of a micro-body in which, vice versa, its 𝑥-coordinate has a certain
value while the 𝑥-component of its momentum does not. There are an infi-
nite number of intermediate cases when both the 𝑥-coordinate of the body
and the 𝑥-component of its momentum are not certain, although they take
values within certain intervals.

SupposeΔ𝑥 is the interval within which the 𝑥-coordinate values lie; let us
call Δ𝑥 the uncertainty of the 𝑥-coordinate. Let us consider the uncertainty
of the 𝑥-component of the momentum Δ𝑝𝑥 in a similar way. Heisenberg
showed that the uncertainties Δ𝑥 and Δ𝑝𝑥 are related as:

Δ𝑥Δ𝑝𝑥 ≈ ℏ, (5.3)

whereℏ = 1.05×10−34 J s is Planck’s constant. Similar relations can bewritten
down for other components of the coordinates and the momentum of the
microbody: Δ𝑦Δ𝑝𝑦 ≈ ℏ and Δ𝑧Δ𝑝𝑧 ≈ ℏ.

These are Heisenberg’s famous uncertainty relations. We shall limit
ourselves to a discussion of the coordinate-momentum uncertainty relations.
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However, there are similar relations for some other pairs of variables, for
instance, for energy and time, and angle and the moment of momentum.
Heisenberg wrote that we cannot interpret the processes on the atomic scale
as we might a large-scale process. However, if we use common notions, their
applicability is limited by the uncertainty relations.

When we discuss the uncertainty relations, we shall only use (5.3). Do
not, however, think that this relation outlaws accurate measurements of
the momentum or coordinates of a micro-body. It only states that a micro-
body cannot simultaneously have both accurately defined coordinates and
an accurately defined momentum. For instance, if we try to measure the
𝑥-coordinate of a micro-body more accurately (in other words, to decrease
Δ𝑥), we will cause its momentum’s 𝑥-component to becomemore uncertain.
In the limit when the 𝑥-coordinate of the micro-body has a certain value
(the micro-body is accurately localized), the uncertainty of the 𝑥-component
of its momentum becomes very large. And vice versa, establishing the 𝑥-
component of the micro-body’s momentummore accurately unavoidably
causes its x-coordinate to become more uncertain.

Let us consider a plane in which the 𝑥-coordinate of a body is plotted
along one axis (the 𝑥-axis) and its momentum’s 𝑥-component is plotted along
the other axis (the 𝑝𝑥-axis) (Figure 5.5). If the body obeyed the laws of classical
mechanics, its any state would be a point in the plane. However, the state of
a micro-body corresponds to a rectangle with area ℏ. Other types of state are
also possible. They correspond to rectangles of various shapes. Some of them
are presented in the figure.
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Figure 5.5: States of a micro-body.

Uncertainty relations and the wave properties of a micro-body.
In 1924, the French physicist Louis de Broglie (b. 1892) hypothesized that a
microbody possesses the properties of both a particle and a wave. Its particle
characteristics (energy 𝜀 andmomentum 𝑝), de Broglie postulated, are related
to its wave characteristics (frequency 𝜔 and wavelength 𝜆) thus:

𝜀 = ℏ 𝜔 and 𝑝 = 2𝜋 ℏ/𝜆. (5.4)



197 from uncertainty relations the wave function

This hypothesis seemed absurd to many physicists. They could not under-
stand what a particle’s wavelength might be.

In 1927, a striking result was obtained during experiments in which an
electron beam was sent through thin metal plates. After leaving the plate the
electrons spread out in a diffraction pattern (Figure 5.6). Electron diffraction
by a crystalline lattice became an experimental fact, and yet diffraction and
interference are wave properties. Therefore, the experiments on electron
diffraction were unanimously accepted as proof of the wave properties of the
electron. The nature of the electron waves remained as puzzling as before,
but nobody doubted their existence.

Electron beam
Silver foil

Figure 5.6: Electron diffraction experiment
proved the wave properties of the electrons.We shall return to the waves below. Let us use de Broglie’s hypothesis

to explain the uncertainty relations. Suppose that a strictly parallel electron
beam with a momentum 𝑝 passes through a plate with a very marrow slit
whose width in the 𝑥-direction is 𝑑 (the 𝑥-axis is at right angles to the beam)
(Figure 5.7).

The electrons are diffractedwhen they pass through the slit. According to
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classical wave theory, the angle through which the electrons are diffracted to
the first diffractionmaximum is 𝜃 ≈ 𝜆/𝑑. If we use 𝜆 as thewave characteristic
of the electron and use the second relation in (5.4), we can write 𝜃 as 𝜃 ≈
ℏ/𝑝 𝑑. However, what does the angle 𝜃mean in terms of particles? In fact
what happens is that when the electron passes through the slit, it acquires a
momentumΔ𝑝𝑥 in the 𝑥-direction. Clearly,Δ𝑝𝑥 ≈ 𝑝 𝜃 . Since 𝜃 ≈ ℏ/𝑝 𝑑, we
obtainΔ𝑝𝑥 𝑑 ≈ ℏ. If𝑑 is thought of as the uncertaintyΔ𝑥of the𝑥-coordinate
while the electron passes through the slit, we obtain the uncertainty relation
(5.3).

p

x

𝜃

Figure 5.7: Electron diffraction experiment as
understood by the uncertainty of the momen-
tum and direction.

The wave function. Suppose a micro-body is in a state such that the
𝑥-component of its momentum has a value 𝑝0. We know that the value of
the 𝑥-coordinate of the micro-body in this state is very uncertain. In other
words, the micro-body may be found at any place on the 𝑥-axis.

Does this mean that we can say nothing about the 𝑥-coordinate of the
micro-body? No, it does not. It turns out that. we can establish the probabil-
ity that the micro-body’s 𝑥-coordinate takes a value from 𝑥 to 𝑥 + Δ 𝑥. This
probability can be written as ∣Ψ𝑝0(𝑥)∣

2
Δ𝑥.

We see that the probability density needed to find the micro-body at a
point 𝑥 is the square of the functionΨ𝑝0(𝑥). This function is commonly called
the wave function. The reader shouldnot understand the term“wave” literally.
The point is that in the 1930s the researchers looking at the microcosm got so
carried away bywave concepts (due to the experiments on electron diffraction)
that they spoke of “wave mechanics” rather than “quantummechanics”.

Thus, the state of amicro-body such that the 𝑥-component of its momen-
tum possesses a value 𝑝0 and given that the 𝑥-coordinate does not have any
certain value is described by the wave functionΨ𝑝0(𝑥)whose squared absolute
value is the probability density of the micro-body to be found at point 𝑥. I
want to emphasize that the results of measuring a micro-body’s coordinate
in stateΨ𝑝0(𝑥) prove to be random each time. A value of the coordinate is
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realized with the probability density ∣Ψ𝑝0(𝑥)∣
2
.

I have only selected one state of the micro-body without dealing with,
for instance, the states where both the momentum and coordinate are un-
certain. Besides, I limited the discussion to the coordinate and momentum
without dealing with other variables, for instance, energy or the moment of
momentum. I believe that this is sufficient to see the main point: any state
of a micro-body is described by a function defining the probability (or the
probability density) of some characteristics of the micro-body. Thereby it
is clear that quantummechanics of even one micro-body is a probabilistic
theory.

The electron in the atom. The electrons in atomsmay occur in different
states. A change in the electron’s state may, for instance, be related to the
atom’s transition from one energy level to another. Let us put down possi-
ble states of an electron in an atom by means of wave functionsΨ𝑗(𝑥, 𝑦, 𝑧),
where 𝑗 is a set of some numbers characterizing a state and (𝑥, 𝑦, 𝑧) are co-
ordinates of the electron. Given what we said above, we can conclude that
∣Ψ𝑗(𝑥, 𝑦, 𝑧)∣

2
is the density of probability that we can find an electron in state

𝑗 at point (𝑥, 𝑦, 𝑧). Now imagine an “object” whose density is proportional
to ∣Ψ𝑗(𝑥, 𝑦, 𝑧)∣

2
at various points of space. We can imagine a cloud with the

density varying from point to point. The density inside the cloud is the
greatest. While the point approaches the surface of the cloud, the density
falls to zero, and thus the cloud has some shape (although without a distinct
bounding surface).

This “cloud” is the probabilistic “image” of an electron in an atom. Several
“electron clouds” are shown in Figure 5.8 for the electron’s several states in an
atom.
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Atomic Nucleus

Figure 5.8: Electron clouds in an atom.

Interference and Summing Probability Ampli-
tudes

After reading this section, we shall see that the probabilities in the microcosm
obey the laws we have not dealt with above. It is noteworthy that these laws
allow us to make a rather unexpected conclusion, namely that interference
and diffraction are possible in principle even in the absence of waves. They
may be an effect of specific rules for the summation of probabilities.

The puzzling behaviour of a microbody in an interferometer.With-
out discussing the technical details, let us consider an experiment in which
particles pass through an interferometer containing two close slits and then
are detected on a special screen (Figure 5.9).

Let us consider the 𝑥-coordinate of the particles. In order to deal with a
probability rather than a probability density, suppose that the 𝑥-axis on the
screen is separated into small identical intervals, so that when we speak of
the probability that a particle arrives at a point 𝑥we mean the probability of
arriving at the appropriate part of the axis around point 𝑥.
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x x x
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(a) (b) (c)

Figure 5.9: The two slit experiment.

Suppose slit𝐴 is closed while slit 𝐵 is open. After a large enough number
of particles have been detected on the screen, we obtain a distribution defined
by the function 𝑤𝛣(𝑥) (Figure 5.9 (a)). This function is the probability that
a particle passing through slit 𝐵 (when slit𝐴 is closed) will arrive at point 𝑥.
Given our remarks in the preceding section, we have

𝑤𝛣 (𝑥) = |Ψ𝛣(𝑥)|
2, (5.5)

where Ψ𝛣(𝑥) is the wave function for the particle passing through slit 𝐵. I
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should remark that recently the term “wave function” is being more often
substituted by a better term, “probability amplitude” (or “probability density
amplitude”). Therefore, the probabilistic nature of the particle’s state is
emphasized in this way. We shall now use the term probability amplitude and
not wave function. Thus,Ψ𝛣(𝑥) is the probability amplitude that a particle
will arrive at point 𝑥 after passing through slit 𝐵 (when slit𝐴 is closed).

Now suppose that slit 𝐵 is closed while slit𝐴 is open. If this is the case,
the screen (Fig. 5.9b) will show the distribution 𝑤𝛢(𝑥):

𝑤𝛢(𝑥) = |Ψ𝛢(𝑥)|
2, (5.6)

whereΨ𝛢(𝑥) is the probability amplitude of a particle arriving at point 𝑥 after
passing through slit𝐴 (when slit 𝐵 is closed).

And finally, let us open both slits. It would be natural to believe that
if it passes through one of the slits, a particle “does not feel” the other slit.
It can be said that it is “indifferent” as to whether the other slit is open or
closed. And in this case the distribution on the screen should be the sum of
distributions (5.5) and (5.6), which, by the way, corresponds to the rule of
probability summation:

𝑤𝛢𝛣 (𝑥) = 𝑤𝛢 (𝑥) + 𝑤𝛣 (𝑥) = |Ψ𝛢 (𝑥)|
2 + |Ψ𝛣 (𝑥)|

2. (5.7)

In reality, the screen yields a typical interference distribution (Figure 5.9 (c)).
rather than distribution (5.7). It turns out that when it passes through one
slit the particle somehow “feels” the other slit. Or, perhaps more incompre-
hensible, the particle somehowmanages to pass through both slits at the same
time. How does it actually pass the interferometer?

“Spying” destroys the interference pattern. Let us try and “spy” on
how the particle behaves when both slits are open. The “spying” would seem
to be possible in principle. For instance, we might place a source of light near
each slit and detect the photons reflected by the particles near each slit. Such
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experiments have in fact been carried out. They showed that the particle
passes through only one slit, and at the same time it turned out that the
distribution on the screen was described by (5.7). This means that “spying”
helps establish the details of the particle’s passing through the interferometer,
but the interference distribution is destroyed.

We have thus a curious situation. If the light is turned off (no “spying”),
there is interference, but the mechanism by which the particle passes through
the interferometer cannot be uncovered. If the light is on, the mechanism
can be ascertained, but the interference distribution is destroyed.

When should we sum up probabilities and when probability amplitudes?
Letme start to explain the amazing results described above. A particle has two
options (two alternatives): to pass through either slit𝐴 or slit 𝐵. If the light
is off, these alternatives are indistinguishable. They become distinguishable
if the light is on, and therefore, “spying” or, in terms of science, observation
is possible.

One of the basic conclusions of quantummechanics is that

if alternatives are distinguishable, the respective probabilities are to be
summed up; but if the alternatives are indistinguishable, probability
amplitudes rather than probabilities are summed up.

Therefore, when the light is on, the probabilities should be summed up,
but when the light is off, the probability amplitudes should be summed up.
In the former case, we arrive at distribution (5.7), and in the latter case, we
obtain the distribution

𝑤𝑥 (𝑥) = |Ψ𝛢 (𝑥) + Ψ𝛣 (𝑥)|
2. (5.8)

This is an interference distribution. It can be shown that

|Ψ𝛢 + Ψ𝛣|
2 = |Ψ𝛢|

2 + |Ψ𝛣 (𝑥)|
2 + [

Ψ𝛢
Ψ𝛣

|Ψ𝛣|
2 +

Ψ𝛣
Ψ𝛢

|Ψ𝛢|
2] . (5.9)
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The expression in the square brackets is “responsible” for the interference
nature of the distribution 𝑤(𝑥). In classical physics, the problem of distin-
guishable (indistinguishable) events does not exist since classical events are
always distinguishable. In the microcosm, the situation is qualitatively dif-
ferent. Here we encounter the possibility of complete indistinguishability
of some random events. This possibility arises because of the fundamental
identity of all particles of the same type. An electron is like any other to a far
greater extent than the proverbial two peas in a pod. Naturally, electrons may
be in different states, which allows us to distinguish between them. However,
any electron (as a physical particle) is indistinguishable from any other elec-
tron. Here we are dealing with absolute identity. In the last analysis, it allows
for indistinguishable alternatives.

We see that interference should not be limited to wave concepts. The
interference in microphenomena is not necessarily related to waves, it may be
a consequence of probabilistic laws, or more accurately, a consequence of the
fact that we should sum up probability amplitudes rather than probabilities
for indistinguishable events.

Quantum-mechanical superposition. Consider

Ψ𝛢 (𝑥) + Ψ𝛣 (𝑥) = Ψ (𝑥). (5.10)

The functionΨ(𝑥) in quantummechanics is on an equal footing with func-
tionsΨ𝛢 (𝑥) andΨ𝛣 (𝑥) and like them it defines a state, or rather the probabil-
ity amplitude for a random event. In this case,Ψ𝛢 (𝑥) is the amplitude of the
probability that a particle arrives at point 𝑥 after passing through the interfer-
ometer with two open slits. This amplitude is said to be the superposition of
the amplitudesΨ𝛢 (𝑥) andΨ𝛣 (𝑥).

It is impossible to imagine such a superposition in a demonstrative way.
Otherwise, we should quite seriously have to believe that the particle passes
simultaneously through both slits (𝐴 and𝐵). Any attempt to reveal the details
of this event destroys the superposition. It is destroyed each time either in favour
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ofΨ𝛢 (the particle passed through slit𝐴) or in favour ofΨ𝛣 (the particle passed
through slit 𝐵). Here we encounter one more manifestation of the random.
We have noted above that the arrival of the particle at a point on the screen is
a random event, and probabilities (5.7) and (5.8) characterize these random
events. It turns out that the “selection” of a slit by a particle is also random.
The particle passes through slit𝐴with a probability proportional to |Ψ𝛢|

2

and passes through slit 𝐵with a probability proportional to |Ψ𝛣|
2.

A wave or the sum of probability amplitudes? The wave concept
explains the appearance of interference patterns best. However, the wave
concept cannot explain the other phenomenon, the destruction of the inter-
ferencepatternby “spying”. In otherwords, awave can explain the appearance
of quantum-mechanical superposition, but it cannot explain the destruction
of the superposition in the process of observation.

Once convinced of this and the futility of the attempts to make “de
Broglie’s waves”material, physicists admitted that these “waves” have nothing
in common with really existing waves. This gave rise to a very expressive
term of probability waves. Gradually, the term “wave mechanics” has been
substituted everywhere by the term “quantum mechanics” while the term
“wave function” has become more often replaced by the term “probability
amplitude”.

Therefore, we should explain both the interference and diffraction of par-
ticles in terms of the necessity of summing up probability amplitudes instead
of probabilities rather than in terms of enigmatic waves when the considered
alternatives are indistinguishable. The probabilistic approach completely
explains both the appearance and destruction of quantum-mechanical super-
position.

In conclusion, let us consider a situation which illustrates the limited
nature of the wave approach. We shall discuss the diffusion of very slow
neutrons passing through a crystal.
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Diffusion of neutrons in a crystal. A beam of neutrons with energies
of only 0.1 eV is passed through a crystal. The neutrons diffused by the
crystal’s nuclei are registered by a system of detectors (counters) along the
𝑥-axis (Figure 5.10). The crystal contains𝑁 nuclei, therefore, there are𝑁
alternatives. Each alternative corresponds to the diffusion of a neutron by a
nucleus. Let us useΨ𝑗 (𝑥) to denote the probability amplitude that a neutron
will arrive at the detector at point 𝑥 after diffusing past the 𝑗-th nucleus.

Neutron 
Beam

Di�using
Crystal

Counters
0 x

Figure 5.10: Diffraction of neutrons through a
crystal.

It is interesting that the diffusion of a neutron by a nucleus may occur in
two ways. In one case the neutron’s spin is inverted while there is no such
inversion in the other case. Let me explain. A neutron can be represented as
a rotating top. The top may rotate in either one direction or the other, the
neutron’s spin being said to be either upwards or downwards, respectively.
The crystal’s nuclei are also reminiscent of rotating tops, i.e. they each have
spin directions. When a neutron (top) collides with a nucleus, it mayor may
not change the direction of its rotation. In the former case, the neutron’s
spin remains unchanged while in the latter it is reversed. If a diffused neutron
changes the direction of its rotation, the direction of rotation of the nucleus
at which the act of diffusion occurred should somehow change as well. There-
fore, if diffusion occurs with one neutron’s spin inversion, we are dealingwith
a distinguishable alternative. We can state that diffusion occurred precisely at
the nucleus which changed the direction of its rotation. If diffusion occurs
without spin inversion, it is in principle impossible to indicate which nucleus
diffused the neutron; here we deal with an indistinguishable alternative.

Suppose 𝜑 is the probability amplitude that a neutron will diffuse with
spin inversion while 𝜒 is the probability amplitude without inversion. Let us
useΦ(𝑥) to denote the probability amplitude that a neutron with inverted
spin will arrive at point 𝑥, and𝑋(𝑥) the same for a neutron with noninverted
spin. The distribution of diffused neutrons detected by the counters can be
presented as:

𝑤𝑥 (𝑥) = ∣𝜑∣2 |Φ (𝑥)|2 + ∣𝜒∣2 |𝑋 (𝑥)|2. (5.11)
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Naturally, the alternatives corresponding to different types of neutron dif-
fusion are distinguishable; therefore, probability 𝑤(𝑥) consists of two terms
(two probabilities are summed up). In turn, each term is the product of two
probabilities.

Now let us express |Φ (𝑥)|2 and |𝑋 (𝑥)|2 in terms of amplitudesΨ𝑗 (𝑥). If
a neutron is diffused with spin inversion, the alternatives are distinguishable;
therefore, the probabilities are summed up, and hence

|Φ (𝑥)|2 =
𝛮
∑
𝑗=1

∣Ψ𝑗 (𝑥)∣
2
. (5.12)
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Figure 5.11: Distribution of diffraction of neu-
trons through a crystal.

If the spin of a diffused neutron has not been inverted, the alternatives are
indistinguishable; therefore the probability amplitudes are to be summed up
(amplitude superposition occurs) and hence

|𝑋 (𝑥)|2 = ∣
𝛮
∑
𝑗=1

|Ψ𝑗 (𝑥)|
2∣ . (5.13)

Substituting (5.12) and (5.13) into (5.11), we obtain:

𝑤(𝑥) = [|𝜑|2
𝛮
∑
𝑗=1

|Ψ𝑗 (𝑥)|
2] + [|𝜒|2

𝛮
∑
𝑗=1

|Ψ𝑗 (𝑥)|
2] . (5.14)

The distribution of diffused neutrons 𝑤(𝑥) in experiment is shown in Fig-
ure 5.11. It consists of a smoothly varying “background” and a set of interfer-
ence maxima. The “background” is defined in (5.14)) by the term in the first
square brackets while the interference maxima give the term in the second
square brackets.

Using wave concepts, we have to assume that a neutron has the wave
properties while diffusing without spin inversion (the interference pattern
appears). The same neutron does not show any wave properties in diffusion
with spin inversion (the interference pattern does not appear). It is evident
that this assumption is quite unnatural.
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Probability and Causality

reader: “I think there is too much randomness in the microcosm.
A neutron suddenly turns into three new particles at random,
without any external influence. An atommay be at rest formany
years and then suddenly, for no apparent reason, decays and
turns into an atom of another chemical element. An electron
randomly passes through a slit in the interferometer and quite
as randomly arrives at a point on the screen. Doesn’t it mean
that, in fact, there is no causality in the phenomena of the
microcosm?”

author: “No, it doesn’t. The phenomena of the microcosm show
very explicitly the dialectical unity of the random and the neces-
sary. Neutrons decay in a randommanner, but their quantity
varies in time according to a certain law. An electron randomly
arrives at a point on the screen, but the distribution of arrivals of
many electrons is necessary. There are no grounds for doubting
existence of causality in themicrocosm. We should bear inmind
that causality in the microcosm reveals itself unlike that in the
macrocosm. In quantummechanics, potential possibilities to
realize events or, in other words, the probabilities of these events
are only causally related, rather than individual realized events
themselves. The probability amplitude (wave function) obeys a
definite equation of motion. Knowing the probability ampli-
tude at the initial moment and using this equation (it is called
Schrödinger’s equation), we can find the probability amplitude
at an arbitrary moment in time.”

reader: “It is not clearwhy aneutron should suddenly decay. Maybe,
the particles in question are, in fact, more complex systems
whose physical nature is not yet known’?”
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author: “We touched on this in our first talk. I said that the search
for hidden parameters, which would explain why, for instance,
a neutron decays, eventually, at a given moment in time proved
to be unsuccessful. But I would like to show what is behind the
posed question. Asking it, you proceed from that probability
in the microcosm is not objective but related with our lack of
knowing some details. I think that both the examples from
the microcosm and many of the examples from our macrocosm
we cited convinced you that probability can be both subjective
(related to a lack of knowledge) and objective. This is essential.
It is only when probability is objective that we can say that
probabilistic regularities are primary, or fundamental.”

reader: “Please explain this idea.”

author: “If probability were reduced to a lack of information, it
could be reduced in principle to dynamic relations supposing
unambiguous prediction. This would mean that the probabilis-
tic laws would conceal the dynamic ones. In this case it could be
possible to assume that, in the last analysis, everything is strictly
interrelated in the Nature.”

reader: “But doesn’t any event, any phenomenon have a cause in
the long run?”

author: “You’re right to mention causality. However, why do you
believe that the existence of objective probability means the
absence of causality?”

reader: “Objective probability suggests objective randomness. And
this randomness reveals itself without any cause, because it is
related to chance.”

author: “I throw a die, and, say, the four comes up. You throw a
die, and the three comes up. Are these events objectively random
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or not? What do you think?”

reader: “Each event has definite causes. The occurrence of an
event depends, over a long stretch, on the position of the die in
your hand, the wave of hand, the push, the air resistance, the
distance from the hand to the floor, etc.”

author: “Right. And nonetheless, the events are not objectively
random ones. Throwing a die, you are not interested in the way
I threw mine. We are not interested in how a die is thrown at
all, do not try to control and direct our actions. Therefore, the
occurrence of the four on my die and the three on yours are
objectively random events. The occurrence of the three is not
related to the occurrence of the four just before it.”

reader: “I don’t quite understand.”

author: “I can give you another example. Suppose the events are
telephoned taxi orders. Each order conceals a chain of causes.
However, the arriving orders are objectively random events for
the taxi-depot dispatcher. And this is not because he does not
know the chain of causes but because of an objective circum-
stance, namely the lack of connection between the actions of
the people making orders for taxi. The events are considered,
as it were, in two different planes. In one, they are objectively
random, while in the other each of them has definite causes. As
you see, objective probability agrees with causality.”

reader: “Your example is frompractice. Andwhat aboutmicrophe-
nomena? Let us once again take the examplewith neutron decay.
Suppose this event is objectively random in a ‘plane’. But in
what plane shouldwe look for the causes for the neutron decay?”

author: “Neutron decay is indeed objectively random. We cannot
control the lifetime of a given neutron in principle because of



211 probability and causality

deep reasons and not a lack of knowledge about some details.
There is no internal “clock” in a neutron. As was noted above,
neutrons “do not get old”. This can be seen in that a neutron
may live for some time irrespective of how long it has already
lived by the moment we start counting time. Because it is ob-
jectively random, neutron decay is not a causeless event. I want
to note that when we speak of the spontaneous behaviour of a
particle, we are being inaccurate. Strictly speaking, only a hun-
dred per cent isolated particle can behave spontaneously. And
here we come close to a fundamental point which we haven’t
discussed yet.”

“The point is that a particle is not isolated, it interacts with the
world around it. It is in essence dependent on the conditions
of each concrete situation. The term ‘interaction’ should be
understood here in a wider meaning than it is understood when
considering usual (force) interactions.”

reader: “New puzzles of quantummechanics.”

author: “I do not mean any puzzles. At a certain level of investi-
gation of physical phenomena, isolation is lost in principle. For
instance, the distinct boundary between the field and the mat-
ter is erased. The mutual transformations of particles become
apparent. The idea of the unity of the world and the universal
interrelation of the phenomena in it acquires a special meaning
on the level of the microcosm.”

reader: “How can we imagine in a demonstrative way that a de-
caying neutron is not isolated?”

author: “A vacuum in quantum mechanics is not a void but a
space in which particles are randomly born and annihilated.
The neutron interacts with them.”





Chapter 6

Probability in Biology

Mutations that bring about changes seem to be a random
phenomenon at first glance, but they have regularity in the long
run.

N.I. Vavilov

The genetic code as it is passed from generation to generation
changes randomly due to many causes and without any definite
direction, and these changes only randomly turn to be fit to
survive.

B.M. Mednikov

Introduction

Jean Baptiste Lamarck (1744-1829). In 1809, the French scientist Jean
Baptiste Lamarck published Philosophy of Zoology. It was the first attempt to
produce a theory of evolution for all species, but it was unsuccessful. In his

213
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work on the theory, Lamarck started from two erroneous axioms. Firstly, he
believed that the tendency to improvement is inherent in all living beings. He
saw here the drive for evolution. Naturally, there is no mysterious inner drive
which makes all species evolve and advance. Secondly, Lamarck believed that
the environment can directly induce changes in the shape of living being’s
organs. For instance, there was a time when giraffes with short necks existed.
For some reason, their habitat changed and their food rose high above the
ground (the leaves of high trees). In order to reach the food, giraffes had to
extend their necks. This occurred from generation to generation. As a result
of long-term exercise, the necks of giraffes became much longer.

One of Lamarck’s proofs was the generally known fact that a physically
weak person could become an athlete by being regularly in sport. He formu-
lated the following law:

“In each animal that has not yet completed its development, more
frequent and prolonged exercise of some organ reinforces the organ,
develops it, increases, and gives it more strength, in proportion to
the duration of its usage; while a constant lack of exercise gradually
weakens any organ, brings its decline, continuously decreases its ability,
and finally, makes it disappear.”

Lamarck was utterly wrong. It is known that trained muscles, like other
acquired abilities, cannot be inherited. Using modern terminology, we can
say that Lamarck did not understand the difference between phenotype and
genotype. The genotype is the genetic constitution of an organism, usually
in respect to one or more genes responsible for a particular ability. Parents
transfer a set of hereditary elements to their progeny. The phenotype is the
entire physical, biochemical, and physiological make-up of an individual
as determined both genetically and environmentally, the set of internal and
external features of the organism. The phenotype varies during the organism’s
life as it interacts with the environment. Regular physical exercise, persistent
learning, a correct organization of labour and rest help everyone improve
their own phenotype. However, this does not influence the genotype.
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Charles Darwin (1809-1882). The correct theory of evolution of the
species was developed by the English scientist Charles Darwin, and his theory
became known as Darwinism. Darwin presented the theory in The Origin
of Species byMeans of Natural Selection, or the Preservation of Favoured Races
in the Struggle for Life, which was published in 1859.

Darwin emphasized three factors: variability, inheritance, and natural
selection. The environment, which influences an organism, may bring about
randomchanges in its genotype. These changes canbe inherited and gradually
accumulated in the progeny. The nature of the changes varies. Some of them
are randomlymore favourable from the viewpoint of the organism’s adaption
to the environment while others are less favourable or even bad. When the
progeny accumulate these random changes, natural selection reveals itself.
The organisms that are least fit produce less offspring, die prematurely, and
are forced out by the more fit individuals in the long run.

In describing Darwin’s theory, I emphasize the role of the random on
purpose. The reader may recognize the familiar idea of the selection of infor-
mation from noise.

In his consideration of the evolution of species, Lamarck in fact only
recognized necessity. Once the environment changes, the organismwould nec-
essarily change by exercising or not exercising the relevant organs. Lamarck’s
“evolution” would only necessitate a complication in the organism’s organiza-
tion if each species had an inner drive to advance.

Darwin considered evolution from the positions of the dialectical unity
of the necessary and the random. The indifferent Nature causes random
hereditary changes in the organism. Then, by natural selection, it mercilessly
throws off those which randomly prove to be less fit and keeps those which
randomly prove to be adapted to the environment. The result is that the
evolution of a species occurs by necessity. The development proceeds through
the selection of the fittest, the Nature being indifferent as to whether the
organism becomes more or less complicated. The possibilities for adaptation
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are diverse. The result is the diversity of the plant and animal species we
observe. Earth is thought to accommodate about 1.5 million animal species
and about 0.5 million plant species.

Darwin’s theory has become universally recognized. However, there was
a “soft spot” in it, which was pointed out in 1867 by Fleming Jenkins, a
teacher from Edinburgh. Jenkins noted that Darwin’s theory is not clear
about the mechanism by which the changes in the progeny accumulated. At
first, changes in a trait only occur in a limited number of individuals. These in-
dividuals crossbreed with normal ones. The result, as Jenkins asserted, should
be dissipation of the changed trait in the progeny and not its accumulation.
The trait should dilute out and gradually eliminate (1/2 of the change in the
first generation, 1/4 of the change in the second generation, 1/8 in the third,
1/16 in the fourth, etc.)

Darwin contemplated Jenkins’s objection for the remaining fifteen years
of his life. He could not find a solution.

However, a solutionwas already found in 1865 byGregor JohannMendel,
a teacher in themonastery school in Brünn (nowBrno, Czechoslovakia). Alas,
Darwin did not know about Mendel’s investigations.

Gregor Johann Mendel (1822-1884)Mendel started his famous exper-
iments on peas three years before the publication of The Origin of Species.
WhenDarwin’s book appeared, he read it thoroughly and was very interested
in Darwin’s work. Mendel is said to have remarked with respect to Darwin’s
theory: “It is not yet complete. Something ismissing.” Mendel’s investigation
was directed to mending the “flaw” in Darwin’s theory. Mendel was a plant
breeder and he wanted to follow the change in the genotype over successive
generations of a crossing. He picked the pea as the subject of investigation.

Mendel took two varieties of pea, one with yellow seeds and one with
green seeds. By crossing the two varieties, he found that the first generation
only had yellow seeds. The green pea trait had vanished. Then Mendel
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crossed the first generation with itself and grew a second generation. This
time individuals with green seeds appeared, although there were noticeably
fewer of them than there were individuals with yellow seeds. Mendel counted
the number of both and took the ratio, i.e.

𝑥 ∶ 𝑦 = 6022 ∶ 2001 = 3.01 ∶ 1.

Mendel carried out six other experiments simultaneously. In each experiment,
he used two varieties of pea each with a different trait. For instance, in one of
his experiments, he crossed a pea variety with smooth seeds with one with
wrinkled seeds. He found only smooth-seed individuals in the first generation.
Individuals with wrinkled seeds appeared in the second generation. The ratio
of the number of individuals with smooth seeds to the number of individuals
with wrinkled seeds was

𝑥 ∶ 𝑦 = 5474 ∶ 1850 = 2.96 ∶ 1.

In the other five experiments, Mendel crossed varieties which differed in skin
colour or seed shape or colouration when immature or the location of flowers
or the size of the individuals (dwarfs and giants).

𝑥 ∶ 𝑦 = 705 ∶ 224 = 3.15 ∶ 1,
𝑥 ∶ 𝑦 = 882 ∶ 299 = 2.95 ∶ 1,
𝑥 ∶ 𝑦 = 428 ∶ 152 = 2.82 ∶ 1,
𝑥 ∶ 𝑦 = 651 ∶ 207 = 3.14 ∶ 1,
𝑥 ∶ 𝑦 = 787 ∶ 277 = 2.84 ∶ 1.

Table 6.1: Data from experiments conducted by
Mendel. The ration between two varieties of
seeds is close to 1 ∶ 3.

In each experiment, the first generation consisted of individuals with one
of the two opposite parental traits. Mendel called this trait the dominant
one, and the other trait, which disappeared for a generation, he called the
recessive one. Yellow seeds was a dominant trait, while the green-seed trait
was recessive in the first of the experiments we mentioned. In the second
experiment, the smooth-seed trait was dominant, and the wrinkled-seed was
recessive. We gave the ratio 𝑥 ∶ 𝑦, i.e. the ratio of the number of individuals
with the dominant trait to the number of individuals with the recessive one in
the second generation for the two ofMendel’s experiments. Mendel obtained
the following ratios from the other five experiments as shown in the Table 6.1.

In each case, the 𝑥 ∶ 𝑦 ratio is close to 3 ∶ 1. So Mendel could maintain
that when individuals with opposite traits are crossed, one trait is suppressed



218 probability in biology

by the other and not diluted out (as Jenkins believed). Thus Mendel asserted
the existence of dominant and recessive traits such that individuals in the first
generation only have the dominant trait, while the recessive one is completely
suppressed (the law of uniformity of first generation individuals). When
the first generation is crossed with one another, individuals bearing both the
dominant and recessive traits appear in the second generation, their ratio
being approximately 3 ∶ 1.

However, Mendel did not stop there. He crossed the second generation
with itself and obtained individuals in the third and then in the fourth genera-
tion. Mendel discovered that second-generation individuals with the recessive
trait did not produce different progeny in either the third or fourth generation.
About one third of the second-generation individuals with the dominant trait
behaved in the same way. Two thirds of the second-generation individuals
with the dominant trait produced different third-generation progeny, the
ratio being 3 ∶ 1 again. Third-generation individuals with the recessive trait
and one third of the individuals with the dominant trait did not produce
different progeny in the fourth generation, while the other individuals in the
third generation did produce different progeny, the ratio of individuals with
each trait being 3 ∶ 1 again.

Note that the production of different progeny demonstrates an essen-
tial point: individuals with identical external features may possess different
hereditary trait, which is revealed in the external features of their progeny.
We see that one cannot use the phenotype to make generalizations about
the genotype. If an individual does not produce different progeny, then it is
called homozygotic, otherwise being termed heterozygotic. All the individuals
with the recessive trait in the second generation are homozygotic.

Mendel’s results can be seen in Figure 6.1 where the yellow circles are
individuals with the dominant trait, while the green circles are individuals
with the recessive trait. We see a definite pattern. Mendel discovered this
pattern and therefore discovered the mechanism by which hereditary traits
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PA R E N T S

First Generation

Fourth Generation

Second Generation

Third Generation

Figure 6.1: Results ofMendel’s experiment with
yellow and green peas till fourth generation.

are passed down from generation to generation. Mendel understood that the
pattern had a probabilistic nature.

The pattern of crossings had been observed before Mendel. Suffice it, for
instance, to cite the diary of Mendel’s contemporary, a gardener at the Paris
Botanical Gardens:

“Starting from the second generation, the outward appearance changes
noticeably. The perfect uniformity of the first generation individuals
is usually replaced by an extreme diversity of progeny, some of them
being close to the species type of the father and the other close to that
of the mother …”
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But nobody before Mendel had attempted to investigate the change in sep-
arate traits, or count the number of individuals with different traits in con-
secutive generations. Mendel was the first person to do this, spending eight
years on his experiments. Therefore, unlike his predecessors, Mendel came to
understand the pattern behind the hereditary transmission of traits.

It is good to pause here, to discuss the laws governing crossbreedingwhich
Mendel discovered. We shall do this in the next section from the viewpoint of
modern genetics. Letme only tell the reader thatMendel presented his results
first in February 1865 to the Society of Natural Scientists in Brünn. The
audience did not understand the exceptional importance of the presentation,
nor could they guess that it would cause a revolution in the study of heredity.
In 1866, Mendel’s paper was published in the Brünn Bulletin and was sent
to some 120 listed scientific institutions in many countries. Unfortunately,
Darwin did not receive a copy.

The world now recognizes Mendel as the founder of modern genetics.
However, the recognition only came in 1900, fifteen years after his passing.

The Patterns After the Random Combination
of Genes in Crossbreeding

Chromosomes and genes. Perhaps you can recall some data on cytology,
the branch of biology dealing with the structure, behaviour, growth, and
reproduction of cells, and the functions and chemistry of the cell components.
There are two types of cell: germ cells ( gametes) and somatic cells. The
nucleus of each cell contains threadlike structures, chromosomes, which carry
linearly arranged genetic units in gigantic molecules of deoxyribonucleic acid
(DNA) or combination with protein molecules. The chromosomes, or, to
be more accurate, the DNAmolecules are the carriers of genetic information,
which is encoded in the sequence of bases, defining the genotype of the
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organism. The separate parts of a chromosome, responsible for a hereditary
trait, are the basic units of heredity, or genes. Each chromosome contains
several hundred genes. Sometimes, a chromosome is viewed as a thread with
beads for the genes.

Each species has a fixed set of chromosomes. For instance, oats possess 42
chromosomes, Drosophila possess 8 chromosomes, chimpanzees possess 48
chromosomes, and human beings have 46 chromosomes. The nucleus of
every somatic cell contains all the chromosomes needed for the individual
of that species. This means that each cell in the organism contains all the
individual’s genetic information.

The numbers of chromosomes we gave for several species characterize
the chromosomes in the somatic cell, rather than in germ cells. Each germ
cell (gamete) has half the number of chromosomes than a somatic cell.

Let us start with the chromosome set of a somatic cell. This set includes
two sex chromosomes. Female individuals have two identical sex chromo-
somes (two X-chromosomes) while male individuals have two different sex
chromosomes (one X-chromosome and one Y-chromosome). The somatic
chromosomes in a somatic cell come in pairs; the chromosomes in each pair
(they are called homologous) are very much like each other. Each contains the
same number of genes at the same loci on both chromosome threads, and the
main point is that they are responsible for the same kind of trait. For instance,
the pea has a pair of homologous chromosomes each of which contains a
gene for seed colour. This gene, like any other gene, has two forms (they are
called alleles), dominant and recessive. The dominant form of the colour
gene (the dominant allele) corresponds to yellow while the recessive one
(the recessive allele) corresponds to green. If the genes on both homologous
chromosomes contain the same allele, the individual is homozygotic with
respect to the trait in question. If a chromosome contains an allele which
is different from the one contained in the homologous chromosome, the
individual is heterozygotic. Its phenotype shows the trait corresponding to
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the dominant allele.

Now let us consider the chromosome set of a gamete (a germ cell). A
gamete has only one sex chromosome. It is always an X-chromosome for a
female individual. A male individual may contain either an X-chromosome
(in some gametes) or a Y-chromosome (in the other gametes). Besides the
single sex chromosome, a gamete contains one chromosome from each pair
of homologous chromosomes.

Suppose there are only two pairs of homologous chromosomes, and a
certain trait corresponds to each pair. Moreover, assume the given individual
is heterozygotic with respect to both traits. This individual will have four
types of gamete, which can be seen in Figure 6.2 (a) (the red colour in the
figure is for the chromosomes with the dominant alleles and the blue colour
for the recessive alleles). The individual in Figure 6.2 (b) is homozygotic with
respect to one trait and heterozygotic with respect to the other. There are
only two types of gamete in this case.

(a) GametesGametes (b)

Figure 6.2: Combination of chromosomes and
their results.
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During fertilization, a female gamete fuses with a male gamete. The
fertilized egg (called a zygote) has a complete chromosome set. Each pair of
homologous chromosomes receives one chromosome from the father and
one from the mother. The organism develops from a zygote through a series
of divisions. The division of the cell is preceded by the replication of all
the chromosomes contained in the nucleus of the cell. The result is that
the nucleus of each somatic cell of the organism contains the same set of
chromosomes and genes that the zygote had. When the organism reaches
sexual maturity, a special process occurs leading to the production of gametes.
We shall discuss this process below.

The law of segregation. Let us consider one particular trait, for instance
the colour of pea seeds, as in one of Mendel’s experiments. Let us consider
the results of this experiment from the point of view of modern cytology.

All the individuals in the first generation are heterozygotic for the trait.
Each somatic cell contains both alleles for seed colour: yellow (dominant
allele) and green (recessive allele). Naturally, every seed belonging to these
individuals is yellow. Each first-generation individual has two types of gamete:
some with the dominant allele (𝐴-gametes) and the others with the recessive
allele (𝑎-gametes). It is clear that there must be both female and male 𝐴-
gametes and 𝑎-gametes.

Now let us consider the second generation. Each new organism develops
from a zygote which is formed when a male gamete (𝐴 or 𝑎) fuses with a
female gamete (𝐴 or 𝑎). Clearly, four alternatives are possible (Figure 6.3):

𝐴𝐴 or a male𝐴-gamete fuses with a female𝐴-gamete,
𝐴𝑎 or a male𝐴-gamete fuses with a female 𝑎-gamete,
𝑎𝐴 or a male 𝑎-gamete fuses with a female𝐴-gamete, and
𝑎𝑎 or a male 𝑎-gamete fuses with a female 𝑎-gamete.

All these alternatives are equally probable. Therefore, if we take a large
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Figure 6.3: AnalysingMendel’s experiment us-
ing modern cytology.

enough number of zygotes, a quarter of them will be composed of 𝐴𝐴-
zygotes, a quarter will contain 𝑎𝑎-zygotes, and finally, a half will contain
𝐴𝑎-zygotes (the variants 𝐴𝑎 and 𝑎𝐴 are equal from the viewpoint of trait
heredity). If a zygote contains at least one dominant allele, the phenotype will
reveal the dominant feature (yellow seeds). Therefore, individuals (plants)
developing from𝐴𝐴- or𝐴𝑎-zygotes will have yellow seeds while individuals
developing from 𝑎𝑎-zygotes will have green seeds. We see, therefore, that the
probability that an individual will have a dominant trait is 3/4 while the
probability that an individual will have the recessive trait is 1/4. Hence the
ratio 3 ∶ 1Mendel obtained, which quantitatively characterizes the segrega-
tion of a trait in the transition from the first generation of the crossing to the
second. Mendel both found this ratio and correctly explained it using the
notion of probability. This was Mendel’s first law, which is also known as
the law of segregation.

I want to emphasize: a zygote is formed as the result of the random union
of male and female gametes. A large number of such random unions will
necessarily lead to a definite pattern, which is expressed in the Mendel’s first
law.
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Note that 𝐴𝐴- and 𝑎𝑎-zygotes produce homozygotic individuals with
respect to the trait while𝐴𝑎-zygotes produce heterozygotic individuals, and
in the next generation the heterozygotic individuals will produce a 3 ∶ 1 split
of traits again.

The law of independent assortment of genes. Suppose we look at
the second generation of a crossing involving two traits at the same time. Let
us assume (this is essential) that the genes responsible for the traits are on
different pairs of homologous chromosomes. An example of this combination
is the colour of pea seeds and the shape of the seeds. Let us use𝐴 to denote the
dominant allele of colour (yellow), 𝑎 to denote the recessive allele of colour
(green), 𝐵 to denote the dominant allele of shape (smooth seeds), and 𝑏 to
denote the recessive allele of shape (wrinkled seeds).
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Figure 6.4: AnalysingMendel’s experiment us-
ing modern cytology.
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Each first-generation individual has four types of male and four types
of female gamete: 𝐴𝐵, 𝐴𝑏, 𝑎𝐵, and 𝑎𝑏 (recall Figure 6.2 (a)). A zygote is
formed when two gametes (male and female) of any of the four types fuse.
There are 16 possible alternatives; they are presented in Figure 6.4. Each
alternative is equally probable. Therefore, the ratio of the number of zygotes
of different types (with respect to the total number of zygotes, which should
be large) is:

1/16 for zygotes𝐴𝐵 ⋅ 𝐴𝐵,
1/16 for𝐴𝑏 ⋅ 𝐴𝑏,
1/16 for 𝑎𝐵 ⋅ 𝑎𝐵,
1/16 for 𝑎𝑏 ⋅ 𝑎𝑏,
1/8 for𝐴𝐵 ⋅ 𝐴𝑏 (including𝐴𝑏 ⋅ 𝐴𝐵,
1/8 for𝐴𝐵 ⋅ 𝑎𝐵 (including 𝑎𝐵 ⋅ 𝐴𝐵),
1/8 for𝐴𝐵 ⋅ 𝑎𝑏 (including 𝑎𝑏 ⋅ 𝐴𝐵),
1/8 for𝐴𝑏 ⋅ 𝑎𝐵 (including 𝑎𝐵 ⋅ 𝐴𝑏),
1/8 for𝐴𝑏 ⋅ 𝑎𝑏 (including 𝑎𝑏 ⋅ 𝐴𝑏), and
1/8 for 𝑎𝐵 ⋅ 𝑎𝑏 (including 𝑎𝑏 ⋅ 𝑎𝐵).

Regarding the suppression of recessive alleles by the corresponding domi-
nant alleles, we can conclude that the probability that an individual will have
yellow smooth seeds in the second generation equals the sum of probabil-
ities for the zygotes 𝐴𝐵 ⋅ 𝐴𝐵, 𝐴𝐵 ⋅ 𝐴𝑏, 𝐴𝐵 ⋅ 𝑎𝐵, 𝐴𝑏 ⋅ 𝑎𝑏, and 𝐴𝑏 ⋅ 𝑎𝑏, i.e.
1/16+1/8+1/8+1/8+1/8 = 9/16. The probability that an individual will
have yellowwrinkled seeds equals the sum of probabilities of the formation of
zygotes𝐴𝑏 ⋅𝐴𝑏 and𝐴𝑏 ⋅ 𝑎𝑏, i. e. 1/16+ 1/8 = 3/16.The probability that an
individual will have green smooth seeds equals the sum of probabilities of the
formation of zygotes 𝑎𝐵 ⋅ 𝑎𝐵 and 𝑎𝐵 ⋅ 𝑎𝑏, i.e. 1/16+1/8 = 3/16. And finally,
the probability that an individual will have green wrinkled seeds equals the
probability of the formation of the zygote 𝑎𝑏 ⋅ 𝑎𝑏, i. e. 1/16. Therefore, the
numbers of different phenotypes (with these traits) in the second generation
are in the ratio 9 ∶ 3 ∶ 3 ∶ 1. This is the essence of Mendel’s second law,
according to which the segregation by one trait is independent from the
segregation by another trait.
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Morgan’s Law. The law of the independent assortment of genes is valid
when the genes are on different chromosomes in a gamete (and on different
pairs of homologous chromosomes iii a somatic cell). If the genes belong to
the same chromosome, theywill be inherited together. This is the explanation
for deviations fromMendel’s second law. The deviation was discovered and
investigated by the American biologist Morgan and is observed whenever
traits are defined by linked genes, i.e. the genes are on the same chromosome.
The joint inheritance of linked genes became known as Morgan’s law.

Thomas HuntMorgan (1866-1945) was the founder of the chromosome
theory of inheritance. By introducing the idea of a chromosome, he sub-
stantiatedMendel’s laws and pointed out under which conditions they are
applicable. Besides, he obtained a number of new results. These results
includeMorgan’s law and the phenomenon of chromosome crossing over,
which he discovered.

Chromosome crossing over. In an investigation of the inheritance of
traits defined by linked genes, Morgan discovered that the linkage is not abso-
lute: some of the second-generation individuals inherit some of the linked
genes from one parent and the rest from the other. Carrying out his investi-
gations on Drosophila, Morgan could explain this fact. He showed that the
formation of germ cells in an organism (this process is called meiosis) starts
with a “farewell dance” of homologous chromosomes.

Imagine two elongated homologous chromosome threads, which, before
they leave each other and join different gametes, tightly embrace each other
(each gene in contact with the corresponding gene) and then wind around
each other several times. This winding of the chromosomes (crossing over)
results in the intracellular forces which arise to pull the chromosomes apart,
break them. The site where the break occurs varies randomly fromone pair of
crossed-over chromosomes to another. The result is that one gamete receives
complementing parts of both homologous chromosomes rather than an intact
chromosome, and the other parts of these chromosomes are received by the
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other gamete. The process is illustrated in Figure 6.5. Let me emphasize
that corresponding genes on both chromosomes (I mean the alleles) are in
contact with each other at the moment of break. Therefore, wherever the
break might be, an allele from one chromosome gets into one gamete while
an allele from the other chromosome gets into the other gamete. In other
words, either gamete gets an allele with the considered gene. This can be
thought of as “dancing” pairs of chromosomes exchanging equivalent parts
of themselves before leaving each other. All the same, each gamete has a
complete set of genes characterizing the given chromosome. And there is a
random combination of paternal and maternal alleles.

Chance plays an essential role in the phenomenon of chromosome cross-
ing over. The site of the break is random in a pair of chromosomes, and
therefore, the combination of parental alleles is random.

By expanding the domain of the random, the phenomenon of chromo-
some crossing over enhances intra-species development, creating additional
possibilities for “shuffling” the parental genes. At the same time, the phe-
nomenon, as it were, protects the species from random genetic “infringe-
ments”. Suppose individuals from two different species cross at random and
hybrids appear. Each “homologous pair” in the hybrids unites chromosomes
that are very unlike in their gene structure (because the chromosomes come
from parents of different species). When the time comes to produce the germ
cells, these chromosomes are unable to carry out the “farewell dance” because
of fundamental differences. They consequently are unable to form gametes,
and therefore, no second-generation hybrids appear. This is why mules (the
hybrid offspring of a male ass and a female horse) do not have any progeny.

A boy or a girl? I have already noted that the sex chromosomes of a
female are both the same: they are 𝑋-chromosomes. By contrast, the sex
chromosomes of a male are different, each male having one𝑋-chromosome
and one 𝑌-chromosome. Half of all male gametes carry one𝑋-chromosome
and the rest carry one 𝑌-chromosome. If a female gamete joins a male 𝑋-
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Figure 6.5: “Farewell dance” of the genes com-
bines genes from the two parents.

gamete, an𝑋𝑋-zygote is produced, and a female offspring develops from it.
But if a female gamete fuses with a male 𝑌-gamete, an𝑋𝑌-zygote is produced,
and a male offspring develops from it. This is the answer to the question: a
boy or a girl?
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Mutations

We have considered random changes in the genetic code that might occur
when a combination of parental genes is crossed over. All these changes are
limited by the available gene pool. New genes cannot be created in the process.
However, random inheritable changes do occur which are not related to the
combination of genes. They are caused by the action of the environment on
the genetic structure of the chromosomes and random disorders in the bio-
logical mechanism thatmaintains the genetic information duringmeiosis and
the division of the somatic cells. These genetic changes are called mutations.

The appearance of mutations. There is a serious human disease in
which a sufferer’s blood is unable to clot. This disease is called hemophilia. It
is inherited and occurs in men only. It has been found out that hemophilia is
the consequence of a mutation in a gene that is located on the𝑋-chromosome.
Since women have two𝑋-chromosomes, the mutated gene, which is reces-
sive, on one chromosome is matched by a normal gene on the other, which
suppresses the illness. This is why women do not suffer from hemophilia.
This is not the case in men. The set of sex chromosomes in men consists of
two different chromosomes: one𝑋-chromosome and one 𝑌-chromosome.
There is no normal paired gene which can suppress the hemophilia gene.
Consequently a man receiving an 𝑋-chromosome with the mutated gene
from a phenotypically healthy mother suffers from hemophilia.

Fortunately, mutations are mostly harmless. A short-fingered hand, a
sixth finger, and the heart on the right are relatively rare mutations. More
frequent mutations show themselves as, for instance, different eye colours,
baldness (including the shape of the bald spot), and unusual hair colour in
animals. Mutations often occur in plants and appear in a great variety of
ways, such as changes in the shape of the stem, leaves, and flowers.

The causes of mutations. A mutation is a rather rare event. For in-
stance, the probability that a gametewith an𝑋-chromosome taken at random
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will contain the mutation related to hemophilia is only one in 105. Other
mutations occur even less often, with the probability of about one in 106
on the average. However, we should take into account the diversity of mu-
tations. They can be associated with very different genes of which there is
an enormous number in each gamete. We should also take into account that
mutations are inherited and thus accumulate. The result is that mutations
per se are not too rare events. It has been calculated that one in ten human
gametes carries a mutation.

The appearance of each mutation is a random event. However, the
event results from objective causes. An organism develops from a zygote due
to the cell divisions. The process of cell division begins with replication of
chromosomes, and therefore, DNAmolecules in the cell nucleus. EachDNA
molecule recreates an exact copy of itself with the same set of genes. The
complicated process of replication of aDNAmolecule sometimes occurswith
random deviations. We know that genetic information is recorded in DNA
very economically on the molecular level. When the data is copied, various
kinds of “misprint” are possible due to the thermal movement of molecules.
The “misprints” appear due to the unavoidable fluctuations in the behaviour
of matter. For instance, when a DNA molecule replicates, there might be
a random increase in the number of hydrogen ions in the vicinity of some
nitrogen base. This fluctuation may cause the detachment of the base from
the DNA, i.e. to a disturbance in the structure of the gene.

In every sexually reproducing species, the progeny only receive the mu-
tations in the germ cells. Therefore, the random disordering that occurs in
the formation of the germ cells, in meiosis, is essential. These disorders may
cover both separate genes and chromosomes as a whole. Individual gametes
may receive a chromosome with a distorted gene structure or not receive a
chromosome at all. The formation of gametes with extra chromosomes is
also possible.

The thermal movement of matter molecules is not the only cause of
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mutation. Special investigations have revealed a number of external factors
which cause mutations .and are called mutagenic factors. Certain chemicals
and various kinds of radiation, e. g. 𝑋-rays, neutron beams, fast charged
particles, are all mutagenic.

Advantages and disadvantages of mutations. From the viewpoint of
evolution,mutations are certainly advantageous. Moreover, they are necessary.
The vast diversity of genes in each species and the diversity of species existing
on the Earth are a consequence of mutations having occurred over many
millions of years, and they still occur. From the point of view of an individual,
as a rule, mutations are harmful and even lethal more often than not. Being
the result of long-term evolution, each organism is a complex genotype and
adapted to its habitat. A random change in the genotype would more likely
disrupt its smoothly running biological mechanism.

Therefore, we see that mutations are at the same time both useful (even
necessary) and harmful. If mutations occur too frequently in a given species
(for instance, because its habitat is radioactively contaminated), this will
increase themortality rate and, as a consequence, cause the decline or possibly
the extinction of the species. By contrast, if mutations occur too rarely in a
given species, it may not be able to adapt and may also become extinct should
its habitat change considerably. For instance, the dinosaurs could not adapt
to a cooling in the climate and became extinct. Thus, it is disadvantageous
for there to be too many mutations or for them to be too frequent. It is also
disadvantageous for there to be practically no mutations or for them to occur
too rarely.

The Organism and mutations. The adaptation of an organism to
its habitat also supposes the adaptation to mutations, owing to which the
degree of harm brought about by mutations can be essentially reduced. This
adaptation is natural because the development of species is directly related to
its survivability.

Let us discuss this problem from the positions of genetics. Suppose a
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zygote appears when a normal and a mutated gamete combine. We shall
call a gamete mutated if one of its chromosomes has a faulty (mutated) gene.
Suppose this gene is responsible for a vital process, and sowe are dealingwith a
dangerous mutation. Themutated gene is opposed by the normal gene in the
paired chromosome. Nowmutated gene may either be dominant or recessive
with respect to the normal gene, and we shall consider both possibilities.

If the mutated gene is dominant, it immediately starts its “harmful activ-
ity”, and the organismmay die as an embryo. Darwinian selection here carries
out its sanitary mission long before the dominant mutation can propagate to
future progeny. The result is that there is no accumulation of dominant mu-
tated genes. This is not so if the mutated gene is recessive. It is suppressed by
the normal gene, and therefore, the organism will be phenotypically healthy.
Moreover, there will be healthy organism phenotypes in the progeny. It is
only in rare cases that the recessive mutated gene reveals itself, i.e. when a
descendant gets the gene simultaneously through the paternal and maternal
gametes.

I would very much like to say that the Nature has taken care to decrease
the danger of harmful mutations. However, recall that the Nature never
takes care of anything or anybody. The principle is the selection of the fittest.
There is no “wisdom” in the Nature.

Unfortunately, people sometimes increase the danger of mutations. The
probability that two recessive genes will combine in a descendant increases
if close relatives marry or a small group of people, for instance, a small reli-
gious sect, small community, or the population of a hamlet in the mountains,
intermarry. Wherever this practice is common, various types of genetic dis-
ease are unavoidable (they are called recessive diseases). There are about five
hundred such diseases known so far. They may bring about idiocy, debility,
deaf-mutism, constitutional inferiority, etc. Therefore, any artificial separa-
tion or division of people into closed groups increases the genetic danger and
leads to a higher probability of recessive disease.
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In the second half of this century, the mutation danger drastically in-
creased due to nuclear weapon testing. Radioactivity is very mutagenic.
Therefore, it is impossible to overestimate the importance of the interna-
tional treaty banning the testing of nuclear weapons in the atmosphere, space,
and underwater, which was concluded at the initiative of the Soviet Union.
In 1963, the treaty was signed by the USSR, USA, and Great Britain. Over a
hundred countries have signed it so far.

The law of homologous series in hereditary variability. Each in-
dividual mutation is a random, undirected, and unpredictable event. If a
given species sustains relatively many mutations (this is seen in plants), the
picture of mutations on the whole shows some regularity, or necessity. This
is substantiated by the law of homologous series in mutations discovered by
the Soviet biologist Nikolai I. Vavilov (1887-1943). Generalizing a great deal
of data, Vavilov concluded that genetically close species should be character-
ized by similar (homologous) series of hereditary variability. For instance, if
mutations cause a number of rather frequently occurring hereditary traits in
rye, a similar series of traits should also be observed in wheat, barley, oats, etc.

Vavilov’s law is sometimes compared to Mendeleev’s periodic table, thus
emphasizing that like the periodic table it can be used to predict newmembers,
ormutants. In 1917, during a scientific expedition in the Pamir, Vavilov found
a variety of wheat with leaves without a ligule, a small growth at the base. At
the time, biologists were not aware of rye or barley varieties without ligules.
However, Vavilov’s law required that they exist, and in 1918 a variety of rye
was found without ligules, while in 1935, a barley variety without ligules was
obtained after irradiating common barley with X-rays.
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Evolution Through the Eyes of Geneticists

There was a time when some biologists tried to oppose the theories of Darwin
and Mendel. This should be regarded as a frustrating mistake and seems
absurd today. It is generally recognized that genetics have put Darwin’s
theory of the origin and evolution of species on a sound scientific basis, and
explained the hereditability of changed traits. Darwinism is a logical and
authoritative science capable of giving valuable practical recommendations.
Modern genetics is deeply rooted in Darwinism.

Undirected hereditary variability. The Soviet biologist Ivan Shmal-
gausen (1884-1963) once said that each species and each of its populations
contain a “pool of hereditary variability”. This pool can be utilized by natural
selection in a changed habitat.

There are twobasic “mechanisms” for the appearance of undirected hered-
itary variability. Firstly, there is mutation variability. Mutations underlie
the diversity of species and the diversity of genes within a species. Mutation
changes occur very slowly, but they occur continuously and have done so
since the time immemorial. The “mechanism” by which hereditary variabil-
ity appears as the result of the random crossing of parental genes is faster.
Here we should distinguish between the combination of genes as the result
of fusing random pairs of gametes and the combination of genes as the result
of “shuffled” parts of paired chromosomes getting randomly into a gamete
(the phenomenon of chromosome crossing over).

Naturally, the changes in the combination of genes are limited by the vol-
ume of the gene pool. However, the pool is enormous. It has been calculated
that the gene pools of a father and a mother make it possible in principle to
construct up to 1050 different human genotypes. This is a rather hard num-
ber to imagine. Less than 1010 people live on the Earth. Therefore, there is
practically no chance that two individuals will be genetically identical (unless,
of course, they are twins developing from the same zygote). Each person is
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genetically unique; a person possesses a genotype which is unlike any other
genotype.

Darwin’s demon versusMaxwell’s demon.Wediscussed theMaxwell’s
demon in Chapter 4. Without getting outside information, the demon could
not in principle select faster molecules and direct them into the other half of
the vessel. This hapless demon demonstrated the fundamental impossibility
of selection at the atomic or molecular level, as was demanded by the second
law of thermodynamics.

In a discussion on natural selection in the Nature, the American bio-
chemist and science-fiction writer Isaac Asimov (1920-1992) used the term
“Darwin’s demon”. Unlike Maxwell’s hapless demon, Darwin’s demon oper-
ates very successfully, selecting organisms with a better chance for survival
and letting them reproduce and move into the next generation. The major
distinction between the Darwin’s andMaxwell’s demons is that they operate
on different levels. Anything begins at the atomic or molecular level. Ran-
dom, undirected mutation and the random combinations of genes occur
at this level. If Maxwell’s demon could operate, he would start by selecting
the most “advantageous” mutations and the most “successful” combinations
of genes. This does not occur because selection is impossible at atomic or
molecular level.

And here is where the principle of reinforcement starts. Suppose that a
mutated gene has got into a zygote. While the organism develops, the cells
divide, and the result is that the mutated gene is replicated about 1015 times.
The combination of genes in the zygote has also been replicated. Therefore,
random changes in the genetic code in the process of the development of
the phenotype becomes reinforced. And this is a transition from the atomic
or molecular level to the level of macrophenomena. Selection at this level
is possible. I want to emphasize: Darwin’s demon does not try to select
different genetic codes, and in this sense it is not quite like Maxwell’s demon.
It influences the organism’s phenotypes, where any change in the genetic
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code is amplified about 1015 times.

There should be no need to explain how Darwin’s demon operates. The
way natural selection is realized is described in every textbook on biology.
Let me only note that the “demon” is rather merciless. It operates severely:
it eliminates phenotypes which have randomly proved unfit. Taking those
which are randomly less or more fit to the habitat, it gives preference to the
more fit while the less fit are, as a rule, eliminated.

However, Darwin’s demon does not operate directly and gives the less fit
a chance to survive. Changes in the genetic code whichmay not be used today
may be utilized tomorrow. They are useless and even harmful today, but they
may become useful later. It means that we should not hurry and render the
verdict. Let the random variation in the genetic code “sleep”, stay dormant
for a while, for several generations of phenotypes, masked as a recessive gene.
It may suddenly be helpful later.

Naturally, the effect of Darwin’s demon or, in other words, natural se-
lection does not oppose the second law of thermodynamics in any way. We
noted above, that living beings only exist due to the inflow of negentropy
from the environment, i.e. due to the rise of entropy in this environment.
This increase in entropy is the “fee” for the service provided by Darwin’s
demon.

Diversity of species. The diversity of species on the Earth, where Pro-
tozoa coexist with very complicated and organized species, is the result of
evolution proceeding for about two thousand million years. Two thousand
million years ago the Earth was only inhabited by bacteria and blue-green
algae. Several hundredmillion years later, unicellular organismswith a cellular
nucleus appeared. After a period of several hundred million years more, Coe-
lenterata, worms, and molluscs appeared. About five hundred million years
ago, fish appeared, followed by amphibia, and still later by reptiles. Mammals
appeared about a hundred million years ago. Note that there is no mere
transition from less complicated species to more complicated ones in this
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evolutionary process. Naturally, many species became extinct; nevertheless,
today a tremendous number of simple species exist alongside complicated
ones. Evolution has been directed from the less fit to the more fit rather than
from the simple to the complicated because natural selection operates in this
direction and no other one. The characteristic feature of this process is the
increase in the number of species and their growing diversity. Higher species
will appear, which is an advance for the evolution process.

We could give a number of reasons why evolution increases the number
of species. Firstly, hereditary variability increases in time, i.e. mutations accu-
mulate and the gene pool extends. Secondly, there are a great number of ways
to adapt to any given change in the environment. Natural selection approves
of any acceptable versions. The selected variants may have either a more or
less complicated organization. Thirdly, once it has appeared, a species has
a certain stability. In particular, it resists the danger of being incorporated
by other species. Recall that hybrids produced by crossing between different
species cannot form germ cells, and therefore, cannot have any progeny. Nat-
urally, when we consider the increase in the number of species, we have to
take into account the reverse processes, such as the elimination of a species
due to an interspecific struggle or the extinction of a species because of its
inability to adapt to sudden severe changes in the environment.

Unpredictability of new species. We considered fluctuations in an
ensemble of gas molecules in Chapter 4 and saw how the fluctuations of
the variables for an individual molecule are great. They are comparable to
the means of the variables. On the contrary, fluctuations of the variables
for a macrosystem are extremely small. Therefore, a macro system could be
described on the basis of dynamic laws rather than probabilistic laws. This is
done in thermodynamics. This means that the transition from the atomic or
molecular level of consideration to the macrolevel brings about, as it were, a
reciprocal compensation of numerous random deviations in the behaviour
of individual molecules. The result is that the behaviour of the macrosystem
as a whole becomes unpredictable unambiguously.
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As to Nature, we encounter a qualitatively different situation. The in-
dividual fluctuations characterizing random changes in the genetic code are
reinforced 1015 times and can be revealed on the macro level, in the organism
phenotype. There is no reciprocal compensation here. Each fluctuation
grows to macroscopic dimensions. Therefore, we can assert that the process
of evolution in the Nature is fundamentally unpredictable in the sense that
no one can foresee the emergence of concrete species. In other words, each
species proves to be a random phenomenon. It can be eliminated, a new
species can be created, but an extinct species cannot be restored. Each existing
species is unique in this sense.

ConclusionWe have discussed a number of problems in biology related
to genetics and evolution theory. These problems clearly show the funda-
mentality of probabilistic laws and the fundamental role of chance. However,
the topic of probability in biology is much wider. It also includes a number
of problems that could not be treated in this book, such as the origin of life
on the Earth, the change in the sizes of populations of species, the simulation
of the nervous system, and the creation of a model of the human brain.





A Concluding Conversation

It is only when we finish writing that we find what we should
have begun from.

Blaise Pascal

author: “This book on the world of probabilities has come to an
end. I hope that it gave some food for thought.”

reader: “I have to admit that somepoints donot fit inwithmyown
views. For instance, it is hard for me to see how randomness can
be used to solve problems. I mean the perceptron, the Monte
Carlo method, and the principle of homeostat. These are very
much like ‘miracles’.”

author: “In the meantime, they are just as ‘miraculous’ as the
random number table.”

reader: “I do not understand.”

author: “Each new digit in the table is independent of its prede-
cessors. In spite of that, the table as a whole has stability. The
digits appear independently from each other, but the frequency
in which any digit appears is determinate.”

241
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“Besides, it is useless to try andwrite down a set of randomdigits
‘by hand’. For instance, you might write 8, 2, 3, 2, 4, 5, 8, 7 …
And naturally, you see that perhaps you should write a 1 or a 6
because the digits are not in the sequence. And against your will,
you correct your actions as a result of your preceding ones. The
result is that you won’t have a table of truly random numbers.”

“It is essential to see that the occurrence of each random event is
in no way related to the preceding ones. Therefore, the stability
observed in the picture of a large number of random events
seems to be ‘miraculous’. In the long run, the ‘miracle’ is re-
sponsible for the properties of the perceptron or the Monte
Carlo method.”

reader: “I can agree that the ‘root of the evil’ hides, in the long run,
in a random number table. How can you explain the puzzling
properties of this table?”

author: “The explanation is in the word ‘symmetry’.”

reader: “Please explain.”

author: “Having found a digit to add to your table, you take care
to provide symmetry with respect to the occurrence of all the
other digits. In other words, any digits from 0 to 9 should have
the same chance of appearing.”

reader: “Suppose I have a bag and draw out balls labelled with
different digits. What kind of symmetry do you mean here?”

author: “For instance, the symmetry with respect to the exchange
of the balls. Imagine that all the balls suddenly change places. If
the symmetry exists, you will not notice the exchange. But this
is not all. Once you return the balls to the bag and mix them,
you restore the initial situation and take care tomake the system
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symmetrical with respect to each act in which a ball is drawn.
As you can see, the explanation is deep enough. Symmetry and
asymmetry are related to the most fundamental notions. These
notions underlie the scientific picture of the universe.”

reader: “I have read your book This Amazingly Symmetrical
World. I was really amazed how far symmetry penetrates into
every phenomenon occurring in this world. Now I see that the
same can be said about randomness.”

author: “Thank you. You refer to my book This Amazingly Sym-
metricalWorld, in which I attempted to set forth the notion
of symmetry and show how the concepts of symmetry and
asymmetry underlie our physical picture of the world.”

“In fact, the point of that book was not just symmetry but the
dialectical unity of symmetry and asymmetry. Here I was not
just considering randomness but the dialectical unity of necessity
and randomness, which is, by the way, expressed in terms of
probability.”

reader: “Judging from the remarks above, there seems to be a rela-
tion between necessity-randomness and symmetry-asymmetry.”

author: “Yes, and a veryprofoundone. Theprinciples of symmetry-
asymmetry control both the laws of Nature and the laws of
human creativity. And the role of probabilistic principles is no
less fundamental.”

reader: “I’d like to discuss the relation between symmetry and
probability in more detail.”

author: “The classical definition of probability is underlain by
the idea of equally possible outcomes. In turn, equally possible
outcomes always have a certain symmetry. We dealt with equally
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possible outcomes when we discussed throwing a die or tossing
a coin. Recall the definition of the statistical weight of a macro-
state in terms of the number of equally possible micro=states
(Chapter 4), and recall our discussion of equally possible alterna-
tives while considering Mendel’s laws (Chapter 6). In each case,
the probability of an event was defined as being proportional
to the number of equally possible (I can now say, symmetrical)
outcomes, in each of which the given event is realized. In other
words, the probability of an event is the sum of the probabilities
of the respective equally possible outcomes.”

reader: “I begin to think that the very rule of the summation of
probabilities is based on a certain symmetry.”

author: “An interesting idea.”

reader: “Given we are looking for the probability that one of two
events will occur, it is irrelevant which one does because either
of them brings about a result. The symmetry here is related to
the independence with which the result is obtained with respect
to the substitution of one event for the other.”

author: “We can go further. Suppose there is a deeper symmetry
related to the indistinguishability between the first and the
second event (similar situations were discussed in Chapter 5).
The rule of the summation of probabilities is replaced in this case
by the rule of the summation of the probability amplitudes.”

reader: “True, I can clearly see here the relation between symmetry
and probability.”

author: “This relation can be represented even more clearly if we
use the notion of information. Of course, you remember that
information is underlain by probability in principle (see Chap-
ter 3). Now the relation between information and symmetry is
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as follows: less information corresponds to a more symmetrical
state.”

reader: “Then it is possible to believe that an increase in the sym-
metry of a state should result in a rise in its entropy.”

author: “Exactly. Have a look at Figure 4.12. The state with the
greatest statistical weight, and therefore, with the greatest en-
tropy is the state corresponding to the uniform distribution
of molecules in both halves of the vessel. Evidently, this is the
most symmetrical arrangement (there is amirror symmetrywith
respect to the plane separating the vessel in two).”

reader: “That is something here to think over. It means that hu-
man creativity reduces symmetry. However, symmetry is widely
used in art. Is this not a contradiction?”

author: “No. We use symmetry-asymmetry rather than only sym-
metry in art. We have already discussed it elsewhere, in my book
on symmetry. Of course, these problems require special consid-
eration. We can only touch on the problems here and not go
into any detail.”

“I emphasized in my book on symmetry that symmetry operates
to limit the number of possible variants of structure or variants of
behaviour. Obviously, necessity operates in the same direction.
On the other hand, asymmetry operates to increase the number
of possible variants. Chance acts in the same direction. I have
repeatedly drawn your attention to the fact that chance creates
new possibilities and gives rise to new alternatives.”

reader: “This means that we can speak of the ‘composition of
forces’ as follows. There are symmetry and necessity on the one
side, and asymmetry and chance are on the other side.”
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author: “Yes, this ‘composition of forces’ is correct. Please recall
the parable about the ‘Buridan’s ass’. I started with it my first
conversation ‘between the author and the reader’ in This Amaz-
ingly SymmetricalWorld.”

reader: “I know this parable. The legend has it that a philosopher
named Buridan left his ass between two heaps of food. The ass
starved to death because he could not decide which heap to start
with.”

author: “Theparablewas an illustrationofmirror symmetry. There
were two identical heaps of food and the ass at the same distance
between them. The ass was unable to make his choice.”

reader: “As I see it, the ass starved to death because of symmetry.”

author: “As the parable has it, he did. In reality, however, the
ass lived in the ‘symmetrical world built on probability’ rather
than in the ‘symmetrical world’ without any randomness. Any
chance occurrence (a fly could bother the ass, he could jerk or
move a little)might easily destroy the symmetry: one of the heaps
could become a bit closer, and the problem of choice is ‘null
and void’. As physicists say, a spontaneous violation of symmetry
could easily occur.”

reader: “Is it possible to conclude that symmetry is harmful while
chance is beneficial?”

author: “I’m sure you realise that such a question is too far reach-
ing. We have seen that symmetry decreases the number of ver-
sions of behaviour and reduces a number of alternatives. It is
logical to admit that this reduction may lead to a hopeless situa-
tion, to a blind alley. And then chance becomes essential. On
the other hand; too many chances, an abundance of alternatives
and disorder may also be harmful. And then, order comes to
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rescue, i.e. symmetry and necessity.”

reader: “The danger of randomness is understandable. But what
might be the danger of symmetry? If of course we exclude the
situation the ‘Buridan’s ass’ was in.”

author: “Firstly, the ‘Buridan’s ass’ was not an illustration from
the life of animals but rather the presentation of a problem. Sec-
ondly, it is quite easy to give a practical example of the danger of
symmetry. Designers of bridges, towers, and skyscrapers know
that they must not be too symmetrical because of the danger of
resonance oscillation, which can destroy a construction. There
are well-known accidents when bridges have been destroyed due
to resonance caused, for example, by a company of marching
soldiers, rhythmic bursts of wind, or other seemingly inoffen-
sive causes. Therefore, when large constructions are built, the
symmetry is always violated in some way by randomly placed
asymmetric beams, panels, etc.”

reader: “True, symmetrymaybedangerous. As far as I understand,
it is quite easy to destroy symmetry, be it a fly bothering an
animal or an extra beam in a construction.”

author: “Your attention has been drawn to an essential point. The
instability of symmetrymakes it easily upset and, in particular,
allows for the possibility of spontaneous violation.”

reader: “Symmetry is unstable. This is something new to me.”

author: “The investigation of unstable symmetry has not been
going long, only a decade. It has led to the appearance of a
new scientific discipline called catastrophe theory. This theory
studies the relationship between symmetry and chance from
the point of view of the development of various processes and
phenomena.”
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reader: “The very name of the theory is somewhat dismal.”

author: “The catastrophes considered in the theory occur on dif-
ferent levels. Suppose a particle causes a violent process in a
Geiger-Müller counter. The result is that the particle is regis-
tered. The process is a catastrophe on the scale of themicrocosm.
An enormous bridge or a jet plane may be suddenly brought
down due to resonance oscillations. This is a catastrophe on our
common scale. Catastrophes occur in a diversity of situations:
sudden crystallization in a supercooled liquid, a landslide, the
start of laser generation, etc. In each case, the system has an
unstable symmetry, which may be upset by a random factor.
These random factors may be very slight in influence, but they
destroy the symmetry and therefore trigger violent processes in
an unstable system, and these processes are called catastrophes.”

reader: “Catastrophe theory appears to show up the deep relation-
ship between symmetry-asymmetry and necessity-randomness
quite clearly.”

author: “I quite agreewith you. However, it is a theme for another
book.”
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