Distributional List
of the
WEST AMERICAN MARINE MOLLUSKS
from San Diego, California
to the Polar Sea

from the proceedings of
The CONCHOLOGICAL CLUB
of SOUTHERN CALIFORNIA

Part II Volume II

John Q. Burch, Editor
These papers are published by a group of interested students for our own pleasure and financed by voluntary contributions of members and friends. It is not our intention to offer subscriptions and guarantee regular periodical publication. However, non-members of our club will be placed on our mailing list and receive all papers published for contributions to our fund of $2.50 per year or $1.25 each six months.

We are now meeting at the Los Angeles Museum, Exposition Park, Los Angeles, Calif. on the first Tuesday of each month at 7:30 P.M. All interested persons are welcome. Next meeting Jan. 8, 1946.

Please mail any news about our mutual interests to your editor,

John Q. Burch,
4206 Halldale Ave.,
Los Angeles 37, Calif.
Phone AX 2-7985

The following letter from Dr. Paul Bartsch, Smithsonian Institution, United States National Museum, Washington, D.C. is appreciated.

"Your Minutes of the Conchological Club... have come to hand, and I am rather interested in your treatment of Melanella. May I express an opinion contrary to your conclusion and those of Dr. Keen?

Bowditch's figure of Melanella dufresnii is characteristically that of almost all of your curved western Melanellidae. You will find that these have a peripheral angulation like that shown in Bowditch's figure. No Stylifer that I recall has such a form, all of which appear to have the last whorl rounded at the periphery. I think Winckworth, therefore, was in error. The typical group of Melanella is what I call Balcis.

The Van Cleef Memorial Library, Cornell University, Ithaca, N.Y. - Elizabeth Congdon, Librarian. I was very much interested in the note regarding early numbers of Nautilus (published as Conchologist's Exchange) on p. 43 of the October number of the Minutes. We have a few of vol. 1 and 2, and would like to secure the missing ones to complete our set. Can you, or any members of your club, give us any help in this project? We would like to find vol. 1, no. 1-4, (1886-1887) and vol. 2, no. 1-6 (1887-1888). If you know of the existence of any duplicates of these numbers that are available, we shall be glad to pay a reasonable amount for them.

Professor H.W. Miller, Apartado 1320, San Jose, Costa Rica. We are very happy to have two long letters from our active member. It seems a long time since we enjoyed his company at our meetings. The following are some excerpts from his letters: "With my wife and two girls that stay with us I spent May 10-12 at the Boca de Barranca, a small town on the beach near Puntaarenas. While it is not the best place for collecting we have seen, neither is it the worst. It offers quite varied collecting grounds, having sand beaches, river mouth, estuary, and rocky cliffs, but is peculiar in that all but the smaller shells are usually too broken up to be of any value in a collection. The four of us brought back about 130 species, some of which were quite broken. Some 25 or so of them were new to our collection. As I have had little literature at hand I wish to correspond a bit with Doctor Hill before I end you a list of the species collected. I was interested in the article by Eyreman on extended ranges. We also have Pseudocyrena mexicana B. & S. here in Costa Rica and Dr. Hill identified a Donax navicula stanleyi for me in 1940.
Incidentally I found the latter quite common on the beach at the Boca do Barranca this year. As I was not equipped for bringing much material this time I brought back more information than shells; I plan to make a trip to Puntarenas sometime soon and perhaps a trip to Limon on the Caribbean. If I can make it, I have quite a sizable trip planned to begin in the latter part of December or the first of January. I took a hammer and chisel this time and worked the fossil beds as well as the living rock borers. I found fossil Chiton, Dosinia, Turritella, Modiolus, , Flus, Polinices, Epitonium, Nassa, Architeichonica, and some others. The deposits are exposed at mid-tide and although at sea level are true fossils of a different material from the rocks in which they are found. The material is a translucent crystalline deposit and many of the double bivalves are hollow. Sometimes where the projecting end of a bivalve had been broken by the surf, exposing the hollow interior, there were groups of Littorina aspersa living in the hollow of the fossil, rather an interesting situation. Saw some alligators also.

The following is from a later letter. Since I wrote the other letter I went to Limon, on the Caribbean. A friend and I hiked along about five or six miles of difficult beach (rock and coral with timber and brush right down to the water line, which didn't help much when the tide went in) and I found a number of species alive that I had never taken alive before and a few that I had never taken at all. Then before coming home I gathered a lot of sand from beaches inside the reefs and found a lot of interesting microscopic species that I had never paid any attention to before. I plan to get more specimens of that sand, it is full of interesting things. All dead, of course. Now I want to go back some time and explore the shallow water where they live. It would be easy to spend a month or two just in Limon. Then later I took another friend, a student who comes from the Bay Islands of Honduras and is a shell fan, who, by the way, brought a nice lot of stuff with him when he came, and went to Puntarenas. We got a canoe and a shovel and spent the day on the mud and sand bars in the Estero with little results. It was not the right time of year for that kind of collecting. The mangrove swamps gave a better yield of Littorinas, pulchra, fasciata, and varia all being common. As the collecting was not too good there we went out on the Boca de Barranca where we got over sixty species of dead shells before we reached the hotel. Just walking along a couple of hundred yards of beach, some of them new to me. In all, we got about 150 species at that place and many of them can be taken alive almost any time one wants to go after them. So far I have never had the luck to find the microscopic species numerous on the Pacific Coast. The other two Littorinas that are common on rock beaches are always to be found here. After the school year is out I will sit down and write you a more detailed description of some of the places where I have collected.

Professor Miller describes in detail his plans to make use of a motor boat and dredging equipment in the Bay Islands. We look forward with interest to hearing of this excursion.

W.J. Eyordane inquires for the address of Lewis who collected in Alaska. The Lewis collection is now in the Los Angeles Museum and no doubt Dr. H.R. Hill can advise about this matter. Arthur P. Hahn, Royersford, Penna., is an enthusiastic collector and interested in purchasing fine shells.

Mrs. Effie M. Clark, our efficient secretary, has been very busy lately packing her extensive study collection of fossil shells from the Hilltop Quarry and other deposits. She is donating them to the U.S. National Museum, Wash., D.C.

Mrs. Henry Calcutt, South Berwick, Maine is interested in buying shells.

Max Lorenz, 36 Garden Place, Brooklyn, N.Y.C. is interested in buying shells.
Minutes of the October, 1945 meeting of the Conchological Club of Southern California.

The Conchological Club of Southern California met at the usual time and place Oct. 7, 1945. There were present 17 members and one visitor, Mrs. Araminta Blanchard, 645 S. Hobart St., Los Angeles, who expressed a desire to become a member of the club. Three of those present were members who had been long absent from our meetings—Mr. and Mrs. Gillis for almost three years, and John Brookshire, a flyer from overseas. We were also glad to have with us Mr. and Mrs. Harrt Turver who have not been here long enough to get the habit of regular attendance. We need them and hope they will be with us often.

There were no reports of standing committees. The first item of business was a motion which was carried to change the time of meeting back to one of the earlier dates, 7:30 P.M. of the first Tuesday of the month. The meeting room only will be changed and an appropriate guide will see that those attending will find the proper place. We were given a short talk by John Brookshire who will at a later date tell us more fully of his experiences and show us some of the shell treasures he has brought back with him.

The regular lesson which is outlined elsewhere in the notes used up the rest of the time allotted to us before closing of the museum.

A goodly number of "extras" were contributed by John Burch and enthusiastically gobbled up. The meeting was then adjourned.

Effie M. Clark, Secretary.

The most notable part of my shell collecting here is that the ranges of Pecten aurinus has been extended about 700 miles W. westward from Wrangel Narrows and the same can be said for the nudibranch Melibe leonina of lion's head altho it is common in Prince William Sound, but I believe has not been reported north of S.E. Alaska. I collected several specimens of this curious animal which is transparent and has an enormous mouth and peculiar appendages. It is so delicate that it falls to pieces from its own weight when taken out of water. It is more fragile than a jelly fish. Specimens up to 6 inches occur in Raspberry Strait.

The day before yesterday the watchman at Iron Creek about a mile from here killed an enormous bear which was becoming too dangerous. I often followed his trail and saw where he slept the night before. Once about six years ago he caused our carer, a Scott with plenty of nerve to dive off a rock into the sea when he suddenly met up with him. A few months ago he swept a side of beef from the cook house at Iron Creek. Anyway this was the largest bear I have ever seen in or outside of a zoo. Fourteen of us went over to Iron Creek and a lot of photos were taken. Then we dragged him about 100 feet down his own trail. It took 14 strong men pulling as hard as we could on a down slope we had to stop every few feet because of his weight. I don't know how heavy he was. At least 1500 pounds. He was exactly 10 ft. long from his heel to his nose and could reach 12 ft. high. He was very fat and as big around as a barrel. His head was 22 inches wide and front paws 11 inches wide. Yesterday the gang went over again to help skin the bear but he was stinking badly and swelled up. I was the only one that returned to do any skinning, but I decided it was too much of a job, so I cut off his enormous head and stored the terrible stench of rotten blood and grease that bubbled out. The blowflies were there by the thousands. I worked until late at night defleshing the skull which I now have cleaned for my collection. He was a very old bear, perhaps 40 years old. The skull is undamaged. These Kodiak bears are the largest in the world and have great strength. He was so big that he could smash his way right through a house without much trouble. This one was black. The watchman and I dug a big hole and tumbled him into it and buried him. At least his big skull will be a trophy from the king of Raspberry Island.
December, 1945

Walter J. Eyerdam, 7531 19th Ave., N.E., Seattle 5, Wash. * Last Wednesday I returned from Alaska. It was quite a stormy voyage across the Gulf. Most of my things were on a fishing boat. I just got them home yesterday.*

Mrs. Agnes E. Wolf, 329 W. Grand, Port Washington, Wisconsin. * I am looking for an Area chemist and am wondering if you can tell me where I can get a good specimen of valves. Also, I am told there is a colony of Helix aspersa somewhere in Oakland but can't find where and perhaps you can inform me.*

The Oakland Public Museum, Oakland, Calif. sends us their thanks and appreciation of the Minutes.

Abby Gorham, a charter member of the Long Beach Shell Club recently passed away. She will be greatly missed in Long Beach shell circles.

Miss Julia Ellen Rogers recently suffered the loss of her brother, Dr. Arthur M. Rogers of Los Angeles.

Miss M. Volk, Teacher, St. Paul's School, 14th St., West, Prince Albert, Sask. Canada. is interested in purchasing shells.

E. J. Post, 609 W. Emma St., Tampa 3, Florida. Our member in Florida is sending us a box of shells for distribution to the members. He reports 64 inches of rain so far this season which sounds like a lot of rain to us here.

Mrs. N. Watzen, Box 763, Escondido, California is welcomed to our shell circle. She is a friend of Mrs. Boerstler of Corona-del-Mar.

Mrs. E. W. Boerstler, P.O. Box 484, Corona del Mar, Calif. * Is there such a thing as a dictionary devoted to shell terms? * * Note * Before many months pass all of our members and subscribers will receive an illustrated glossary that should answer this question. We are working on it now.

Since the coming of Mytilus edulis desmansis Cow here in Newport Bay, I am unable to find anything which I formerly found where it has taken root. They build out all around a pier for 9 inches or more so that every thing is smothered even Modiolus capax—Not a Chama or Lucapinella callio-marinata left...... We went out Sat. and Mr. B. got two very lovely pure white Murex trianata, the first white we have found.

L. M. Wright, CEM, U.S. Navy, Operations Office, Navy Pier 3, Miami, Florida. Please note the new address of our member. We are promised another box of shells although Wright says that the mosquitoes make collecting difficult at this season of the year.

Col. Charles E. Lee, 2143 AAFBU, Sq. A., T.A.A.F., Tuskegee, Alabama. * spent last week end collecting with Morris Jacobson of New York City at Rockaway. Quite a thrill as it was my first ocean collecting and I must admit going a nearly crazy over my first sight of huge Spissula solidissima in abundance. Really it was a full week end. I have another brother who was redeployed home to Guam. Will you let me know if there are any conchological possibilities.* * Note * If that brother in Guam doesn't send you some of the shoest things in your collection it will be because he is mad at you.

Mrs. Laura C. Lawry, 26 Union St., South Berwick, Maine. is interested in purchasing shells.

Miss Mavis Holloway, 32 Pentland Ave., Mt. Eden S.2, Auckland, N.Z. We wish to thank Miss Holloway for her financial contribution to our fund and also for the further issues of her notes of the Auckland Museum Shell Club. The latest papers on hand are "Fossil Beds Near Auckland" being a summary of a lecture given by E.S. Richardson, and "Notes on Collecting Our Land Shells" by A.E. Brooks, and "Ecology Notes on Whaitupu".

Minutes of the Long Beach Shell Club: October, 1945

After an absence Mr. Baker again was at the helm of the L.B. Shell Club on Oct. 14, with twenty three present. Haven't yet decided to change meeting date although the third Friday of the month may be accepted if the
room is open. The November meeting we hope to meet on the eighteenth for a collecting trip and picnic over Palo Verde way. Notices will be sent when plans are complete. The Christmas meeting, second Sunday of the month, will be held at the Ulrich home. Shell packages will be exchanged and the nominating committee will report as usual. We wish to acknowledge the invitation of Dr. Hill to attend the November lecture of Mr. Roughley "Great Barrier Reef" in Hancock Hall, U.S.C. The club also voted to support the Long Beach "Courtesy Campaign". Miss Rogers then introduced the speakers on the subject "Divisions of the Animal Kingdom."

Miss Higgins described the amoeba as an example of the first phylum, and showed how through a single cell it carried on all the life processes of the higher forms. She showed its connection to man in that many forms caused or were accompaniments to diseases such as trench mouth, dysentery and Texas fever. Man, too, may serve as host to five amoeba, four of the flagellates, and one ciliate. Her final group was the foraminifera, fossils of which indicate the presence of nearly oil when seen in oil sands.

Grace Ferris showed how the sponge was a many celled mass working together for the good of the whole. She mentioned the sponge fisheries of the world, and spoke especially of the value of different sponges brought up from the Gulf of Mexico beds to the Tarpon Springs pier. Sheep’s Wool, yellow and grass sponges were mentioned as obtainable in the markets along this interesting wharf where they were left in the sun to rot the fleshy part, beat to separate and soften the fibres, washed and bleached. As an interesting and beautiful example of sponge she showed the Venus Flower Basket.

Mrs. Paxon spoke of the jelly fish, a colony of one celled animals, referred to the beautiful and various shapes, some umbrella-like, their luminiscence, and the objectionable way some of them flatten out on the sands and sting the unwary bather. Mrs. Paxon has seen the Portuguese Man o’ War as it moved about in Florida waters by the wind against its gas-filled float.

Miss Rogers spoke briefly of the coral shapes and the spiny skinned group embracing starfish, a radially symmetrical form, and the sea urchin which seems like the former with its arms curved upward and joined together.

Mrs. Ferris has mentioned how the jelly fish becomes at times flattened out on the sea bottom. This well illustrated the next groups which Mrs. Bornman discussed, the worms, a flattened out creeping animal which revealed a longening of body form. This produced what is known as bilateral symmetry. Examples of flatworms were parasitic flukes and tapeworms. The round or thread worms were the vinegar eels, and the parasitic pin worms and the trichina from poorly cooked pork. The garden worm served as an example of a more advanced group, annelida, and the rotifers, polyzoans, and brachiopods represented a worm like group, given alone.

Mr. Baker wanted to claim the brachiopods as mollusks while a drifting their separateness. He considers the mollusk an exceedingly important group from the shell club standpoint and quoted a poem showing it is the covering and not the fleshy part shell collectors prefer.

Miss Rogers completed the phyla, telling of beautiful Brazilian butterflies she had seen in South American gardens and referred to the illustrations in Comstock’s "Spider Book". She quickly built up the "Life Tree" to man, explaining the branches in relation to each other.

An interesting meeting with a fine review of our high school biology, interspersed with many personal touches.

R. E. Eaton, Secretary.

New York Zoological Society, 630 Fifth Ave., New York 20, N.Y. have published their September-October issue of Animal Kingdom, the magazine that goes regularly to members. It is a splendid publication.
Earl C. Huffman, 356 Stanton St., Pasadena 3, Calif., contributes the following interesting note.

New Locality for Helminthoglypta tudiculata (Binney).

While visiting the Hitt-Blocafield ranch, at Spadra, California, four miles west of Pomona, in September, 1945, I noticed that a large limb had fallen from a large umbrella tree. Upon questioning the owners as to the cause of the damage to the tree, I was told that apparently a slight wind had caused the limb to break off, and it was found that the whole interior was in a state of decay, which would soon necessitate the removal of the entire tree. They told me that the tree was very old, having grown there for several generations. I began digging into the core of the old trunk, and found in a few minutes a total of 57 of the Helminthoglypta tudiculata. The owners have promised that when they remove the old landmark, they will be on the alert for more of the shells.

It being such a surprise to find species of this kind about 10 miles from the nearest place - San Antonio Canyon, where they have been discovered, the question arose as to how they got there. A little reminiscing brought to mind the flood of 1913 which came racing across the ranch from the east with a wall of water about 20 to 3 feet high. They recalled that it filled the ditch to the brim, and also swept a neighbor boy and motorcycle into a ditch from the highway in front of their place.

I believe the high water must have carried these shells along from San Antonio Canyon, and that some must have lodged in this old umbrella tree at that time 32 years ago. At some future date I hope to be able to make a further search in and around that locality for more Helminthoglypta tudiculata.

Dr. A. Myra Keen, Box 1563, Stanford University, Calif., in a recent letter contributed the following items about some of our friends.

"I had the pleasure this week of meeting Lt. V.D.P. Spicer, who dropped in for a few minutes. I have heard that Jack Dowdle may soon be a visitor here on his way home to Los Angeles from New Guinea. Lt. Colonel Hubert Schenck is now Chief of the Natural Resources Division at General Headquarters of the Supreme Commander for the Allied Powers, in Tokyo. He flew from Manila to Tokyo early this month to take up his new duties."

Mr. A. G. Smith of Berkley, Calif., and your editor accompanied by Mrs. J. Q. Burch drove down to Stanford University and spent the afternoon of Nov. 11 as the guests of Dr. A. Myra Keen. It was after dark when we left. Between discussing mooted questions, examining sets of specimens of particular interest from the great Stanford Collection, and marveling at some of the rare books, we really put in an afternoon.

Homer V. Geib, Box 773, Palm Beach, Florida. We were sorry to learn that our good friend had returned to his old home in Florida after having been with us several years but feel a little bit mollified by his remark "However, it is my hope to be able to arrange matters, so that I can spend part of the year with you and part of the year in Florida."

Wray Harris, Bishop Museum, Honolulu, T. Hawaii. We feel honored to add this address to our mailing list.

Dr. B.R. Beales, 149 West Main St., Circleville, Ohio. "We expect to spend most of the winter at Marathon, on Key Vaca. If any of the members of the Conch Club are in Florida and get as far south as the Keys, have them look me up at Marathon and I'll be glad to show them around to the various good collecting localities. The editor for one would surely like to take Doc up on this but must wait until another season."
The following notes received from Mr. Allyn Smith deal with the groups discussed in Minutes #53 and #64.

The Neosimnia from Monterey is a beauty; have seen nothing like it. Can't decide whether it is new or the true vidiori. If the latter, then my former conception of villeri is all wrong, and what I thought was villeri may turn out to be loebbeckeana. You remember I mentioned in my notes the specimens from Monterey with the indistinct white band across the body whorl. Your Monterey specimen is not like this and there are other marked differences. However, you do have a specimen with the white band from southern California, smaller than the Monterey shells in the CAS, but undoubtedly not true barbarensis. The figure of the type of loebbeckeana, given by Schildor and reproduced in outline on page 40 of the last Minutes (#53), show a double dashed line across the middle of the shell. If this was intended to represent a color band, as I think is quite likely, then I think we can settle the shells with the indistinct white band as loebbeckeana. This would then result in the identification of your Monterey specimen most probably as the real vidiori. I am going to write my labels on this basis until somebody comes up with a good reason to change.

Your lot of Neosimnia from Magdalena Bay contain at least two species, the purple ones with the columellar shelf are infirma. The lighter colored ones with the striations belong to an undescribed species and are like those in the Academy Collection from the same locality.

There is one correction that should be made in reference to Fusinus diminutus Dall in the Minutes #50, p. 36 (bottom). Mac went over the diminutus again while he was in Washington and discovered that the type of diminutus is a real Fusinus, and therefore the species stands. The confusing fact was that there were also specimens of Ocenobras lurida mandi in the type lot. My note on this in the Minutes, as cited, should therefore be disregarded. Another correction that also should be made is that the type of F. kobelti as figured by Dall in Proc. USNM, 1891, is from Catalina. Dall says so in the explanation to the figure. Therefore Mrs. Oldroyd was wrong in assigning the type to Monterey. It is true, however, that Dall covered a young specimen from Monterey in diagnosing kobelti, thus confusing the situation. The Monterey shell is another species.

The Ocenobras Beatrice showed me a real puzzle that I doubt if I can straighten out without more information. The Ocenobras epichamae from the gravel bed off Redondo checks well with the original description and I would not change the identification. However, I have a strong suspicion that epichamae is a deep water variant of foveolata. More material is needed to settle the point.

There are three species in the material collected by Mrs. Randall at Imperial Beach. One is extremely like our new one from Monterey, so much like it, in fact, that I would almost label it as such. However, I want to see the type of O. squamulifera, which Dr. Keen says is at U.C. before making a final decision. The other two species have me stumped at present. One of them has rather prominent varicial nodes, is rather light in color, with brown markings on the spaces between the varices. This may be O. fuscocostata, but I'm not sure yet. The other species appears to be most common at Imperial Beach, judging from the number of specimens that Mrs. Randall collected. The shells of this look like a small edition of O. foveolata. If I had a growth series of foveolata to check against, this would help. Can you loan me a set from your collection? I don't have any young ones in my collection—neither does the CAS.

The pretty little Amphiessa labelled cymata is, I am sure, the color variant called lineata by Serrana. It was figured without description in the Proc. Calif. Acad. Nat. Sci. ser. 1, as cited by Dall in Bull. 112.
The figure looks exactly like your shell, which incidentally is the subspecies incisa of versicolor. The description of cymata, which appears to be just another color form, calls for axially waved lines on a white ground—a common form. Your shell has spiral color lines, not axial.

Bittium eschrichtii montereyense Bartsch— Monterey, shore to 10 fms, abundant. Also abundant all along the Mendocino Co. coast. Occasional specimens from Monterey and vicinity show the coarser sculpture of eschrichtii, as given in Bartsch's figure and this is also true of the Mendocino Co. lots. The type of montereyense came from Monterey, as indicated in the table of specimens examined in Bartsch's paper, Pleistocene, 3 mi. N. of Cayucos.

Bittium attenuatum Carpenter— Shore to 20 fms, in Monterey Bay; common. Lives at low tide among eelgrass roots. There are several pretty color forms of this species.

Bittium attenuatum multifilosum Bartsch— I have not collected this at Monterey and so far as I know the only one reported from there is the specimen in the U.S.N.M.

Bittium subplanatum Bartsch— This is as good a point as any to hazard the opinion that the subgenera of Bittium, as used by Bartsch, seem to me to be based on characters that are so variable in many of the ornamented species that their systematic standing is questionable. I would be inclined to disregard them for this reason. If what you say is correct about the variation of subplanatum, then the proper procedure would seem to require making this a subspecies of catalinense, with inornatum (if it is to be considered valid) another subspecies. The Monterey Bay record for subplanatum is 66-73 fms, off Pt. Pinos (USFC). It appears to be rare in the bay.

Bittium quadrifilatum Carpenter— Monterey Bay, shore to 40 fms, scarce.

Bittium quadrifilatum ingens Bartsch— This is now Corithiopsis ingens Bartsch switched the genus in his 1911 paper.

Bittium rugatum Carpenter— Would like some specimens for comparative purposes.

Bittium interfossum (Carpenter)— Monterey Bay, beach drift and at low tide.

Bittium tumidum Bartsch— Now Corithiopsis tumida Bartsch. Same situation as for B. quadrifilatum ingens.

Corithiopsis californica (Halfman)— Not found in the vicinity of Monterey. It is hard to understand why it should not be in Elkhorn Slough, but it evidently isn't there.

C. californica hyporphysa Berry— Would let it stand.

Caecum californium Dall— Monterey Bay, 10-30 fms. (Gordon).

Caecum lenticulum Bartsch— Monterey Bay, 10-30 fms. (Gordon).

Micranellum orebricinatum (Carpenter)— Monterey Bay, 10-35 fms.

Micranellum oregonense Bartsch— Monterey (Bartsch). Don't know it.

Partulum occidentale Bartsch— 15 fms, off Pacific Grove, Monterey Bay, rare.

Elionia compacta Carpenter— Monterey Bay, shore to 25 fms.

Vermicularia fawcettii Yates— May be conspecific with eburnea, but this is a pure guess. Yates' paper is exceedingly rare. Some of these days I hope to get a photostatic copy.

Alatos squamigerus Carpenter— Monterey Bay, between tides.

Vermicularia anellum (Morch)— 15-25 fms, Monterey Bay.

Spirographus lituellus (Morch)— Monterey Bay, shore to 15 fms.

Petalocoonchus montereyensis Dall— 10-25 fms, Monterey Bay.

Petalocoonchus complicatus Dall— Not in our Monterey list and is an addition.

Turritella cooperi Carpenter— Scammon's Lagoon (Univ. Calif.); Monterey Bay, 40-60 fms. (con.)
Turritella jowettii Carpenter—Morrian states that the type is lost and no topotypy answering the description have been found. The type locality is the Santa Barbara region two miles from the coast and 150 feet high (Jewett). The only Turritellas known from this region (later Pleocene or Pleistocene), are members of the T. cooperi stock. Morrian believes jowettii to be a variant of cooperi, as it was named by the same author, and that it probably should be allowed to stand. It is not a Recent species.

Turritella sp. Have a set of shells obtained from Mrs. Baldridge years ago that seem different from cooperi. They were evidently obtained in deep water by fishermen off Long Beach. The largest shell measures: length 98 mm; diam. 17.2 mm. Another measures 65.0 mm. long. The smallest of the four in the lot is cooperi size, measuring 46.6 mm. long, but has only 17 whorls as against 22 whorls for the largest specimen. Do you have anything like this?

Turritella mariana Dall—40 fms. off Ship Rock, Catalina (Gordon).
Tachyrhynchus lacteolus Carpenter—Records in Gordon Coll. as follows: Pr. Wm. Sound (T.S.C.); Departure Bay, B.C.; Gabriola Island, B.C.; Kodiak Id.: Avanca Bay, Kamchatka; Sitka; Monterey Bay, 63 fms. (Gordon).
Tachyrhynchus stearnsii Dall—off Balboa, 67 fms. (Gordon).
Tachyrhynchus erosus Couthouy—Records in Gordon Coll. are: Sitka; Kodiak Id.; Avanca Bay, Kamchatka—all collected by T.S. Oldroyd.

Family Littorinidae
Genus Littorina Ferrusac, 1822. Type (by subsequent designation, Rang 1829, side Dall and Iredale), Littorina littorea. Grant & Gale, p. 780
Bequaert, Jos. C. The Genus Littorina in the Western Atlantic, Johnsonia #7, 1943, discusses the type designations and history of the genus and most of the subgenera.

Shell turbinated, thick, pointed, few-whorled; aperture rounded, outer lip acute, columella rather flattened, imperforate. Operculum paucispiral. (Tryon).

Subgenus Littorina s.s.
Dr. Dall described Section Algaroda in 1918 and placed the west coast species squila under it in Bulletin 112. Bequaert states that the type of Algaroda, by monotypy, is Turbo littorea Linnaeus, 1758 which would place it in the synonymy of Littorina s.s.

Littorina squila Broderip and Sowerby, 1829. Cape York, Arctic Ocean to F'ilof Islands and the Oshotsk Sea (Dall). Type locality, Oeagano borstall.
Collecting data: We have one set of this species collected by W.J. Eyerdam at Petropavlosk, Kamchatka in 1928.

Further comment on the subgeneric allocation of the above species is made by Dr. Joshua L. Baily Jr. (Per. Comm. Oct., 1945) as follows: "When Dall described Algaroda, as a subgenus of Littorina and made L. littorea the type, he was under the impression that Rang's type designation of L. littorea determined the type of Littorina s.s. This is the way in which he used the terms in Bull. 112. Later, when he found that Blairsville had designated as the type of Littorina, L. littorea in 1829, one year earlier than Rang's designation, he recognized that Algaroda must fall within the synonymy of Littorina s.s. and so stated in Proc. USNM v. 63, Art. 10, p. 3, 1924. The group which was called Littorina s.s. in Bull. 112 must therefore be called Neotetraids Brown, 1827, but as pointed out in Johnsonia, this name was preoccupied by Neotetraids Meusechen, 1779, so that the next available name, Neotetraids Meusechen, 1779, is the only name which can be used for the group represented on our coast by L. pallidata Say, 1822 which Dall reports in Bull. 112 from the Pleocene of Nome, Alaska but not known living on the Pacific side."
The following key and list of species is from Mr. A.M. Strong's notebook.

Genus Littorina

Surface sculptured with distinct spiral ridges
- Shell large, over 20 mm. in height
- Pale grayish or brownish, variously streaked or dotted
 Height 30 mm. Magdalena Bay to Peru varia
- Shell small, less than 20 mm. in height
- Spiral ridges roughened by lines of growth
- Whitish, lined or dotted with chestnut
 Height 16 mm. Cape San Lucas to Panama aspera
- Spiral ridges smooth
- White or yellowish, dotted with brownish
 Height 15 mm. Gulf of Calif. to Ecuador conspersa
- Surface sculptured with close-spaced spiral grooves
- Upper part of whorl concavely flattened
- Brownish or reddish, with oblique dark flames
 Height 55 mm. Panama to Ecuador zebra
- Periphery of body whorl angulated
- Bluish, with oblique solid or dotted lines
 Height 10 mm. Gulf of Calif. to Panama philippii
- Whitish, banded with bluish
 Ecuador to Chile ... othersites
- Whorls rounded
 see above .. varia
- Surface smooth or with fine spiral striations
- Shell large, over 20 mm. in height
- Pale grayish or brown, variously streaked or dotted
 see above .. varia
- Dark chocolate, with zigzag white markings
 Height 22 mm. Central America to Chile peruviana
- Shell small, less than 20 mm., in height
- Periphery of body whorl more or less angulated
- Whitish or brownish, obscurely banded
 Height 12 mm. Nicaragua to Chile araucana
- Whitish, with oblique brownish lines
 Peru and Atlantic ... ziczao
- Periphery of body whorl not angulated
- Columella broad and excavated
- Colors and color markings varied
 Height 15 mm. Puget Sound to Magdalena Bay planaxis
- Columella not excavated
- Uniformly dark, or with white axial lines or spots
 Height 12 mm. Alaska to Socorro Island scutulata
- Brownish, with fine whitish spiral lines
 Height 10 mm. Cape San Lucas to Panama pulita

Littorina scutulata Gould, 1849: Alaska to Socorro Island
Littorina planaxis Philippi, 1847: Puget Sound to Socorro Island
Littorina pulita Carpenter, 1857: Magdalena Bay to Panama
Littorina vari a Sowerby, 1824: Magdalena Bay to Peru
Littorina aspera Philippi, 1845: Cape San Lucas to Panama
Littorina conspersa Philippi, 1847: Cape San Lucas to Panama
Littorina philippii Carpenter, 1857: Gulf of Calif. to Guatemala
Littorina peruviana Lamarck, 1822: Central America to Chile

(cont.)
Littorina australis d'Orbigny, 1840, Nicaragua to Chile
Littorina zebra Donovan, 1825, Panama to Chile
Littorina thersites Reeve, 1857, Ecuador to Chile
Littorina alboaurata Gmelin, 1791, Peru, Atlantic

Genus Tectarius
Tectarius galapagensis Stearns (atyphus), 1892, Gulf of Calif. to Ecuador
Tectarius porcata Philippi, 1844, Galapagos-Indo Pacific

Genus Pensiella
Pensiella roosevelti Bartsch and Rehder, 1939, Galapagos

Discussion of the species reported north of San Diego continued.

Subgenus Littorivaga Dall, 1918. Type, Littorina sitchensis Philippi, 1846

Littorina sitchensis Philippi, 1846. Dr. A. Myra Keen advises that the spell-
ing of this species is an unjustified emendation.
Range: Southern Bering Sea, Both coasts, and southward on the east to Puget
Sound (Dall). Type locality, Sitka, Alaska, to Crescent City, Calif.
Collecting data: Port Orchard, Washington; Pauntleroy, Wash., on small
grovel along the beach (Burn); Strait of Juan de Fuca; Unalaska Island;
Vladivostok, Siberia (W. J. Eyerdam); 5 Alaska stations and Victoria, B.C.
(Mrs. Ate Stephens); Ellamaro, Port Graham, Alaska and Tacoma, Wash. (Baker);
Hokkaido, Japan (Baker); Forrester Island, Alaska (Willetts); Crescent City,
California. (Cooper).

Littorina atkana Dall, 1886. Kyska Island, Alaska and eastward to Cook's
Inlet. Type locality, Bering Sea.
Collecting data: Umnak Island, Alaska (Willetts).

Littorina aleutiana Dall, 1872. Pribilof Islands and the Aleutians' from
Kyska Island to the Chira Islands, on isolated inlets. (Dall).
Type locality, Gulf Rocks, Akutan Pass, Aleutian Islands.
Collecting data: Unuk Island, Alaska (Willetts).

Littorina gronlandica Menke, 1830. The Okhotsk and Bering seacoasts and
eastward to Sitka, Alaska; Puget Sound. Also Greenland (Dall).
Type locality, Greenland.
Collecting data: Cook's Inlet and Ellamaro, Alaska (Baker); Red Bluff
Bay, Alaska (Kate Stephens); Reykjavik, Iceland (Low Collection); Sweden
(Anderson) (San Diego Museum of Nat. Hist.).

Littorina rudis Donovan, 1800. Aleutian Islands to Puget Sound. Also Atlantic.
Type locality, Banks of the Tamar in Devonshire.
Dr. A. Myra Keen comments as follows: "For some years I have been
trying to find a west coast specimen that quite differs favorably with topotypic
material. At the National Museum I made the following note: 'West Coast
form has less spire, rounded aperture, with bevelled columellar margin;
English form with a tendency toward umbilication. Most USNM specimens seem
to be L. sitchensis f. gronlandica.' Hence, I have yet to see a West
Coast specimen I can confidently call L. rudis."
Collecting data: In view of Dr. Keen's observations the following
records are perhaps erroneous but they are what we have been calling rudis.
Littorina planaxis Philippi, 1847. From Puget Sound south to Magdalena Bay, Guadalupe and Socorro Islands. Type locality, California Superior
Collecting data: At and above the high tide mark all along the coast, covering all cliffs, breakwaters etc. Easily identified by the flattened columella. Young shells are banded with white and appear quite different at first glance. (Burch); N.E. Guadalupe Island, L.C. (Hyde); No., middle and south islands, Los Coronados (Stephens; Baker and Hyde); San Martin Island, L.C. (Baker); San Nicholas Island (Lowe); all along the coast to San Francisco (San Diego Museum).

Subgenus Melarhaphe Menke. Type, Melarhaphe glabrata Menke = Turbo neritoides Linnaeus. *comprises snails with a moderately thick, ovate-conical to ovate-turriculate shell, flattened or convex whorls, a high pointed spire, and a long, straightened columellar edge.* (Bequaert).

Dr. W.P. Woodring comments on this species (Per. Comm.) *You may wish to add under Littorina's cutulata that Carpenter thought that L. pedrosa Conrad, 1855 (Pleistoconus, San Pedro) is L. plana. The type is lost.*
Collecting data: An odd locality for this species is upper Morro Bay on salt grass stalks. There are no stones for miles and these specimens are of very exceptional size; Fauntleroy, Wash.; Crescent City, Cal.; and almost and piece of rocky rubble along the coast (Burch); Cape San Lucas, L.C. (Lowe); San Quintin Bay (Orcutt); S. Coronado Island (F. Stephens); and along the coast north to several Alaskan localities (San Diego Museum); Drier Bay, Alaska (W. J. Eyerdam).

Littorina pullata Carpenter, 1864. Ann., Mag., Nat. Hist., ser. 5, vol. 13, p. 477, June, 1864. Type locality, Cape San Lucas. (This is reprinted as Paper C of the U.S. Nat. Museum 1872 reprint, Smith, Misc. Coll., No. 252). Of the holotype at the U.S. National Museum I made the following comment in my notes *“Resembles L. scutulata but with incised white lines”* The above comments by Dr. A. Myra Keen.

Range: Monterey south to Cape San Lucas, L.C.
Keep and Daily *“West Coast Shells”* state *“It resembles L. scutulata but is of a dark reddish-brown color, sometimes checked with numerous finely sculptured spiral lines.”*
Collecting data: This color form is fairly common in some localities and not present in others seemingly of the same habitat which would indicate that it is a good race at least. It is common around La Jolla and also at Dana Point, Orange Co. It seems logical though that it should be considered a subspecies of scutulata rather than a distinct species. (Burch); Bird Rock, San Diego (Dr. Baker); Long Beach (Baker).

Dr. A. Myra Keen comments as follows (Per. Comm.)*“Littorina plana Gould, 1849. Proc. Boston Soc. Nat. Hist., vol. 3, p. 84. Type loc., San Francisco. Carpenter lists this as a variety of L. scutulata; I doubt if it is valid even varietally. Gould says of it, *“The globoseness of the last whorl is remarkable. It is... smaller, more polished, and with a smaller aperture than L. scutulata.”*

Subgenus Alasmorina Dall, 1913. Type (by monotypy), Baludinella newcom- biana Hemphill. The holotype of this species is at the California Academy of Sciences.
Littorina newcombiana (Hemphill), 1876. Humboldt Bay, California. Known only from the type locality.

Keepend, Daily "West Coast Shells" state of it "... has four distinct rounded whorls. The shell is smooth, thin and covered with a brown periostracum. The aperture is nearly circular. The length is about one-fifth of an inch. This species is found in saline swamps about Humboldt Bay and has no emancipated itself from aqueous conditions, that it is frequently found on the damp ground but above the water."

Mr. A. G. Smith comments on this species as follows: "Types in Coll. along with other lots. Gordon Coll. also has a set. So far as I know, no one has collected any since Hemphill took the original lot. The shells are rather thin-textured but have the shape of a Littorina. One would expect to find them in the salt grass or in Salicornia along with Aeluropus setifer."

Mr. and Mrs. E. P. Chase collected the species in Humboldt Bay and had a set at a recent meeting of the club. Mr. Smith stated that they have the shape of Littorina, but to my eyes they more nearly resemble large specimens of some species of Littorina. (Burch). There are sets in the San Diego Museum collected by Hemphill.

Mr. A. G. Smith comments on this species as follows: "Dr. Hanna looked for these recently at Neah Bay but found only the common Littorina var. there."

Family Lacunidae

Genus Lacuna Turton, 1827. Type (by subsequent designation, Gray, 1847), Morita pallidula (Don Costa).

"Shell turbinated or globular, thin, covered by an epidermis; aperture semilunar, columella flattened, with a parallel groove behind it ending in the umbilicus, lip sharp, arcuated. Operculum paucispiral." (Tryon).

Grant and Gale state: "It is possible that there is but one, very variable species in this genus in the California fauna." However, I cannot subscribe to this, because even if we overlook the very different shells the animal, for example of porcota moves with a different motion than some of the others at least.

However, Mr. A. G. Smith comments: "This genus to my way of thinking is in bad shape and needs careful attention by some one."

Lacuna porcota Carpenter, 1865 placed in synonymy on advice of Dr. W. F. Woodring as follows: "Lacuna carinata Gould, 1848; type locality, Puget Sound. I consider L. porcota, the type locality of which is Neah Bay at the mouth of the Strait of Juan de Fuca, a synonym. Modelia striata Gabb, 1861 type locality, Santa Barbara, Pleistocene (Gabb's Miocene) is evidently L. carinata as Carpenter thought."

Dr. A. Myra Keen remarks: "As Dr. Woodring has doubtless compared the holotypes, probably his synonymy is correct."

Collecting data: Abundant on the heavy kelp around Crescent City, Calif.
and Point St. George; Fauntleroy, Wash.; Puget Sound; Monterey, Calif.; San Simeon, and Cayucos; common in the Pleistocone of Timm's Point, San Pedro. As stated above this species moves with a peculiar waddling motion that seems to be different from the others. (Burch); Crescent City, Calif. (Chace); Monterey (Hemphill).

There are two subspecies of porrecta listed in Bull. 112 by Dr. Dall. Neither of those subspecies seem to have been recognized by any member of the club. They would, of course, now be subspecies of carinata is valid. They are:

Lacuna carinata effusa Carpenter, 1864. Fuca Strait to San Francisco, Calif.
Type locality: Hohn-Bay, Wash.

Lacuna carinata puteloides Dall, 1919 ex Carpenter MS. Lobitas, Calif.

Type locality: Greenland.

Subgenus Efferia Gray, 1847. Type (by original designation), Turbo vinctus Montagu.

Lacuna vineta (Montagu), 1803. Dr. A. Myra Keen advises (Per. Comm.):
Lacuna divaricata Fabricius is nomenclaturally unavailable. It may be regarded as both a homonym and a misidentification. The next available name is L. vineta (Montagu), 1803. (Test. Brit. p. 307). Type locality: Salembay, England. Original description of Turbo vinctus Montagu: "T. with a smooth conic shell, with six rounded volutions. Or a subpolulicid, rufous horn-color; the lower spire marked with 4, and sometimes 5, purplish brown, or chestnut colored bands, with a broad space between the 3 lower and the upper ones; in the second and third spires are only two bands: the apex is small, but not very pointed; aperture sub-orbicular; outer lip very thin; inner lip thick, white, furnished with a narrow channel, which terminates in a small umbilicus. Length rather more than 3/6 of an inch."

Range: Norton Sound, Alaska, and south to Santa Barbara, Calif. Also Pliocene. Also northern Europe and Greenland. (Dall).
Collecting data: San Ornons Island, Alaska (Willett); Drier Bay, Knight Island, Pr. Wm. Sound, Alaska (W.J. Eyerdam); Washington (Lowe); Norway, Sweden, England (Anderson) (San Diego Museum).

Lacuna solidula Loven, 1846. Shuyak Strait, Afognak Island, Alaska (Eyerdam) south to San Diego, Calif. Also Atlantic.

The description of this species was omitted from Oldroyd, and Dr. A. Myra Keen has sent it to us. It follows: "Lacuna solidula, 1846. Oppsigt af Kongl. Vetenskaps-Akademins Forhandlingsar for 1846(1847), vol. 3, no. 5, p. 155. Type locality: Bergen-Finmark. Original description: "T. oblongo-ovata, solidula, fusca, angula, convexa, labrum patula, euta, callo interne incrassato, aperta, antice effusa; 9/15.5 mm." [Apparently the dimensions are 9 mm. in height by 5.5 in diameter.]

Grant and Gale consider this a synonym of the proceeding species following Tryon in Man. of Conch.
Collecting data: Departure Bay, Vancouver Island, B.C. (A.F. Tissot); Mule Harbor, Alaska (Kate Stophens); Washington (Lowe).

Lacuna variagata Carpenter, 1864. Puget Sound south to Santa Monica Bay (Keen).
Type locality: Neah Bay, Washington.
Collecting data: Monterey, Calif. on algae (Burch); Point Vicente (Lowe); Cayucos, Calif. (Lowe).
Lacuna unifasciata Carpenter, 1856. Monterey, Calif. to south to Magdalena Bay, L.C. Type locality; Santa Barbara, Calif.

Collecting data: This is by far the most common species of the genus in our experience and easily collected in great numbers from algae on shore as well as from the floating off shore kelp. Plentiful in the eel grass and in the eel grass roots. A few stations follow: Monterey, San Simon, Cayucos, Santa Monica, Redondo Beach, Malaga Cove, Catalina Island, Dana Point, San Onofre, La Jolla, Mission Bay, and Todos Santos Bay (Burch); Reef Point and Isla Delos Cove, Catalina Island) Strong); Elk Horn Slough, on broad leaved eel grass; scarce (A.G. Smith); La Jolla (Chaney); San Pedro and Cayucos (Lowe); Lower Calif. (Hemphill) (San Diego Museum).

Lacuna unifasciata aurantiaca Carpenter, 1864. Santa Barbara, Calif. to Point Abreojos, L.C. Type locality; San Pedro-San Diego and Santa Barbara Island.

Keal obsolete

Collecting data: San Diego and Catalina Island (Lowe); La Jolla (Hristol); San Diego (Hemphill).

Lacuna marmorata Dall, 1919. Saginaw Bay, Alaska to San Diego, Calif. Type locality; Monterey, Calif.

Collecting data: Our experience has been to find this species living on the stones littoral, unlike the above species which seems to be always connected to a habitat on some kind of algae. I have seen stones covered with these shells so that it was possible to simply brush them off into a pail. However, there are a few odd notes on it. We collected several specimens from the bottom of a large Halocryptis rufescens brought up by divers off Cayucos, Calif., from about 35 ft. A few localities follow: De Poe Bay, Oregon; Crescent City; Point St. George; Morro Rock; Cayucos (Burch); abundant at low tide on eel grass in Monterey Bay (A.G. Smith); Helma Bay and Hole Harbor, Alaska (Kate Stephens); Washington (Lowe); Monterey (Lowe).

Subgenus Bootica Dall, 1919. Type (by orig. design.) Bootica vaginata Dall. The one species placed under this subgenus does not seem to have been figured. U.S. N. M. vol. 58, p. 349.

Lacuna vaginata Dall, 1913. Santa Rosa Island in 53 fms. and off La Jolla in 199 fathoms. Type locality, off La Jolla.

Genus Haloconcha Dall, 1886. Type (by monotypy): "Lacunella" reflexa Dall. New name for subgenus Lacunella-Deshayes. "Shell depressed, heliciform, few-shouldered, thin, with a strong epidermis; margin of the aperture thin, with a narrow reflexed margin in the adult, continuous with the thin sharp, unreflected arcuate columella; umbilicated, operculum paucispiral" (Dall).

Haloconcha reflexa Dall, 1886. Probilof Islands. Type Loc., St. Paul Island.

Haloconcha minor Dall, 1919. Commander Probilof and Aleutian Islands eastward to Chirikoff Island, Alaska (Dall).

Type locality; English Bay, St. Paul Island, Probilof Group, Bering Sea.

Genus Aquilonaria Dall, 1886. Type, Aquilonaria turneri Dall. "Shell ophioceriform, more or less membranous, thin, imperforate, without sculpture, but with a rough, transversely shaggy epidermis. Operculum subspiral
with a raised subspirai rib on the inner side. (Dall).

Aquilonaia turneri Dall, 1886, Arctic Ocean near Bering Strait. Also Labrador.
Type locality, Labrador's Reef, Ungava Bay.

Family Fossaridae
* Shell perforated, sculptured; inner lip thin; aperture semilunate. Operculum not spiral. (Tryon).

Fossarus parvipictus Carpenter, 1864. Todos Santos Bay, L.C. to Panama.
Mr. Strong lists records of this species from Mazatlan, Mex., etc.

Fossarus angiolus Dall, 1919. Todos Santos Bay.

It seems very doubtful if there are any California records for either of the above species.

Genus Iselica Dall, 1918. Type (by monotypy), Isapis anomala C.B. Adams. * Shell umbilicated, spiro elevated, cancelled or with revolving ribs; columnella with a small median tooth (almost obsolete in *F. anomala*). (Tryon). to Nicaragua (Lowe).

Iselica fenestrata (Carpenter), 1864. Puget Sound to the Gulf of California.
Type locality, Santa Barbara Islands and San Diego.
Collecting data: We have this species from Puget Sound to Todos Santos Bay, L.C. Perhaps the easiest way to collect is to examine almost any Mytilus bed. The wharf pilings at least all along the southern California coast will produce many of them. However, the bathymetric range is also of some interest. We have it dredged in Puget Sound. It was not uncommon in the dredgings off Monterey down to below 20 fms. and it was rather a common species in the dredgings off Redondo Beach, Calif. in the gravel beds at 25 fms. or slightly deeper. Abundant in some of the Pleistocene deposits such as hilltop quarry at San Pedro. (Burch); San Diego (Anderson); Laguna Beach (Lowe); San Pedro (Lowe); San Juan del Sur, Nicaragua (Lowe).

Iselica obtusa (Carpenter), 1864. Puget Sound to San Diego.
Type locality, San Diego, Calif. in 10 fms.
Collecting data: Dredged off Redondo Beach, Calif. in 25 fms. gravel (Burch); San Diego, Calif. in 5 fms. (Hemphill); San Diego in 15 fms. (Lowe); Mission Beach (Chanoy) (San Diego Museum).

Iselica obtusa lara Dall, 1919. Vancouver Island, B.C. to Puget Sound, Wash.
Type locality, Maple Bay, Vancouver Island, B.C.

Additions and Corrections
Lacuna solidula Löven. (Page 14, this issue). Mr. A.G. Smith comments on this species as follows: "Not sure of this identification but refer large specimens found on the beach at Point Pinos to this species. Have also taken it on the Mendocino Co. coast. Believe Chace has it from Crescent City."
The following keys and lists are from Mr. A. M. Strong's *notebook.*

Family Fossaridae

Genus *Isella*

- **Columella with a small median tooth**
 - Body whorl with seven rounded spiral ribs
 - Shell pale, rosy, shining
 - 6 x 4 mm. Monterey to San Diego ... obtusa
 - Body whorl with nine sharp spiral ribs
 - Shell light yellowish brown
 - 6 x 6 mm. Puget Sound to Gulf of Calif. fenestrata
 - Body whorl with eight strong, equal spiral cords
 - Shell grayish white
 - 1.5 x 1.2 mm. Bahia Honda, Panama kochi
 - Body whorl with ten strong subquadrate spiral ribs
 - Shell white, maculated with purplish brown
 - 3 x 3 mm. Gulf of California ... maculosa
 - Body whorl with eleven flat, smooth spiral ribs
 - Shell white, solid
 - 8 x 3.5 mm. Gulf of California ... everted

Genus *Fossarus* Philippi, 1840.

Principal sculpture of from 4 to 6 spiral keels
- Spaces between the keels smooth
- Periphery of body whorl angulated
 - 4 x 5 mm. Panama .. foveatus
- Periphery of body whorl rounded
- Spire with 2, body whorl with 6 strong cords
 - 2.25 x 1.75 mm. Todos Santos Bay angiolus
- Spiral cords irregular, fading out on body whorl
 - 2.5 x 2.25 mm. Panama .. abjectus
- Spaces between the keels spirally threaded
- 2 keels on the periphery, 2 on the base
 - 1.5 x 2.5 mm. Cape San Lucas .. lucasana
- 4 keels on body whorl, 2 usually most prominent
- **Nuclear Whorls 2**
 - Nuclear whorls smooth
 - 1.75 x 1.5 mm. Mazatlan .. angulatus
 - Nuclear whorls finely cancelled
 - 2.0 x 2.0 mm. Cape San Lucas purus
 - Nuclear whorls 4, tuberosus, cancelled
 - 1.0 x 0.9 mm. Mazatlan .. tuberosus
- 6 keels on the body whorl
- Keels regularly spaced
 - Shell subglobose, white maculated with brown
 - 6 x 5 mm. Cape San Lucas ... pericnostus
 - Shell obliquely ellipsoid, pale horn and brown
 - 4 x 3 mm. Panama .. excavatus
 - With a wide, flat space between the suture and 1st keel
 - 3.25 x 2.5 mm. Panama .. angulostomus
 - Spaces between the keels axially threaded
 - Whorls angular, shell dingy white
 - 2.25 x 2.25 mm. Panama ... megastomus
 - Whorls convex, shell chestnut
 - 2.6 x mm. Panama .. medioeus
December, 1945

<table>
<thead>
<tr>
<th>Shell</th>
<th>Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7 x 4.1 mm</td>
<td>Ecuador</td>
<td>guayquilensis</td>
</tr>
</tbody>
</table>

Genus Iselica Dall, 1819

<table>
<thead>
<tr>
<th>Species</th>
<th>Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iselica fenestra</td>
<td>Carpenter, 1864</td>
<td>Paget Sound to Gulf of California</td>
</tr>
<tr>
<td>Iselica obtusa</td>
<td>Carpenter, 1864</td>
<td>Monterey to San Pedro</td>
</tr>
<tr>
<td>Iselica maculosa</td>
<td>Carpenter, 1857</td>
<td>Gulf of California</td>
</tr>
<tr>
<td>Iselica ovoida</td>
<td>Gould, 1856</td>
<td>Gulf of Calif</td>
</tr>
<tr>
<td>Iselica kochi</td>
<td>Strong and Hertlein</td>
<td>Bahia Honda, Panama</td>
</tr>
</tbody>
</table>

Genus Fossarus Philip, 1840

<table>
<thead>
<tr>
<th>Species</th>
<th>Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossarus anglicus</td>
<td>Dall, 1819</td>
<td>Todos Santos Bay</td>
</tr>
<tr>
<td>Fossarus lucanus</td>
<td>Dall</td>
<td>Cape San Lucas</td>
</tr>
<tr>
<td>Fossarus tuberosus</td>
<td>Carpenter, 1857</td>
<td>Mazatlan</td>
</tr>
<tr>
<td>Fossarus angulatus</td>
<td>Carpenter, 1857</td>
<td>Mazatlan</td>
</tr>
<tr>
<td>Fossarus parcipictus</td>
<td>Carpenter, 1864</td>
<td>Todos Santos Bay to Panama</td>
</tr>
<tr>
<td>Fossarus purus</td>
<td>Carpenter, 1864</td>
<td>Magdalena Bay to Cape San Lucas</td>
</tr>
<tr>
<td>Fossarus atrata</td>
<td>C.B. Adams, 1852</td>
<td>Panama (abjecta)</td>
</tr>
<tr>
<td>Fossarus angiostoma</td>
<td>C.R. Adams, 1852</td>
<td>Panama</td>
</tr>
<tr>
<td>Fossarus excavatus</td>
<td>C.B. Adams, 1852</td>
<td>Panama</td>
</tr>
<tr>
<td>Fossarus laevata</td>
<td>C.B. Adams, 1852</td>
<td>Panama</td>
</tr>
<tr>
<td>Fossarus magasoma</td>
<td>C.R. Adams, 1852</td>
<td>Panama</td>
</tr>
<tr>
<td>Fossarus guayquilensis</td>
<td>Bartsch, 1928</td>
<td>Ecuador</td>
</tr>
</tbody>
</table>

Additions and Corrections

We have the following note from Dr. A. Myra Keen: Some time ago I gave you a reference which you quoted, to *Buccinum stratiissimum*, a Japanese species which Stanford has from Bering Sea and Lynn Canal. I now have the original description at hand:

-gato-conica, acutiuscula; anfractus circiter 5-9, valide convexi, rotundati, sutura impressa sejuncti, spiriliter densissime inciso-striati, striis eximie unculatis; anfractus ultimus supra tumidus, infra leviter contractus; aperture subovalis, alba, canali late, brevissimo; columella antice rectiuscula, postice obliqua, in medio arcuata, callo crasso induta; labrum crassum, leviter reflexo-oxum, postice laxissime sinuatum. Operculum typicum. Long. 115, diam. 65; aperture longa 40, lata 26 mm.*

Type locality: Kumihama, Tango, Japan. This fine species is a typical *Buccinum*, but does not exhibit any of the longitudinal plicae characteristic of *B. undatum*. The whorls are peculiarly rounded and swollen, while somewhat depressed at the suture. The whole surface of the shell is closely and regularly sculptured with fine waved grooves.

The following interesting note from Dr. A.M. Keen:

Yesterday I ran across something Dr. Dall and others including me had overlooked—that Carpenter had described *Ocenebra interfossa var. atropurpurea*. The reference is: Proc. Acad. Nat. Sci. Phila., for 1865 (Aug., 1866), p. 64:

Costis spirilibus distantibus, in spira duabus, foveis majoribus. Variet. quoque t. albado zonata. The type locality is Paget Sound. This is going to interest Mrs. Bormann.
The following keys and lists are from Mr. A.M. Strong's notebook.

Family Fossaridae

Genus Iselica

Columella with a small median tooth

- Body whorl with seven rounded spiral ribs
- Shell pale, rosy, shining

6 x 4 mm. Monterey to San Diego obtusa
- Body whorl with nine sharp spiral ribs
- Shell light yellowish brown

6 x 5 mm. Puget Sound to Gulf of Calif. fenestrata
- Body whorl with eight strong, equal spiral cords
- Shell grayish white

1.5 x 1.2 mm. Bahia Honda, Panama kochi
- Body whorl with ten strong subquadrate spiral ribs
- Shell white, maculated with purplish brown

3 x 3 mm. Gulf of California maculosa
- Body whorl with eleven flat, smooth spiral ribs
- Shell white, solid

8 x 8.5 mm. Gulf of California ovoides

Columella smooth Genus Fossarius

Genus Fossarius Philippi, 1840

Principal sculpture of from 4 to 6 spiral keels
- Spaces between the whorls-keels smooth
- Periphery of body whorl angulated

4 x 5 mm. Panama foveatus
- Periphery of body whorl rounded
- Spire with 2, body whorl with 6 strong cords

2.25 x 1.75 mm. Todos Santos Bay angiolus
- Spiral cords irregular, fading out on body whorl

2.5 x 2.25 mm. Panama abjectus
- Spaces between the keels spirally threaded
- 2 keels on the periphery, 2 on the base

1.5 x 2.5 mm. Cape San Lucas lucasana
- 4 keels on body whorl, 2 usually most prominent
- Nuclear whorls 2
- Nuclear whorls smooth

1.75 x 1.5 mm. Mazatlan angulatus
- Nuclear whorls finely cancellated

2.0 x 2.0 mm. Cape San Lucas purus
- Nuclear whorls 4, tuberous, cancellated

1.0 x 0.9 mm. Mazatlan tuberosus
- 6 keels on the body whorl

Keels regularly spaced
- Shell subglotose, white maculated with brown

6 x 5 mm. Cape San Lucas parcipictus
- Shell obliquely ellipsoidal, pale horn and brown

4 x 3 mm. Panama excavatus
- With a wide, flat space between the suture and 1st keel

3.25 x 2.5 mm. Panama angiostomus
- Spaces between the keels axially threaded
- Whorls angular, shell dingy white

2.25 x 2.25 mm. Panama megastomus
- Whorls convex, shell chestnut

2.6 x mm. Panama medioiris (con.)
Genus Iselica Dall, 1918.
Iselica fenestrata Carpenter, 1864
Iselica obtusa Carpenter, 1864
Iselica maculosa Carpenter, 1857
Iselica ovildea Gould, 1856
Iselica kochi Strong and Hertlein

Genus Fossarus Philippi, 1840.
Fossarus angiolus Dall, 1919
Fossarus licanus Dall
Fossarus tuberosus Carpenter, 1857
Fossarus angulatus Carpenter, 1857
Fossarus parcipictus Carpenter, 1864
Fossarus purus Carpenter, 1864
Fossarus atrata C.B. Adams, 1852
Fossarus angioloma C.B. Adams, 1852
Fossarus excavatus C.B. Adams, 1852
Fossarus foventa C.B. Adams, 1852
Fossarus megasoma C.B. Adams, 1852
Fossarus guayquilensis Bartsch, 1928

Puget Sound to Gulf of California
Monterey to San Pedro
Gulf of California
Gulf of Calif.
Bahia Honda, Panama
Todos Santos Bay
Cape San Lucas
Mazatlan
Mazatlan
Todos Santos Bay to Panama
Magdalena Bay to Cape San Lucas
Panama
Panama
Panama
Panama
Equador

Additions and Corrections

We have the following note from Dr. A. Myra Keen. Some time ago I gave you a reference which you quoted, to Buccinum striatissimum, a Japanese species which Stanford has from Bering Sea and Lynn Canal. I now have the original description at hand:

-gato-conica, acutiuscula; anfractus circiter 8*-9, valide convexi, rotundati, sutura impressa sejuncti, spiraliter densissime inciso-striati, striis eximio
undulatis; anfractus unicus supra tumidus, infra leviter contractus; aperture subovalis, alba, canali late, brevissimo; columella antice rectiuscula, postice obliqua, in medio arcuata, callo crasso induta; labrum crassum, leviter reflec-
-tum, postice levissime sinuatum. Operculum typicum. Long. 115, diam. 65;
aperture longa 40, lata 26 mm.

Type locality: Kunihama, Tange, Japan. * This fine species is a typical Buccinum, but does not exhibit any of the longitudinal plicae characteristic of B. undatum. The whorls are peculiarly rounded and swollen, while somewhat depressed at the suture. The whole surface of the shell is closely and regular-
-ly sculptured with fine waved grooves.

The following interesting note from Dr. A.M. Keen:

* Yesterday I ran across something Dr. Dall and others including me, had overlooked—that Carpenter had described Ocenebra interfossa var. atropurpra. The reference is: Proc. Acad. Nat. Sci. Phila., for 1865 (Aug. 7, 1865), p. 62.
* Costis spiralibus distinctibus, in spira duabus, foveis majoribus. Variat, quoque t. albedo zonata. The type locality is Puget Sound. This is going to interest Mrs. Bormann.
Family Litiopidae

Mr. A.M. Strong in his notebook makes the following comments on this group.

The three genera placed in the family are very different in shell characters, but presumably similar in habitat, i.e., pelagic, living on floating seaweed.

Litiopa is definitely stated as living on floating seaweed. The single species reported from the west coast, *L. bombyx* Rang, is listed by Tryon as a synonym of *L. melanocephala* Rang, for which he gives a world wide distribution.

Alaba is more or less varicose and in a large series some specimens are almost all covered with varicose swellings and others scarcely show any signs of swellings. Bartsch, in some cases, seems to make specific characters of the lack of varices. All the specimens I have seen, they were taken at almost every dredging station containing small shells from all expeditions, were dead shells which had dropped to the floor of the ocean if they were pelagic as seems to be the case. These shells were more or less bleached and would have lost epidermal colors if such had been present. However, some species have been separated on what I take to be epidermal colors. I have listed the species as described, but I very much doubt if there is really more than one real species.

The two west coast species placed in the genus *Eumete* are quite distinct. They are known by very few specimens and as far as I can find out dredged as dead shells. They could easily be pelagic though the shape would not indicate it. The genus may be better known elsewhere.

There seems to be considerable difference of opinion as to the type and definition of the genus *Alaba*. Woodring probably is correct. I do not know how to treat Carpenter's description and notes in *Nautilus*. His description of nuclear whorls seems to be different from Bartsch's. I have followed Bartsch in leaving out the various species described by Carpenter. In addition to the reasons given by him the variation of the specimens we have examined is so great that no such close division could be made.

Genus Litiopa Rang, 1829.

- *Litiopa* Adans, 1862
- *Alaba* A. Adams, 1862
- *Alaba* Jeanettae Bartsch, 1910. San Pedro to Acapulco
- *Alaba catalinensis* Bartsch, 1920. Catalina Island
- *Alaba interruptellinata* Pilbry & Lowe, 1862. Gulf of Calif. to Panama
- *Alaba guayaquilensis* Bartsch, 1928. Ecuador

Genus Eumete

- *Eumete binarginata* C.B. Adans, 1852. Gulf of Calif. to Panama
- *Eumete intercalaria* Carpenter, 1865. Gulf of Calif. to Guayama
- *Eumete succincta* Bartsch, 1911. Galapagos

Family Litiopidae

The genera placed under this family by Dr. Dall in Bulletin 112 have been the source of no little disagreement. Thielle places *Diaila* *Alaba* and *Litiopa* under the family Cerithidae, subfamily Litiopinacea. While there seems to be some question about *Diaila* in the arrangement, it seems that most authors are using the family *Litiopidae* for these genera.

However, the genus *Barlecia* is placed under Litiopidae by Dr. Dall with a question. Thielle places *Barlecia* in the family Rissidae, subfamily Barleciinae. Thielle seems to be disposed to use large family groups. It is probable that the genera *Barlecia* and *Diaila* should be placed in a separate family. It seems to me that the genera of this group differ materially in shell charac-
-ters and may very well be separated further unless perhaps they are related anatomically.

Dr. A. Myra Koen comments "I should advise being conservative in the matter of family names and letting the specialists decide whether new ones are needed. In this case, better follow Thiele, since he has positive ideas and Dr. Dall had only a question mark."

Grant and Gale, 1931 place Diala and Barleeia in a family together using the family name ?.

Dr. Joshua L. Baily Jr. comments (Per. Comm.) "In reply to the questions on the bunch of papers beginning with Litiopidae, I would say that there is so much difference of opinion among malacologists as to the first four genera Litiopida, Diala, Alaba, and Barleeia that almost any arrangement is likely to meet with the approval of somebody. My personal preference is different from any of your suggestions, so I shall not complicate matters by giving it to you. I will only say that some years ago I went over the question of Litiopa bombyx versus Litiopa melanostoma and decided in favor of L. melanostoma. Dr. Pilsbry and I went over it together. I forgot why.

If you make Barleeia the type of a family, its name ought to be Barleei-
-dae but the multiplicity of vowels in the middle of this word is likely to make the spelling you suggest more popular." The family name suggested was Barleeidae.

Genus Litiopa Rang, 1829. Type (?) Litiopa bombyx Rang. Mr. A.M. Strong notes "The single species reported from the west coast is listed by Tryon as a synonym of L. melanostoma Rang. for which he gives a worldwide distribution. However, I notice that other authors reverse the procedure placing melanostoma in the synonymy of bombyx.

"Shell minute, conoidal, columella truncated at the base, outer lip simple, notched." (Tryon).

Litiopa bombyx Rang, 1829. Southern California and Gulf of California, Pelagic. (L. melanostoma Rang.)

Mr. A.M. Strong has a note on this in his notebook as follows: "Oldroyd gives this as the type of the genus but copies the description of melanostoma rang, 1829 given by Tryon as having worldwide distribution and including this species. How can the type of a genus be a synonym of another species described at the same time by the same author?"

Dr. A.M. Keen advises "For discussion of Litiopa see Palmer, Nautilus v.55, no.4, pp. 128-130 and vol. 53, no.2, p. 70 (in the latter Rang, 1929 should obviously be Rang, 1829). The only specimens from the west coast which we have obtained I took from beach drift at Penta Ponasco, Mexico. Dr. Schenck sent a number of what appear to be the same thing (though I suppose an expert might find differences) from Oro Bay, New Guinea; they were lodged in the crevices of floating Spirula shells and were alive when collected. The species was noted from my check list because I could not translate such vague range into terms of latitude."

"Shell elongate-conic, semitransparent, usually with irregularly spaced hollow, varicose swellings. The nucleus consists of about 4 sculptured whorls which continue the general outline of the spire with scarcely any interruption. The aperture is rather large, oval, outer lip thin, the basal lip curving into the columella without a notch or canal."
Alaba jeannettae Bartsch, 1910. San Pedro, Calif. to Gulf of California (Call). Type locality, Margarita Bay, Lower Calif., /to Acapulco (Strong).
Collecting data: Espiritu Santo Island, Gulf of Calif., and Magdalena Bay, L.C. (Dr. F. Baker)

Known only from the type locality. Mr. A.M. Strong comments on this species: "The nuclear whorls are not described and no mention is made of spiral sculpture which is present on other species. However, it is stated that the whorls are marked by fine, retractively slanting lines of growth. Otherwise, the shell would seem to be very similar to Alaba supralirata Carpenter." None of the members seem to have recognized it locally.

Alaba sp. - Reported from Carmel Bay in 25 fms. by Mr. A.G. Smith.

Family Barleeiidae

Genus Barleeia Clark, 1855. Type (by monotypy), Barleeia rubra (Montagu).

Shell broadly conic or ovate, with about two microscopically thimble-pitted nuclear whorls forming a blunt apex. Postnuclear whorls three or four smooth or with microscopical striations. Aperture ovate, posterior angle obtuse, outer lip thin, basal lip curving evenly to the junction with the inner lip, body covered with a callus. Shell not umbilicated." (Strong).

See the discussions on pages 19 and 20 and also Mr. Strong's comments on the following page for our conclusion to place all species formerly listed under Diala under the genus Barleeia. However, for the convenience of those who will not agree with this practice the data on the genus Diala follows:

Genus Diala A. Adams, 1861. Type (by subsequent designation, Dall, 1922), Diala varia A. Adams. "Whorls not varicoso, sometimes nodulated around the middle; columella straightish not truncated; labrum not thickened." (Tryon).

Barleeia acuta (Carpenter), 1864. Puget Sound to San Martin Island (Baker) to San Hipolito. Type locality, Catalina Island.
Collecting data: See Mr. Strong's note on p. 25. Dredged off Monterey, Calif., in 15 fms.; off Avalon, Catalina Island in 25 fms.; not uncommon in the Pleistocene of Hillete Quarry, San Pedro (Burch); Monterey Bay, shore to 20 fms. (A.G. Smith); Monterey (Lowo);

Barleeia exilis (Tryon), 1866. San Francisco Bay to San Diego Bay (Dall).
Type locality, San Diego. None of the members seem to have recognized this species. Barleeia exilis (Tryon).

Barleeia marmorata (Carpenter), 1864. Queen Charlotte Islands, B.C. south to San Martin Island, L.C. (Baker). Dr. A. Myra Keen advises that the type locality of Barleeia marmorata according to the holotype label at the U.S.N.M. is San Pedro. "This species was listed by Dr. Dall in Bull. 112 as Diala. In Nautilus 35:36, C5 1922 Dr. Dall made the following statement: "The shell listed by Carpenter as Diala marmorata, though shaped and colored like some of Adams' Dialas, does not belong to the genus. It has the operculum and radiolar of Barleeia but differs in having a smooth nucleus while that of Barleeia rubra is thimble-pitted. The rhachidian tooth of marmorata is more squarish than that of B. rubra as figured by Troschel and has five rounded cusps, the middle one larger." Collecting data: Littoral on algae at Monterey, Calif., and picked up in the dredge down to as deep as 15 fms; from backs of Haliotis rufescens from 35 ft. off Cayucos, Calif. (Burch); Monterey (Kempf and Lowo); So. Coronado Is. (Baker); Monterey Bay to 25 fms. (A.G. Smith); Queen Charlotte Island (T.S. Oldroyd).

* Continued on Page 24*
Genus Barleeia

The following comments on this group are from Mr. A.M. Strong's notebook.

Dalli puts this genus in family ? , and I have no record of any recent writer suggesting a family name. The genus probably belongs in a family by itself. None of the early writers mention the most characteristic generic thing common to all species, the thimble pitting of the nuclear whorls. This is lacking in the 'other' species lumped by the older writers under Risso.

In the absence of sculpture it is hard to put into words the distinguish-ing characters of the various species and still harder to pick out the key characters. Bartsch makes one of his main divisions on periphery subangulated and periphery rounded. I have never been able to see this distinction in exam-ining the shells. Much depends on the age and angle at which you look at the shell. I have tried to use other characters in my key but doubt if it will work out any better. I expect the color and presence or absence of color bands does not mean anything.

Bartsch makes no mention in his paper of the three west coast species that Carpenter described as Diala, the he has said in letters that they are probably only large species of Barleeia. They are no larger than his B. dalli and in fact are very difficult to separate from it. I think that acuta Cpr. and marmorea Cpr. should be included in Barleeia. They show the thimble pitting of the nucleus very distinctly. We have never figured out what Dialis Tryon'is.

Carpenter's Diala acuta and marmorea and Barleeia subtenuis and halioti-philta all date from the Suppl. Report, 1865, but are fully described in later publications. For acuta Carpenter gives the locality as Monterey and Catalina, Oldroyd gives the type locality as Catalina. For marmorea Carpenter gives Monterey and San Diego. Oldroyd gives the type locality Monterey. For subtenuis Carpenter gives Catalina and San Diego. Oldroyd gives type locality San Diego. For haliotiphila Carpenter gives locality unknown, probably Lower California.

Bartsch, in the text, states that the specimen for B. subtenuis Cpr. comes from San Diego and is a typical specimen. In the Explanation to Plates he gives it as B. subtenuis type. This of course is not correct. The same thing applies to B. alderi Cpr. and B. haliotiphila Cpr. The figures are not of the types and the specimens do not come from the type localities. Should this be correct and if so how ?

Genus Barleeia

Periphery of last whorl angulated

- Peripheral angle marked with a raised thread
 - Shell more than 4 mm. in length dalli Bartsch
 - Shell less than 3 mm. in length bentleyd Bartsch
 - Peripheral angle not marked by a raised cord
 - Shell more than 4 mm. in length
 - Base flattened, almost truncate acuta Carpenter
 - Base flatly sloping marmorea Carpenter
 - Shell less than 3 mm. in length zeteki Strong & Hertlein

Periphery of last whorl not angulated

- Shell unicolor
 - Shell broadly conic
 - Shell 3 mm. or more in length subtenuis Carpenter
 - Shell less than 2 mm. in length coronadoensis Bartsch
 - Shell not broadly conic
 - Shell 2.5 mm. or more in length
 - Aperture comparatively small haliotiphila Carpenter

(con.)
Genus Barleoia Clark, 1855. Type (by original designation) (Barleoia) rubra Montagu. Recent, British Isles
Shell broadly conic or ovate, with about two microscopically thimble-pitted nuclear whorls forming a blunt apex. Postnuclear whorls three or four, smooth or with microscopic striations. Aperture oval, posterior angle obtuse, outer lip thin, basal lip thin, basal lip curving evenly to the junction with the inner lip, body covered with a callus. Shell not umbilicated.

Barleoia acuta (Carpenter), 1864. Monterey to San Martin Island, L.C.
Shell waxy, polished, shining, with an angulated periphery. The species differs from Barleoia marmorea (Carpenter) in being slightly smaller and with a sharper angulation at the periphery, and from Barleoia dalli Bartsch, which is about the same size, in the lack of the raised thread at the peripheral angle.

Barleoia alderi (Carpenter), 1866. Gulf of California to Tres Marias Islands, Mexico. (Carpenter's listing from San Diego undoubtedly refers to one of the species later described by Bartsch). Type locality, Mazatlan.
Shell elongate ovate with a well rounded periphery and a small aperture. The distinct color banding described by Bartsch is a variable character, faint or absent in some specimens.

Barleoia bentleyi Bartsch, 1920. Venice, Calif., to Cape San Lucas, L.C.
Type locality, Venice, Calif.
This species resembles Barleoia dalli Bartsch in the raised cord on the angulated periphery but is much smaller and usually darker in color.

Barleoia californica Bartsch, 1920. San Pedro, Calif., to Point Abreojos, Mex.
Type locality, San Pedro, Calif. This is one of the smallest of the west coast species. The periphery is slightly angulated, the aperture comparatively large, and the brownish color is more or less distinctly banded.

Barleoia carpenteri Bartsch, 1920. Off Newport Beach, Calif., to Cape San Lucas, Mexico. Type locality, Cape San Lucas. This is a very small, elongate ovate shell with a well rounded periphery. The upper whorls are narrowly shouldered at the summit and the color is given as white. (I have specimens dredged off Newport that were so identified by Bartsch and have extended the range accordingly. I have an idea that the white color is due to bleaching. My specimens are dead but look fairly fresh.)

Barleoia coronadoensis Bartsch, 1920. San Pedro, Calif., to Point Abreojos, L.C. Type locality, Off Coronado Islands, L.C., Mex. in 7-10 fms. This species is similar to Barleoia subtenuis (Carpenter) in the oval shape. The periphery is well rounded and the whorls are rounded and appressed at the summit. It is the smallest of the west coast species and the color is said to be white.

Barleoia dalli Bartsch, 1920. Off Point Loma, Calif., in 71-75 fms. This is one of the largest of the west coast species. The periphery is strongly angulated and marked by a raised cord. The color is said to be yellowish white.

Barleoia haliotiphila Carpenter, 1864. Mendocino Co., Calif., to Point Abreojos, L.C. Elongate conic with the periphery slightly angulated. The aperture is rather small compared with other species in the genus and the color is pale chestnut brown.
Barlesea marmorca (Carpenter), 1864. Queen Charlotte Islands, B.C. to Lower California. Type locality unknown. The shell is similar to Barlesea dalli Bartsch but the strongly angulated periphery is marked by a raised thread or cord. The shell is whitish, more or less clouded with faint chestnut axial lines. I think that Grant and Gale's reference to Baker, San Martin Island is either an error or a misidentification. Acuta is the southern form and marmorca the northern. The Carpenter separated them in Southern California. I am not sure that they are distinct.

Barlesea oldroydi Bartsch, 1920. Mink Bay, Vancouver Island, B.C. to Coreando Islands, L.C. Type locality, Monterey, Calif. This is a rather slender shell with the periphery absolutely angulated. The aperture is larger than Barlesea haliotiflora which is about the same size and also unicolor.

Barlesea orcuttii Bartsch, 1920. Magdalen Bay, L.C. to Montereay Island, Gulf of Calif. Type locality, Magdalen Bay, L.C. Shell very small, rather broad, with the periphery well rounded and very narrowly shouldered at the summit. In the type the posterior half of the whorls are diffused with pale brown and the anterior half is white.

Barlesea polythroma (de Folin), 1879. Bay of Panama. The whorls are inflated and the periphery obscurely angulated. The colors are variable, with indistinct color bands.

Barlesea subtenuis Carpenter, 1864. San Francisco, Calif. to Gulf of Calif. Type locality unknown. The species is distinguished from the other west coast species in the genus by the large size and broader proportions. Often there is a slight umbilical chink behind the columella.

Barlesea zetekii Strong and Hertlein, 1939. Bahia Honda to Taboga Island, Panama. This species has the periphery slightly angulated but without a raised thread. The whorls are only moderately rounded and the aperture is large and flaring.

Continued from bottom of Page 21

Barlesea haliotiflora Carpenter, 1864. Mendocino Co., Calif. to Lower Calif. Dr. A.M. Keen advises that type locality of Barlesea haliotiflora is probably Lower Calif. from the back of a Haliotis splendens (i.e. H. fulgens).

Collecting data: Arbolitos, Lower Calif. (Burch); Santo Tomas, L.C. (Hemphill); Laguna Beach (Lowe); San Pedro (Lowe); San Clemente Island and Monterey (Lowe) (San Diego Museum); 5-15 fins off Pt. Pinos; also kelp holdfasts. Does not appear to be a shore form in Monterey Bay (A.G. Smith); Mink Bay, B.C. (T.S. Oldroyd) (A.G. Smith).

Barlesea sanjuanensis Bartsch, 1920. Shuyak Strait, Afognak Island, Alaska (Eyerdam, 1924) on nullipora under rocks to Puget Sound. Type locality, Gulf of Georgia, Puget Sound.

Collecting data: Elrington Island, Pr. Wm. Sound, Alaska (Eyerdam); Washington (Lowe).

Barlesea subtruncata Bartsch, 1920. San Pedro to San Ignacio Lagoon, L.C. to San Martin Island (Baker). Type locality, according to Dr. A.M. Keen was not selected and stands -San Diego; Santa Barbara Islands.

Collecting data: Nowport Bay, Calif.; very abundant in Mission Bay, San Diego Co., on eel grass; the Estero below Ensenada, L.C. (Burch); Brickish spring at Carmel (J.C. Cooper); Have not found it in the Monterey region (A.G. Smith); San Diego Bay (T.S. Oldroyd) (A. Smith); Catalina Island (Lowe); San Diego (Hemphill, Lowe and Cleveland); San Diego Bay (Dr. F. Baker); San Martin Island (Dr. F. Baker).

Barlesea subtruncata rimata Carpenter, 1864. San Diego, Calif. Dr. Bartsch in Proc. USNM vol. 58, p. 169, 1920 places this in the synonymy of the typical. No one seems to have recognized it as distinct.
Barlecia coronadoensis Bartsch, 1920. Off Coronado Island in 7 to 10 fms.

Barlecia dalli Bartsch, 1920. Off Point Loma, Calif. in 75 fms.
Collecting data: There is a set in the San Diego Museum of Natural History from the Dr. F. Baker collection labelled as from Pt. Pinos, Monterey Co. This should probably be checked.

Collecting data: Venice, Calif. (Dr. W. Gregg); Venice, Calif. on bryozoa (Lowe and Baker) (San Diego Museum).

Collecting data: Very abundant littoral at Monterey, Calif. on algae and brought up in the dredged down to perhaps 15 fms. off both Monterey and Pacific Grove; from the backs of Haliothea rufosecens brought up by divers off Morro Bay, Calif.; Bird Rock, San Diego Co.; Pleistocene of Timm's Pt., San Pedro (Burch); the abundant shore form in the Monterey region. Also kelp holdfasts. (A.G. Smith).

Collecting data: San Pedro (Lowe); (See description on p. 23).

Barlecia alderi (Carpenter), 1856. Reef Point, Orange Co. south to Tres Marias Islands. Type locality, Mazatlan, Mexico.
See discussion on p. 23.
Collecting data: Reef Point, Orange Co.; La Jolla, San Diego Co. (A.G. Smith); San Diego (T.S. Oldroyd).

Anabathron muriei Bartsch and Rehder, Nautilus, vol. 52, no. 4, April, 1939, p. 110, pl. 8, figs. 2, 2a. Type locality: Ögliuga I., Aleutians.
See page 34 for description.

Family Rissoidae

Genus Skeneopsis Iredale, 1913. Dr. A. Myra Keen advises on this genus as follows: "Skeneopsis Iredale, 1915. Proc. Malac. Soc. vol. II, p. 282. Type (by original designation), Turbo planorbis Fabricius. This is Skenea of authors, though not of Fleming."

"Shell orbicular, spiral, depressed and discoidal, deeply umbilicated, few-whorled; peristome circular, continuous, entire." (H. & A. Adams)

Skeneopsis alaskana Dall, 1915. Pribilof and Unalaska Islands, Alaska.
Type locality, St. Paul Island, Bering Sea.
Collecting data: Saltwater Lake, Amaknak Id., Aleutians (T.S. Oldroyd) (A.G. Smith).
Genus Amphithalamus Carpenter, 1865. Type (by original designation), Amphithalamus inclusus Carpenter. Distribution, California to Japan-Panama.

Shell minute, broadly conic to elongate ovate; smooth except for a cord or faint spiral thread on the periphery. The nucleus is large, of about \(\frac{1}{3} \) whorls and is finely pitted as in Barleeia. The most striking character is a shelly bridge separating the inner lip from the open umbilicus. (Strong).

Periphery rounded, without definite marking lacunatus Carpenter

Periphery marked by a cord or fine spiral thread
- Periphery with a faint spiral thread
 - Shell elongate ovate .. tenuis Bartsch
 - Shell broadly ovate .. Stephensiis Bartsch

Periphery with a distinct spiral cord
- Shell elongate ovate .. trosti Strong & Hertlein
- Shell broadly ovate .. inclusus Carpenter

(The above key from Mr. A.M. Strong's notebook).

Amphithalamus inclusus Carpenter, 1865. San Pedro and Catalina Island, to the Gulf of California. Type locality, San Diego, Calif. side Bartsch

Collecting data: No. Coronado Island (Simmons); So, Coronado Island (Lowe); Avalon Bay, Catalina Island (Strong).

Amphithalamus lacunatus Carpenter, 1865. San Pedro, Calif. to San Diego. Type locality, San Pedro, Calif.

Amphithalamus tenuis Bartsch, 1911. Monterey, Calif. south to Guadelupe Island, Lower Calif. Type locality, La Jolla, Calif.

Collecting data: No. Coronado Island (Simmons); also (Stephens); San Diego (Lowe); La Jolla (Stephens); Monterey Bay, shore to 10 fms.; Catalina Island, 30-70 fms. (M. Gordon); San Diego (M. Gordon).

Genus Cingula Fleming, 1818. Type (by tautonymy), Rissoa cingillus (Montfort). (Turbo cingillus Montfort).

Shell minute, white or horn; conical, pointed, many-whorled; smooth, or cancelled; aperture rounded; peristome entire, continuous; outer lip slightly expanded and thickened; operculum sub-spiral. (Woodward).

Cingula cyerdm Willett, 1934. Nautilus 47:103,104, pl.8, fig.9,1934

Shell elongate-ovate, grayish, except for the nuclear whorls which are dirty-white. Whorls rounded, appressed at the summit. Suture strongly constricted. Base well rounded, narrowly umbilicated. Aperture rounded anteriorly, angled posteriorly. Post-nuclear whorls and base smooth to the naked eye, but under a strong lens show very faint spiral striations.

The type has five whorls, and measures in millimeters: Length 2.3; diam. 1.2. Paratypes in the collection of A.M. Strong and the writer.

Range: Shuyak Strait, Afognak Island, Alaska (Eyerdam, Nautilus 57:142) to Evans Island, Pr. Wm. Sound. Type locality, Evans Island, Pr. Wm. Sound.

Collecting data: among nullipores on rocks at low tide (Eyerdam).

Cingula forresteriensis Willett, 1934. Nautilus 47:103,104, pl.8, fig.9,1934

Type locality, Forrestor Island, Alaska and known only from type locality.

Shell elongate-conic, white. Post-nuclear whorls appressed at the summit, moderately rounded, finely spirally striated. Last whorl elongated, with very narrow umbilical chink. Aperture rounded anteriorly, angled posteriorly.

The type measured in millimeters: Length 3, diam. 1.2. This species is the most slender of west American Cingulas so far described.
Cingula martyni Dall, 1886. Bering Strait to the Aleutians and eastward to Chignik Bay, Alaska (Dall). Type locality, Kyska Harbor, Aleutians.
Collecting data: Illulissat Bay, Unalaska Island, Aleutians, dredged, (W. J. Eyerdam); Aucan Island (I. Norberg) (Eyerdam); Korovia Bay, Alaska; Ellington Island, Alaska (T. S. Oldroyd).

Cingula martyni scipio Dall, 1886. Pribilof Islands to the Aleutians and eastward to Middleton Island, Alaska (Dall) Type locality, Kyska Harbor, Aleutian Islands.
Collecting data: Dutch Harbor, Aleutian Islands (W. J. Eyerdam).

Cingula alaskana Bartsch, 1912. Amchitka Island, Aleutians.
Collecting data: Shuyak Strait, Afognak Island, Alaska, 1924 (Eyerdam).

Cingula alpeatica Dall, 1886. Pribilof Islands to the Aleutians and eastward to Windfall Harbor, Admiralty Island, Alaska. (Dall), Type locality, Unalaska.
Collecting data: Shuyak Strait, Afognak Island, Alaska on bread sponges; Ellington Island, Pr. Wm. Sound, Alaska (Eyerdam); Ellington Island, Alaska (T. S. Oldroyd).

Cingula montereyensis Bartsch, 1912. Moss Beach, Calif. to Monterey.
Type locality, Monterey.
Collecting data: Moss Beach (Voorhees) (Stanford Univ. Coll.): 5 to 15 fms, off Pt. Pinos (A. G. Smith).

Cingula californica (Tryon), 1865. San Francisco Bay to San Pedro, Calif.
Type locality, Oakland and Monterey, Calif.

Cingula orvietana Dall, 1919. San Diego, Calif.

Subgenus Modulus Monterosato, 1878. Type (fide Cossmann), Riss ocontorta Jeffreys.
"In Modulus we find a very characteristic oblique aperture; axial ribs are never present and spiral sculpture, if at all present, is reduced to exceedingly fine striations." (Bartsch, 1911).

Bartsch in his 1911 paper considered Modulus a genus, but Dall in Bull. 112 followed by Mrs. Oldroyd and others have used it as a subgenus. The differences seem to be slight, and until further advised we propose to use it as a subgenus.

However, Mr. A.K. Strong comments on it as follows: "The shells as figured and described by Bartsch are slender or subcylindrical while the shells of Cingula are ovate to subglobose. All the known species of Modulus are Aleaskan with one exception. I think it would be well to follow Bartsch. Moreover, it seems out of place to put the shallow water southern species in the same genus with the Alaskan species." to Shuyak Strait (Eyerdam).

Cingula cornella Dall, 1886. Kskska and Amchitka Islands, Alaska, and Kska Id.
Type locality, Kska Island, Alaska.
Collecting data: Shuyak Strait, Afognak Island, Alaska, 1924, on tidal por-
-extended range about 1500 miles eastward from Kska Island (W. J. Eyerdam);
Type locality, Port Graham, Alaska.

Cingula kelsyi Bartsch, 1911. San Diego south to Pt. Abreojos (Jordan).
Type locality, Coronado Island, San Diego, Calif.

Cingula kyskenensis Bartsch, 1911. Kyska and Atka Islands, Aleutians to Shuyak Strait, Atognaq Island, Alaska on nulliporoes (Eyerdam). Type locality, Kyska Harbor, Aleutians.
Collecting data: Mr. Eyerdam's record above is an extended range of about 1600 miles eastward from Kyska Island.

Cingula palmeri Dall, 1919. Pribilof Islands, Bering Sea.
Type locality: St. Paul Island, Bering Sea.

Genus Alvania (Leach) Risso, 1826. Type (by subsequent designation, M. Gordon, Nautilus 53:29, 1899), Alvania fremervillea Risso = Turbo cimex Linnaeus.

This genus has been revised by a number of different authors. A few of the papers follow:

In this paper Dr. Bartsch gives a key to species. Mr. A.M. Strong's key will follow this discussion.

- Shell ovate, turbiniform; aperture subcircular, crenulated within; lip with a marginal varix. (Tryon).

However, Mr. Gordon in his paper cited above makes the following statements:
- The true Alvania of the Mediterranean region differ from our West Coast forms in the following particulars:
 1. They have heavy thick shells about 5 mm. in height while the latter have rather delicate shells generally less than 3 mm. in height.
 2. They possess five postnuclear whorls while our West Coast forms generally average three.
 3. The outer lip of the former is greatly thickened by a prominent buttress-like varix and its interior bears prominent denticles, while the West Coast forms have a thin to slightly thickened outer lip with the interior more smooth but occasionally with shallow spiral lirations.
 4. The sculpture of the shells of true Alvania is also coarser and heavier than that of the West Coast species.

Subgenus Willettia Gordon, 1939. Nautilus 53:31 Type (by original designation), Alvania montereyensis Bartsch, 1911.

This subgenus is characterized principally by a turbiniform, well-rounded nucleus of approximately two whorls which is sculptured by spiral lirations. The shell is not thick and generally less than 3 mm. in height. The postnuclear whorls are generally three in number and somewhat inflated or well rounded. The shell is sculptured by spiral cords on the whorls and base and axial ribs on the whorls. The intersection of the ribs and cords form nodes. The aperture is rissoid with the outer lip thin to slightly thickened and smooth within. The peristome is complete.**

** See Page 30 for the continuation of this discussion.
Cingula martyni Dall, 1886. Bering Strait to the Aleutians and eastward to Chignik Bay, Alaska (Dall). Type locality, Kyska Harbor, Aleutians. Collecting data: Illuliuuk Bay, Unalaska Island, Aleutians, dredged, (W. J. Eyerdam); Kukatna Island (J. Norberg) (Eyerdam); Korovia Bay, Alaska; Elrington Island, Alaska (T. S. Oldroyd).

Cingula martyni scipect Dall, 1886. Pribilof Islands to the Aleutians and eastward to Middleton Island, Alaska (Dall). Type locality, Kyska Harbor, Aleutian Islands. Collecting data: Dutch Harbor, Aleutian Islands (W. J. Eyerdam).

Cingula alutica Dall, 1886. Pribilof Islands to the Aleutians and eastward to Windfall Harbor, Admiralty Island, Alaska (Dall). Type locality, Unalaska. Collecting data: Shuyak Strait, Afognak Island, Alaska on bread sponges; Elrington Island, Pr. Wm. Sound, Alaska (Eyerdam); Elrington Island, Alaska (T. S. Oldroyd).

Cingula californica (Tryon), 1865. San Francisco Bay to San Pedro, Calif. Type locality, Oakland and Monterey, Calif.

Cingula orvista Dall, 1919. San Diego, Calif.

Subgenus Nodulus Montresor, 1878. Type (fide Cossmann), Rissoa contorta Jeffreys.

In Nodulus we find a very characteristic oblique aperture; axial ribs are never present and spiral sculpture, if at all present, is reduced to exceedingly fine striations. (Bartsch, 1911).

Bartsch in his 1911 paper considered Nodulus a genus, but Dall in Full. 112 followed by Mrs. Oldroyd and others have used it as a subgenus. The differences seem to be slight, and until further advised we propose to use it as a subgenus.

However, Mr. A. E. Strong comments on it as follows: "The shells as figured and described by Bartsch are slender or sub cylindric while the shells of Cingula are ovate to subglobose. All the known species of Nodulus are Alaskan with one exception. I think it would be well to follow Bartsch. However, it seems out of place to put the shallow water southern species in the same genus with the Alaskan species." to Shuyak Strait (Eyerdan).

Cingula corinella Dall, 1866. Kyska and Amchitka Islands, Alaska, and Aleut Islands. Type locality, Atka Island, Alaska. Collecting data: Shuyak Strait, Afognak Island, Alaska, 1924, on bivalves. Extended range about 1800 miles eastward from Atka Island (W. J. Eyerdan);
Type locality, Port Graham, Alaska.

Cingula kelleyi Bartsch, 1911. San Diego south to Pt. Abreojos (Jordan).
Type locality, Coronado Island, San Diego, Calif.
Collecting data: San Diego (Lowe Collection); Pt. Abreojos, L.C. (T.S.
Oldroyd) (A.G. Smith).

Cingula kysakensis Bartsch, 1911. Kyska and Atka Islands, Aleutians to Shuyak Strait, Afognak Island, Alaska on nullipores (Eyerdam).
Type locality, Kyska Harbor, Aleutians.
Collecting data: Mr. Eyerdam's record above is an extended range of about
1600 miles eastward from Kyska Island.

Cingula palmeri Dall, 1899. Pribilof Islands, Bering Sea.
Type locality: St. Paul Island, Bering Sea.

Genus Alvania (Leach) Risso, 1826. Type (by subsequent designation,
M. Gordon, Nautilus 53:29, 1939), Alvania freminvillen Risso = Turbo cinex Linnaeus.

This genus has been revised by a number of different authors. A few of
the papers follow:
Gordon, McKenzie Jr., Nautilus 53:29, 33 "A New Subgenus and Species of West
Coast Alvania." 1939.

Bartsch, Paul, "The Recent and fossil mollusks of the genus Alvania from
In this paper Dr. Bartsch gives a key to species. Mr. A.M. Strong's
key will follow this discussion.

1 Shell oval, turbiniform; spire short, apex sharp; whorls rounded, usually
cancellated; aperture subcircular, crenulated within; outer lip with a margin-
al exterior varix." (Tryon).

However, Mr. Gordon in his paper cited above makes the following statements
"The true Alvanius of the Mediterranean region differ from our West
Coast forms in the following particulars:
(1) They have heavy thick shells about 5 mm. in height while the latter have
rather delicate shells generally less than 3 mm. in height.
(2) They possess five postnuclear whorls while our West Coast forms generally
average three.
(3) The outer lip of the former is greatly thickened by a prominent buttress-
like varix and its interior bears prominent denticles, while the West Coast
forms have a thin to slightly thickened outer lip with the interior generally
smooth but occasionally with shallow spiral lirations.
(4) The sculpture of the shells of true Alvania is also coarser and heavier than
that of the West Coast species.

Subgenus Willettia Gordon, 1939. Nautilus 53:31 Type (by original
designation), Alvania montoreyensis Bartsch, 1911.

This subgenus is characterized principally by a turbinate, well-rounded
nucleus of approximately two whorls which is sculptured by spiral lirations.
The shell is not thick and generally less than 3 mm. in height. The post-
nuclear whorls are generally three in number and somewhat inflated or well
rounded. The shell is sculptured by spiral cords on the whorls and base and
axial ribs on the whorls. The intersection of the ribs and cords form nodes.
The aperture is rizzoid with the outer lip thin to slightly thickened and smooth
within. The peritreme is complete.*

See Page 30 for the continuation of this discussion.
The following key is from Mr. A.M. Strong's notebook.

Spiral sculpture distinctly stronger than the axial
- Spiral sculpture of incised lines San Bartolome Bay... bartolomensis
- Spiral sculpture of raised cords
 - Axial, sculpture of threads between the cords Cape San Lucas, albolirata
 - Axial sculpture of broad, subobtuse ribs Gulf of Calif... tirata
- Spiral sculpture not distinctly stronger than the axial
- Junction of the axial ribs and spiral cords nodulous
- Sutures channeled
- Spiral cords on penultimate whorl 2
 - Basal cords 3 Lower Calif... cosmia Bartsch
 - Basal cords 4 Lower Calif... purpurea Dall
- Spiral cords on penultimate whorl more than 2
 - Spiral cords on penultimate whorl 3
 - Cords equal in strength Galapagos... halia Bartsch
 - Cord at summit weaker Galapagos... inna Bartsch
 - Spiral cords on penultimate whorl more than 3
 - All spiral cords equal
 - Axial ribs strongly protractive Clarion Island... clarionensis
 - Axial ribs nearly vertical Tres Marías Islands... grani Strong
 - Spiral cords unequal
 - Nodes compressed, sharp edged Galapagos... lora Bartsch
 - Nodes rounded Panama... valortonia
- Sutures not channeled
 - Shell elongate conic
 - Nodes cusp like Gulf of Calif... effusa
 - Nodes rounded, not cusp like
 - Axial ribs on penultimate whorl 15-18
 - Whorls slopingly shouldered Lower Calif... acquisculpta
 - Whors not shouldered Cape San Lucas... herrero
 - Axial ribs on penultimate whorl 20 or more
 - Whors slopingly shouldered Cape San Lucas... gallegst lucasam
 - Whors not shouldered Cape San Lucas... gallegosi
 - Shell ovate or subglobose
 - Shell strongly umbilicated Lower Calif... oldroydiae
 - Shell narrowly umbilicated or imperforated
 - Base with 2 spiral cords Gulf of Calif... tumida
 - Base with 4 spiral cords Gulf of Calif... monserratensis
- Spiral sculpture not distinctly stronger than the axial
 - Junction of spiral cords and axial ribs not nodulous
 - Sutures strongly channeled Gulf of Calif... excurvata
 - Sutures not channeled
 - Spiral sculpture on penultimate whorl less than 10
 - Shell elongate conic Cape San Lucas... electrind
 - Shell ovate
 - Base with 4 spiral cords Central America... perlata Morch
 - Base with more than 4 spiral cords
 - Axial ribs on penultimate whorl 14 Galapagos... nemo Bartsch
 - Axial ribs on penultimate whorl 20 Galapagos... galapagensis
 - Spiral cords on penultimate whorl 10 or more
 - Shell elongate conic Galapagos... hoodensis
 - Shell ovate
 - Axial ribs on penultimate whorl 32 Galapagos... profundicola
Genus Alvania Riss, 1826
Type, Riss'a abyssicola Forbes

* Shell small, broadly ovate to elongate ovoid, sculpture with spiral cords or axial ribs or both. Aperture subcircular, without notch or canal, outer lip in the adult thickened externally, usually with a raised varix, umbilicus closed, body with a strong callus.*

Alvania carpentori Weinkauff, 1896.
Forrester Island to Lower Calif.
Alvania purpurea Dall, 1872.
Monterey to San Martin Island
Alvania acutilatirata Carpenter, 1866.
Monterey to San Martin Island
Alvania aequi sculpta Keep, 1866.
Catalina to Todos Santos Bay
Alvania costa Bartsch, 1912.
San Pedro to San Martin Island
Alvania oldroydae Bartsch, 1912.
San Pedro to Qualeupe Island
Alvania alba Bartsch, 1912.
Santa Barbara Island to Reef Point
Alvania rosana Bartsch, 1912.
Santa Rosa and Catalina Islands
Alvania bartolomensis Bartsch, 1917.
San Bartolome Bay
Alvania albolarata Carpenter, 1863.
Cape San Lucas
Alvania electrina Carpenter, 1864.
Cape San Lucas
Alvania tumida Carpenter, 1866.
Cape San Lucas
Alvania lucasana B. H. and S., 1930.
Cape San Lucas
Alvania contraria Jordan. Pleistocene, Magdalena Bay
Alvania keenii Gordon. Moss Beach
Alvania herrerana B. H. and S., 1930.
Cape San Lucas
Alvania galagoi B. H. and S., 1930.
Cape San Lucas
Alvania monorrotatensis B. H. and S., 1930.
Gulf of Calif.
Alvania effusa Carpenter, 1856.
Gulf of Calif.
Alvania bifurcata Carpenter, 1856.
Gulf of Calif.
Alvania excurvata Carpenter, 1856.
Gulf of Calif.
Alvania clarionensis Bartsch, 1912.
Clarion Island
Alvania perlata Morch, 1868.
Central America
Alvania grata Strong.
Tres Maris Islands
Alvania profundicola Bartsch, 1912.
Galapagos
Alvania hochensis Bartsch, 1912.
Galapagos
Alvania galapagensis Bartsch, 1912.
Galapagos
Alvania nemo Bartsch, 1912.
Galapagos
Alvania helia Bartsch, 1912.
Galapagos
Alvania lam Bartsch, 1912.
Galapagos
Alvania lara Bartsch. Galapagos
Alvania peruviana Bartschigny. Peru
Alvania valeronis Strong and Bertlein. Panama (M.S?)
Alvania bicolor Bartsch.
Galapagos (M.S?)
Alvania duncani Bartsch.
Galapagos (M.S?)

* Continued from bottom of Page 28*

Alvania keenii Gordon, 1939.
Nautilus 53:31,32, pl.7, figs. 7,9 (left).
Type locality, Moss Beach, San Mateo Co., Calif. and apparently known only from the type locality.

* Shell small, elongate-ovate, yellowish-white. Nuclear whorls one and one half, turbinate, with axis parallel to that of the post-nuclear turn; first nuclear half-turn smooth (eroded); last turn sculptured by approxima-

ly ten rounded, hardly elevated, somewhat beaded spiral lirae, separated by very narrow spiral grooves. Post nuclear whorls well rounded, almost inflated, marked by narrow, rounded, elevated, slightly protractive axial ribs, about one third to one fourth as wide as the spaces that separate them. Of these, 18 occur on the first, 22 on the second, and 25 on the third (last) turn.

(Con.)
The axial ribs are corseased by prominent, elevated, well rounded spiral cords which are stronger than the axial ribs; separated by slightly wider, broadly rounded spiral grooves. There are five spiral cords on the first two whorls and six on the last, the extra cord being added below the periphery by the ceiling of the shell. The two posterior cords are narrower and more closely spaced than the rest which are subequal in strength and spacing. This results in a slight angulation at the third cord in the second whorl, but not in the last whorl where the second cord becomes slightly stronger. The axial ribs are strongest where they cross the spiral cords, forming prominent elliptical nodes with the long axis parallel to the spiral cords. The axial ribs are not well developed on the last half-turn. The sutures are rather strongly constructed.

Periphery well rounded, marked by a sulcus not quite as wide as that separating the heavier cords on the spire. Base, rounded, narrowly umbilicated, with a slight angulation marking the boundary of the umbilical area. The base is sculptured by six (not counting the first sub-peripheral cord which is exposed on the last whorl) low, rounded, closely-spaced spiral cords, much weaker than those on the spire; the last one occupying the umbilical area. The base is also marked by faint lines and constrictions of growth. Aperture oval; posterior angle obtuse; outer lip very slightly thickened, well-rounded; inner lip rounded, slightly reflexed and appressed to the base posteriorly; parietal wall covered with a moderately thick callus which renders the periphery complete. The type posses three and one quarter whorls and measures: length, 1.9; diameter, 1.0.

Holotype: No. 6516 (Stanford Univ. type coll.).

Alvania kamae appears to be most closely related to A. montereyensis Bartsch which possesses eight spiral threads on the nuclear whorls and has similar sculpture. The new species, however, differs from A. montereyensis in having more spiral cords on all the whorls, less axial ribs in the early whorls, and weaker spiral cords on the base, besides a more robust shape.

Alvania montereyensis Bartsch, 1911. Sitka, Alaska south to Cayucos (Strong). Type locality, Monterey, Calif.

Collecting data: Monterey Bay and vicinity, low tide under rocks; 11 mi. N. of Pt. Bragg; 3 miles south of Cayucos (A. G. Smith); Cayucos (Lowe).

Alvania microglypta Haas, 1943. Zoological Series of Field Museum of Natural History, vol. 29, no. 1, pp. 2-4, fig. 1. Type locality, Point Pinos, Monterey Peninsula, Calif. washed from sand in a tide pool. Known only from the type locality.

Shell elongate, conic, creamy white, solid, minute, with four and one-half rather rapidly increasing whorls. Nuclear whorls about one and one-half voluminous, globular, smooth (fig. 1, c), with the apex sunk below the level of the last half. Post-nuclear whorls three, spirally keeled, separated by a distinct, though by no means very deep suture. Three rather obtuse keels are present on the first post-nuclear whorl, which become more defined on the second whorl, and which assume almost fantastic features on the last post-nuclear whorl, where nodular excrencences are developing on them and where secondary keels intercalate between the original ones or originate below the lowest one. The whorls are rather slender, not swollen, distinctly shouldered, the upper keel forming the angle of the shoulder. Down to the first post-nuclear whorl there is no trace of axial sculpture, but, starting on the second, axial grooves are seen which regularly intersect the space between the suture and the upper keel, carving this into two ridges and furrows of about equal length; the furrows correspond to the axial grooves of the space above (cons).
the keel. The middle and the lower keels on the second postnuclear whorl show only indistinct traces of such crossing of an axial sculpture. Finally, on the last postnuclear whorl, the cutting of the keels into knobs is not traceable to axial sculpture, but has become quite irregular; while the marginal knobs of the middle and the lower keels are moderately small and homogeneous, those on the upper keels by far the thickest of the three are irregular as to shape and size (fig. 1,a,b). In an analogous way the space between the upper keel and the suture is irregularly beset with nodules, the furrows between which correspond to those dividing the knobs of the upper keel. The aperture is oval, doubly lipped, showing the external spiral sculpture weakly within; the inner lip is thin, smooth, much appressed, and the outer one is thicker, showing the keels at its outer margin. No umbilical chink is discernable. Base of the shell rather flat, smooth and shiny. Measurements—Height 0.97 mm., width 0.6 mm., height of aperture 0.41 mm.

Diagnosis—A very minute species of the rissoid genus Alvania, subgenus Willetta, characterized by its extreme smallness, by a wide, subglobular nucleus of one and one half whorls, by a solid shell strongly spirally keeled and by having only the slightest indications of intersecting axial sculpture.

Comparisons—The new form cannot be easily compared to any other known species, since it combines features thought to be characteristic of the subgenus Willetta with features to be found in other West Coast species, e.g., in A. Bakeri Bartsch; these points will be discussed below.

Alvania sanjuanensis Bartsch, 1920. Drier Bay, Knight Island, Pr. Wm. Sound, Alaska, 1923 (Eyerdam) south to San Juan Islands, Gulf of Georgia. Type locality, San Juan Islands, Gulf of Georgia.
Collecting data: Mr. Eyerdam's record listed above is an extension of the range northward some 1500 miles; Washington (Lowe Col.); Seattle (Gordon).

Alvania acquisculpta Keep, 1887. Pacific Grove, Monterey Bay (A.G. Smith) south to Cape San Lucas, Lower Calif. Type locality, San Diego, Calif.
Collecting data: Dredged off Redondo Beach, Calif. in 25 fms. gravel; El Morro Point, north of Ensenada, L.u.; Punta Banda on Todos Santos Bay, L. C.; Arbolito, L.C.; White's Point, L.A. Co.; dredged off Monterey Bay in 15 fms. (Barch); Catalina Island in 30 to 70 fms. (Gordon); San Diego (T.S. Oldroyd); beach drift at Pacific Grove (A.G. Smith); Avalon, shore, and from 5 mi. S. of Laguna (A.G. Smith); San Pedro (Baldridge); Todos Santos Bay (Hemphill); Pacific Beach (Kelcey and Stephens); San Diego (Baker and Kelsey); La Jolla (Chaney) (San Diego Museum).

Alvania cosmia Bartsch, 1911. Santa Barbara Islands south to San Martin Island, L.C. Type locality, San Pedro, Calif.
Collecting data: San Martin Island, L.C. (Dr. F. Baker); So. Coronado Isl. (Baker); Pt. Vincent, L.A. Co. (Strong); La Jolla (Chaney); San Pedro (Lowe); Reef Pt., Orango Co. in 12 fms. (T.S. Oldroyd); San Diego (T.S. Oldroyd); 5 mi. S. of Laguna Beach and also White's Point, L.A. Co. (A.G. Smith).

Gordon stated that in addition to the above A. halia and A. nemo Bartsch from the Galapagos are in the subgenus Willetta. The remaining species are unquestionably Alvania s.s. Therefore, we will simply list them without attempt at subgeneric classification.

Alvania castanolla Dall, 1886. Kyska to Atka Island, Aleutians.
Type locality, Atka Island, Alaska.
Type Locality, Shuyak Strait, Afognak Island, Alaska.
Collecting data: Collected from type locality by W.J. Eyerdam on nullipores.

Alvania aurivillii Dallas, 1866. Kyak to Adakh Island, Aleutians.
Type Locality, Adakh Island, Alaska.

Alvania trachisma Bartsch, 1911. Monterey, Calif.

Collecting data: Dredged off Redondo Beach, Calif. in 25 fms. gravel. (Burch); have not collected this at Monterey; one set of california from Russian Gulch, Mendocino Co., Calif. (A.G. Smith).

Collecting data: Mr. Eyerdam's record extended the range northward from Forrester Island, Alaska; Monterey, Calif. (Oldroyd) (San Diego Museum of Natural History); Puget Sound (T.S. Oldroyd); Elrington Island (Oldroyd).

Alvania pedroana Bartsch, 1911. Redondo Beach (Burch) to Mission Bay. Described from the Pleistocene of San Pedro, Calif. and questionably Recent. However, I have a set labelled cf. pedroana which must be close to it, but dredged from over 100 fathoms off Redondo Beach on mud bottom. (Burch); a set so identified in the San Diego Museum of Natural History from Mission Bay collected by Stephens.

Alvania filosa Carpenter, 1865. Vancouver Island, B.C. (Taylor) and Neah Bay, Wash., north to Hoonah, Alaska (Mrs. Kate Stephens). Type Locality, Neah Bay.
Collecting data: Mrs. Stephens set extending the range northward to Alaska in the San Diego Museum of Natural History.

Alvania alaskana Dallas, 1866. Nunivak Island, Arctic Sea to Shuyak Strait, Afognak Island, Alaska (Eyerdam). Type Locality, Nunivak Island.
Collecting data: Elrington Island (T.S. Oldroyd); Windfall Harbor, Alaska (T.S. Oldroyd).

Alvania rosana Bartsch, 1911. Monterey Bay (Gordon) south to Catalina Island Calif. Type Locality, off Santa Rosa Island, Calif.
Collecting data: Dredged in 25 fms. off Avalon, Catalina Island; off Redondo Beach, Calif. in 25 fms. gravel and also in 75 fms. rock and gravel. (Burch); Catalina Island in 35 fms. (Lowe); Catalina Island in 30 fms. (Baker); Carmel Bay in 25 fms. (C.A.S.); common with A. acutelirata off Catalina (C.A.S.); Catalina in 30 fms. (T.S. Oldroyd) (A.G. Smith).

Alvania compacta Carpenter, 1864. Port Etches, Alaska to San Diego, Calif. Type locality: Vancouver Island, B.C.

Collecting data: Dredged off Monterey, Calif. in 15 fms.; off Redondo Beach, Calif. in 25 fms. gravel; Pleistocene of Hilltop Quarry, San Pedro, (Burch); off Friday Harbor, Puget Sound (T. Kincaid); Drier Bay, Knight Island, Alaska in 1923 (W.J. Eyerdam); Crescent City, Calif. (Chace); Washington (Lowe); Windfall Harbor, Alaska (Mrs. Kate Stephens); Monterey Bay in 15 fms. (Gordon); Puget Sound and Olga, Puget Sound, also Trinidad, Calif. (T.S. Oldroyd).

Alvania acutelirata Carpenter, 1865. Monterey, Calif. south to San Martin Island, L.A. Type locality, San Diego. Type at U.C. The original spelling was with an "e" instead of an "a" as usually spelled.

Collecting data: Dredged off Redondo Beach, Calif. in 25 fms. and also to 100 fms.; from backs of Haliothoa rufescens brought up from about 35 ft. off Morro Bay; Cayucos, Calif. littoral; Pleistocene of Timm's Point, San Pedro (Burch); dredged off S. Coronado Island, 18 fms. (Dr. F. Baker); San Diego (Lowe); Monterey Bay in 5 to 30 fms., also San Diego (T.S. Oldroyd); 3 mi. N. of Cayucos (A.G. Smith).

Alvania purpurea Dall, 1871. Monterey south to San Martin Island, L.C. Type locality, Monterey.

Collecting data: Monterey, Calif. from algae close to shore; dredged off Monterey in 15 fms.; Punta Banda, on Todos Santos Bay, littoral; (Burch); dredged off S. Coronado Island, 18 fms. (Dr. F. Baker); San Diego, Calif. (T.S. Oldroyd); La Jolla (Burch); Monterey Bay on rocks at low tide to 30 fms.; Reef Point, Orange Co. (A.G. Smith).

Alvania alno Bartsch, 1911. Santa Barbara Island, Calif. to Orange Co. Type locality, Monterey.

Collecting data: Reef Point in 10 fms. (Strong).

Alvania oldroydae Bartsch, 1911. Monterey Bay, Calif. (Gordon) south to Guadalupe and San Martin Islands, L.C. Type locality, San Pedro.

Collecting data: White's Point, L.A. Co. (E.V. Edmonds); dredged off S. Coronado Island (Dr. F. Baker); La Jolla (Burch); Ocean Beach (Simmons); beach drift at Pacific Grove (Gordon); Reef Point (Orange Co. A.G. Smith).

Type locality, Burrard Inlet, British Columbia. Known only from type locality.

Additions and Corrections

Continued from page 25 this issue: Original description of Anabathron muriol Bartsch and Rohrer, 1939. Nautilus 52:110, 111, 1939, pl. 8, fig. 22a.

Shell very minute, elongate conic, thin, semi-translucent, white. The nucleus consists of a single, somewhat inflated, well rounded turn which is slightly obliquely placed. The 2.75 postnuclear whorls bear a strong spiral keel on the middle of the turn. There is a second keel on the middle of the base and a third that bounds the edge of the funnel-shaped umbilicus. In addition to this, the entire surface of the shell is marked by very fine spiral lirations and axial incremental threads, which show as a fine reticulation when seen under high magnification. The umbilicus is broadly expanded and marked by incremental lines and the fine spiral lirations mentioned for the spire. Aperture broadly oval, almost subcircular; peristome slightly thickened. The last whorl is slightly solute.

The type, USNM no. 553546, was obtained from the droppings of a sea otter at Oglibu Ita, Aleutian Is. It measures: Length 0.6 mm, diam. 0.4 mm.
Additions and Corrections

Mr. Henry Dodge, 8 Rochambeau Road, Scarsdale, N.Y.

I notice in the last Minutes that Dr. Keen cites Murex argus Linne as the type, by original designation, of Argothunicum Klein in Hermannson 1846. Argus as a specific name, was only used once by Linnaeus and that was for his Cypraea argus. Grant and Gale make the same error. I imagine that Hermannson must have designated Murex argus Gmelin (for a long time placed in Ranella or Bursa) although Hermannson's work is not available here. I will check it when I next go to Boston or Washington. At any rate Murex argus is not Linne, but Gmelin. Possibly the error started as far back as Hermannson.

I have been spending some time on a catalogue of the Linnaean species and their present-day representatives and have come across many errors where species of later authors are improperly attributed to Linnaeus. Some of them are Lamarck's species and here the trouble was caused by transcribing a handwritten "Lam." into "Linn." I have caught myself doing the same thing myself, as my handwriting is extremely bad. Others are Gmelin's species and there the mistake possibly arose because Gmelin's work was published as the 13th Edition of the Systema Natura, and, for some utterly ridiculous reason writers felt that his species, unknown to Linnaeus, must be given as "Linne." It is possible that Hermannson made this mistake. I will be interested to check back.

Your Minutes continue to improve in interest and scholarship, and you are doing a grand, workmanlike job, and deserve a lot of credit. I have not been much interested in western Pacific species as I should be as I have been confining myself to Linnaean shells lately, and they are pretty infrequent in your part of the world. However, I am still planning to come to California soon and when I do I hope to learn something about them...

Southward Extension of Range of Pediculariella californica (Newcomb).

A short time ago we were sent a fine set of the above species by Mr. and Mrs. E.W. Cameron, Box 644, San Pedro, Calif. They were collected by Mr. N. Jacobs, a friend of theirs who is a deep sea diver. This is an extension of range southward from Monterey and a correction of our data as published in Minutes #53, page 25.

We are indebted to Dr. Fritz Haas of the Chicago Natural History Museum who obviously received some of the same lot, for the overlooked generic name, Pediculariella Thiele, 1925. The letter from Dr. Haas follows.

"I want to communicate to you some facts concerning a not too common Californian shell which only last week came into our Museum's possession.

We were presented with a rather fine specimen of what is generally called the coral, but what really is a Hydrocoralline, a beautifully pink specimen of Millepora. Among the rather interesting animal association to be found on this Millepora, there were about a dozen shells of what in the Minutes, No. 53, p. 25 were called Pediculariella californica Newcomb. The longest specimen was 10.25 mm, and all of them were rather of variable shape, according to the place where they had settled on the Millepora. Those sitting on the flat side of the stems were much broader than those attached to the rather narrow edges. Their color was in general way exactly that of the Millepora, only occasionally interrupted by a white belt at the circumference. The exact data accompanying the find are: 2 miles off the west side of Catalina Island, 150 feet deep.

I thought that this information might interest you or any member of your conchological club, whose Minutes always give me the highest pleasure.

I want to call your attention, by the way, to the fact that Thiele, in 1925, had separated Pediculariella californica from typical Pediculariella on account of obvious differences in the mouth parts and that he erected for it the new genus Pediculariella, and that Schindler (Fossilium Catalogus,
December 1945

It is of further interest to mention that the diver mentioned in the above article has also produced numbers of other exceedingly rare and beautiful shells. Mr. Jacobs has obtained a number of perfect living specimens of _Tealia regina_ (Stearns), 1892. This beautiful species is of almost legendary rarity.

The following collecting data was received from Mr. W. J. Eyerdam after we had typed the report. These records will supplement those published in Minutes #54 as well as the first part of this issue:

Bittium eschrichtii Middendorff, 1849 — Port Orchard, Kitsap Co.; Alki Point, Seattle, King Co.; Port Ludlow, Jefferson Co. and many other localities on Puget Sound, Wash., also Drier Bay, Knight Island, Alaska. Extension of geographic range northward from Sitka.

Bittium (Sombittium) *vancouverensis* Dall and Bartsch, 1910 — Izhut Bay, Afognak Island, Alaska, 1948 - on bread sponges under rocks — always scarce — Extension of geographic range northward from Barkley Sound, Vancouver Id.

Bittium (Larobittium) *municum* Carpenter, 1864 — Victoria, B.C.

Trichotropis *bicolorata* Sowerby, 1825 — St. Lawrence Island, Bering Sea.

Trichotropis castellata Couthouy, 1839 — Trichotropis borealis Sowerby, 1829 — Drier Bay, Knight Island, 1923; Izhut Bay, Afognak Island, 1924; Red Fox Bay, Shuyak Strait, 1924; Sitkalidak Id., 1931; Dutch Harbor, Aleutian Islands, 1932; and Raspberry Id., Alaska, 1945; (Eyerdam); Hinchinbrook Id., Prince Wm. Sound, Alaska (L. Norberg).

Trichotropis *cancillata* Hinds, 1843 — Strait of Juan de Fuca, Wash.; Izhut Bay, Afognak Id.; Drier Bay, Knight Id.; and Sitkalidak Id., Alaska — dredged.

Trichotropis *insignis* Middendorff, 1848; Izhut Bay, Afognak Island; Sitkalidak Id., Alaska; and Dutch Harbor, Aleutian Islands under stones.

Miaranella *oregonense* Bartsch, 1922 — Drier Bay, Knight Id., Prince Wm. Sound, Alaska — dredged.

Partulum occidentale Bartsch, 1920 — Under stones at low tide — Drier Bay, Knight Island. Extension of geologic range northward from Gulf of Georgia about 2,000 miles.

Bivonia *compacta* Carpenter, 1864 — Rosario Beach, Skagit Co., Wash.

Alectus *cincta quadratus* Valenciennes, 1846 — Corinto, Nicaragua, 1839.

Tachyrhynchos *erosus* Couthouy, 1838 — Smith's Cove, Seattle, Wash.; in 10 fms.

Tachyrhynchos *erosus major* Dall, 1919 — Drier Bay, Knight Island, and Izhut Bay, Afognak Island, Alaska — dredged.

Tachyrhynchos *lacteolus* Carpenter, 1869; Drier Bay, Knight Island — dredged.

Littorina *squalida* Broderip & Sowerby, 1829 — Petropevlovsk, Avatcha Bay, Kamchatka, on rocks at extreme low tide — occurs in isolated small colonies — a large heavy coarse shelled species about the size of _Littorina littorea_.

Littorina *sitchana* Philippi, 1846 — Many colonies on Puget Sound and Wash. coast; also Drier Bay, Knight Id.; Izhut Bay, Sfonognak Id.; Sitkalidak Id.; Kodiak Id.; Raspberry Id.; King Cove, Alaska peninsula; Unimak Id.; Dutch Harbor; Unalaska Id.; Atka Id., Alaska and Aleutian Islands; also Vladivostock, Siberia 1928 and Tsugaru, Japan, 1930. This is a very common and variable species. There are a number of forms and banded or color varieties which, however, need not be named. It is possible that the Vladivostock shells could be a good subspecies.

Littorina *atkana* Dall, 1866. This seems to be a rather rare species. I found only two specimens on atka Island, the type locality, and none on any of the other Aleutian Islands visited.

Littorina *aleutica* Dall, 1873. Atka Island — rare.

Littorina *greenlandica* Menke, 1850. Godthaab, Greenland, the type locality. (con.)

Littorina planaxis Philippi, 1847. Port Orchard, Kitsap Co., and Alki Pt. Seattle, Wash.—not common in this area.

Littorina (Melarhaphe) scutulata Gould, 1869. Nearly everywhere on rocks near high tide mark in Puget Sound. Izhut Bay, Afognak Id., Drier Bay, Knight Id., Raspberry Id., Alaska. Does not seem to be common in Alaska. *Note* The specimens that I have collected this summer on Raspberry Strait, Raspberry Island are mostly black, and without the mottled patterns of the Puget Sound shells. They are also more slender and are not common. This one perhaps merits a subspecific name.

Lacuna porrecta Carpenter, 1864. Port Orchard, Kitsap Co., Alki Pt., Seattle and Rosario Beach, Skagit Co., Wash. on eel grass.

Lacuna carinata Gould. This is the name given to about ten lots of Alaskan shells submitted to Dr. S.S. Berry for identification about 4 years ago under the name Lacuna divaricata. Which name is correct? *L. carinata* Lacuna variagata Carpenter, 1864—Puget Sound.

Lacuna solidula Loven, 1846. In a shallow lagoon—Rod Fox Bay, Shuyak Strait, Afognak Island—on Fucus in countless thousands, 1931.

New Publications

William C. Fargo, 506 Union St., Jackson, Michigan is again spending the winter at his Florida address. P.O. Box 874, Pass-a-Grille.

Leslie Hubricht, 63 Longfellow St., Detroit 2, Michigan. This is his new address.

Marshall Sohl Jr., 1433 W. 154th St., Gardena, Calif. We are happy to welcome Mr. Sohl as one of our subscribers and sincerely hope that he will be able to attend some of the meetings.

Captain C.M. Dumbauld, (MC), USN, Medical Officer in Command, U.S. Naval Hospital, Balboa, Canal Zone. *I recently saw a copy of the minutes of the Conchological Club of Southern California in the office of Dr. James Zetek. I wonder if it would be possible for me to be placed on the mailing list for this pamphlet. Could you also tell me if back issues are available and how obtained?* We will be happy to mail Captain Dumbauld all available back issues of our paper.

Mrs. W.V. Hadfield, Private Bag, Takaka, New Zealand. *I have posted you a small parcel of shells, some of which I hope will prove new to you. We cannot send money out of the country, so I hope you will accept this as some slight token of appreciation of your kindness in sending me your club notes. These have been coming regularly and have been much enjoyed.* Thank you—and the editor should add that he has received many fine and rare shells through exchange with Mrs. Hadfield and had perhaps belatedly here mention receipt of a nice box early in the war.
Minutes of the Conchological Club of Southern California—Dec. meeting

The Conchological Club of Southern California met at their new location in the Junior Museum Lecture room, which is located on the ground floor in the S. E. corner of the Junior Museum Building.

The meeting was held Tuesday evening, Dec. 4, 1945, and was called to order by the president, Dr. W. O. Gregg. It being a rainy night but eleven members were present.

Due to the fact that New Year’s day falls on the regular meeting day in January, it was voted that for that occasion only, the meeting be held one week later, Jan. 8, 1946.

There were no reports by standing committees. The minutes of the previous meeting were approved.

Due to the fact that there had been no regular meeting in November, the president appointed as Nominating Committee for next year’s officers, the following: E. P. Chace, Dr. Chas. Wright, and A. M. Strong. Their recommendations for officers were: President—Dr. Wendell O. Gregg; Vice-President—Dr. Charles R. Wright; and Secretary-Treasurer—Mrs. Effie M. Clark. Nomination was made and carried that the report be accepted and those named be declared duly elected.

Dr. Gregg appointed the following committees:

Nomenclature—A. M. Strong, Mrs. E. P. Chace, and J. Q. Burch
Membership—Morris Caruthers, Charles R. Wright, and E. P. Baker
Program—Dr. H. R. Hill, W. G. Rader, and another to be added later
Editor—J. Q. Burch
Historian—Elsie M. Chace

Dr. Wright then gave a talk on the joys and perils of shell collecting with sometimes Jap bombs falling entirely too near for comfort, of sharks and barracuda sometimes hovering on the side lines and much too close for comfort. While he actually came across no instances of damage done by Conus written warnings were issued to the troops to beware of all conus and there were persistent rumors of some damage and, at least, one death resulting from their sting.

In several places barracuda were reported to be greater menace than sharks, though Dr. Wright said a shark, on one occasion, had him "plenty scared."

He brought some beautiful shells from various newly historic locations and said he had quite a large number awaiting a general clean up and identification.

Dr. Hill reported the discovery of a beautiful submerged coral reef off Catalina that will be reported on later with the addition of new range localities of several species.

The meeting was then duly adjourned.

Effie M. Clark—Secretary

--
Dr. Joshua L. Baily Jr. sends the following very interesting note which will necessitate changing at least one of the names we used, namely Eratidace.

"I have consulted a Greek scholar about the formation of some family names, with the following results:

Eratode
Eratidae
Amphiperas
Amphiporatidace
Potamoids
Potamidace
I have seen the first two spelled three different ways each, and the last spelled two different ways."
December 1945

Professor H.W. Miller, Academia Adventista Hispanoamericana, Apartado 1320, San Jose, Costa Rica, A.C.

I surely don't want to miss the Minutes. Received the October number and I believe you will have to extend the range of Neosimnia avona Sowerby, as a friend and I collecting at the Bocas de Barranca, a few kilometers below Puntarenas, found two specimens, one 9 mm. and the other 12½ mm., which agree perfectly with the figure in Panamic Marine Shells, H. Smith, and the breadth of the small one is 42% of its length, while that of the larger one is 44%. No other species in your table approaches that ratio of breadth and length. The color does not agree with the table but does agree with the description given on page 39 of the Minutes. With these new tables, lists, and descriptions, collecting on the west coast is going to be more interesting than ever if I can ever get time to do any.

I also think I have Acatina grandis Sowerby. It is listed from the Galapagos, but my specimen looks like the figure of grandis in H. Smith's Rock Shell Catalog, and does not resemble specimens of muricata of equal size in my collection. What do you think of the possibility?

Mrs. Ruth Paulus, 918 Harliss Ave., San Jose 10, Calif., is interested in purchasing shells. Perhaps some of the members will wish to write her.

Dr. O.H. Wolner, St. Peter, Minnesota, is also interested in purchasing shells.

West Coast Exchangers notice. The following message received by the editor should be given attention. If the press of other business did not prevent his exchanging at this time, no doubt he would even now be shipping a box. The letter is from:

Dr. L.A.W.C. Vonnmann, Tolstoeasingel 13, Utrecht, Holland. "I saw your advertisement in the Nautilus and should be very much obliged if you could send me West Coast Shells. It is not necessary to give me your list as I don't possess anything from the coast of California.

First of all I collect land and fresh water mollusks, but I have also a great collection of marine shells. You would please me if you would send more than one specimen of the same species (e.g. at least 2 or 3).

For exchange I can send you most of the European West Coast mollusks and if you will, also most of the Dutch land and freshwater species.

All of my specimens are provided with finding place and datum. I can give you also Dutch fossils from B. Lem-Stratum.

Earl C. Huffman, 356 Stanton St., Pasadena 3, Calif. Earl has just written that he failed to receive the November issue. If any other members fail to receive issues please advise the editor.

Mr. F.M. Bayer, Florida State Museum, Gainesville, Florida. We are indeed happy to hear from Ted who has been in the service. The following from his letter will interest his friends. "My duties as Assistant Director of the Florida State Museum resume January 1st, and my address will be there." "I have just returned from the Pacific Area and find a huge accumulation of shells. These I plan to bind when you publish the December number." Mr. and Mrs. John Dyas Parker, 309 North Fourteenth St., Muskogee, Okla. One of the nicest things about Christmas cards is that you get the recent addresses of old friends. We all recall with pleasure the interesting talks of Mr. Parker."
Additions and Corrections

In Minutes #39, pp. 17-18, September, 1944 we discussed the species Circe margarita and subtrigona Carpenter, 1857.

Dr. Fritz Haas, Fieldiana-Zoology, Chicago Natural History Museum, Vol. 31, No. 2, Sept. 19, 1945pp 4-5. In this paper Dr. Haas discusses the entire problem with some very interesting notes. A paratype of Circe subtrigona was discovered in the Chicago Museum. Dr. Haas diagnosed this specimen as a Semele. Dr. A. Myra Keen in our discussion had found the specimen in the National Museum to be a Petricola. However, it seems that it is certain that the species under consideration is not a Circe and not even a venerid.

In the same paper Dr. Haas has a number of other well illustrated papers—"Late Pleistocene Non-Marine Mollusks from Honduras"; "Some Peruvian Land and Fresh-Water Mollusks"; "The Systematic Position of Plectopylis Caracata Meudendorff"; "A Second Record of Bradybaena Similaris from the United States"; "Strobilops Anea Pilsbry from Oahu, Hawaiian Islands."

Another number—No. 3 of the same publication is devoted to a fine paper, 16 pp and 1 pl. "Some Remarkable Shells of a South American Fresh-Water Mussel". The species is Anodontites ensiformis Spix.

Note Some years ago the editor of the paper received from the River Jurua, Brazil a large box of what he identified as this species, and the shells do compare with Dr. Haas figures. However, specimens of these were sent out on exchange or gift to perhaps a hundred or more labelled Glabaria ensiformis Spix. It is suggested that my friends correct the nomenclature on the labels to the name used by Dr. Haas—Anodontites (Lamprosephina) ensiformis Spix.

Johnsonia No. 18 containing the index of Vol. I, Numbers 1 to 18 has been delivered. In addition to the index there are a number of additions to the previous issues. Number 19 will start Vol. II.

California Fish and Game Vol. 31, No. 4, Oct. 1945 has been delivered.

Dr. Alberto Carcedales, Notas Del Museo De La Plata, Tomo VIII, Zoologia no. 72, "Observaciones sobre Trophon varians (d'Orbigny)". 1945

This well illustrated paper from Argentina is of some interest to us in connection with our recent consideration of the species Trophon gorybanum (Pallas), the genotype. The species here discussed is closely related.

The very best of the season's greetings to all of our friends from the Burches—John, Rose, Tom, Beatrice, and John III.

These papers are published by a group of interested students for our own pleasure and financed by voluntary contributions of members and friends. It is not our intention to offer subscriptions and guarantee regular periodical publication. However, non-members of our club will be placed on our mailing list and receive all papers published for contributions to our fund of $2.50 per year or $1.25 each six months.

We are now meeting the first Tuesday of each month at 7:30 P.M. at the Los Angeles Museum, Exposition Park, Los Angeles, Calif.

Please mail all shell news to your editor:

John Q. Burch
4206 Halldale Ave.
Los Angeles 37, Calif.
Phone AX 2-7965

We will follow our annual custom of publishing a list of all members and friends, each name followed by numbers indicating their interests by the following key. Please drop a card or letter to the editor listing your interests.

1. World Wide Sea Shells
2. Pacific Coast Shells
3. Marine Shells
4. Land and Fresh Water Shells
5. Buy Shells
6. Sell Shells
7. Exchange Shells
8. Buy Books
9. Field Collecting
10. Marine Life, in General
11. Fossil Shells

Please mention any additional interests not on the list.

Mrs. Ida Worthy, Patumahoe, Auckland, New Zealand is the newly-appointed overseas correspondent of the Auckland Museum Conchology Club, and we have been receiving the latest issues of the proceedings of their club. They are very interesting and our club and theirs will have a great deal in common.

Incidentally, all of our foreign correspondents are cordially invited to send their names and interests to this editor for publication in our Minutes. Those interested in exchanging would be almost certain of getting prompt results.
Genus Rissada d'Orbigny, 1840. Type (by original designation), Rissadia inca d'Orbigny.

Rissoid form, ribbed or cancellated, whorls numerous, apex mamillated; aperture semilunar, lip thickened within, a little reflected, anteriorly effuse or faintly channelled, operculum corneous, semilunar, thick, paucispiral, with a claviform process on the inner face." (Tryon, Manual of Conchology).

The following key is from Mr. A.M. Strong's notebook.

Spiral Sculpture present
- Spiral sculpture on both spire and base
- Axial sculpture of prominent ribs
 - Ribs sublamellar, interspaces with cloth-like sculpture
 - Length of adult shell about 5 mm. Panama firmata C.B. Adams
 - Length of adult shell about 3 mm. Gulf of Calif. .. excolpta Carp
 - Ribs not sublamellar, sculpture not cloth like
 - Summit of whorls shouldered
 - Base with a distinct fasciole
 - Length of adult shell about 9 mm. Galapagos io Bartsch
 - Length of adult shell about 7 mm. Galapagos dino Bartsch
 - Base without a fasciole
 - Spiral elongate conic
 - Spiral sculpture exceedingly fine Gulf of Calif. .. mazatlana Bartsch
 - Spiral strong Peru helena Bartsch
 - Shell broadly conic
 - Base with strong cords and fine lines Gulf of Calif. .. favilla Bartsch
 - Base with uniform cords
 - Interspaces about as wide as the ribs
 - Whorls strongly, roundly shouldered. Panama fortis C.B. Adams
 - Whors narrowly shouldered. Gulf of Calif. stricta Menke
 - Interspaces twice as wide as the ribs
 - Basal cords 11 Panama dana Bartsch
 - Basal cords 15 or more. Peru........................ inca d'Orbigny
 - Summit of whorls appressed, not shouldered
 - Shell broadly conic or elongate ovate
 - Upper half of base smooth Gulf of Calif. expansa Carpenter
 - Entire base sculptured. Lower Calif. bartholowii Bartsch
 - Shell elongate conic
 - Axial ribs 20 Guadalupe Island guadalupensis Strong
 - Axial ribs more than 20
 - Last whorl inflated Cape San Lucas peninsularis Bartsch
 - Last whorl not inflated
 - Axial ribs 32 Panama adamsi Bartsch
 - Axial ribs 40 or more
 - Axial ribs slightly protractive Gulf of Calif. .. townsendi Bartsch
 - Axial sculpture more or less obsolete
 - Whorls shouldered at the summit
 - Base with 10 spiral cords. Gulf of Calif. berryi B. H. & S.
 - Base with 20 spiral threads. Lower Calif. kelsoyi D. & B.
 - Whorls not shouldered at the summit
 - Axial ribs entirely obsolete
 - Axial ribs not entirely obsolete
 - Spiral threads on penultimate whorl 7-8
 - Whorls evenly rounded Cape San Lucas stephensae B. H. & S.
 - Posterior 2/3 of whorls flattened. Cape San Lucas. melanoidos B. H. & S.

(cont.)
January, 1946

Spiral threads of penultimate whorl 16
Spiral threads of penultimate whorl 16
Spiral threads equal Guadalupe Island
Spiral threads unequal Gulf of Calif
Spiral sculpture on base only
Axial ribs entirely obsolete Panama
Axial ribs not entirely obsolete
Base with many spiral cords Panama
Base without many spiral cords
Base with two keels Sononata, Mex.
Base with 1 keel and 2 incised lines Gulf of Mex
Spiral sculpture absent
Axial ribs strong
Interspaces between ribs sculptured
Interspaces with irregular crinkly markings Lower Calif
Interspaces with fine axial threads
Whorls decidedly inflated Lower Calif
Whorls not inflated Gulf of Calif
Interspaces between ribs smooth
Summit of whorls shouldered
Axial ribs lamellar Gulf of California
Axial ribs not lamellar
Axial ribs on penultimate whorl 12 Gulf of Calif
Axial ribs on penultimate whorl 22 Lower Calif
Axial ribs terminating at the periphery Guadalupe Island
Summit of whorls not shouldered
Whorls constricted below the summit Central America
Whorls not constricted below the summit
Base with a fasciole Lower Calif
Base without a fasciole
Axial ribs on penultimate whorl 20 Panama
Axial ribs more or less obsolete
Shell elongate ovate Lower Calif
Shell elongate conic
Shell slender, length 2.8 mm Lower Calif
Shell stouter, length 3.5 mm Lower Calif

Rissoina kelseyi Dall and Bartsch, 1902 San Pedro to Coronado Island
Rissoina californica Bartsch, 1915 Catalina to Guadalupe Isl
Rissoina ebro Bartsch, 1915 Coronado Isl to Guadalupe Isl
Rissoina dalli Bartsch, 1915 San Pedro to Coronado Isl
Rissoina bakeri Bartsch, 1915 Monterey to Cape San Lucas
Rissoina coronaensis Bartsch, 1915 Catalina to San Martin Isl
Rissoina coronaensis Bartsch, 1915 Cerros Island
Rissoina townsendii Bartsch, 1915 Agua Verde Bay
Rissoina bartholowi Bartsch, 1915 Conception Bay
Rissoina burragai Bartsch, 1915 Gulf of Calif
Rissoina nereina Bartsch, 1915 Pt. Sbrecjos to Cape San Lucas
Rissoina tavilla Bartsch, 1915 Cape San Lucas
Rissoina woodwardi Carpenter, 1856 Gulf of Calif
Rissoina hartmanni Jordan Pleistocene Magdalena Bay
Rissoina stephanos B. H. & S Cape San Lucas
Rissoina burryi B. H. & S Cape San Lucas
Rissoina porteri B. H. & S Gulf of California

(cont.)
Rissoina melancoides E. H. & S. Cape San Lucas
Rissoina expansa Carpenter, 1865 Gulf of Calif.
Rissoina peninsularis Bartsch, 1915 Gulf of Calif.
Rissoina filifera Adams, 1852 Gulf of Calif. to Panama
Rissoina stricta Menke, 1850 Gulf of Calif.
Rissoina excorticata Bartsch, 1915 Gulf of Calif.
Rissoina mexicana Bartsch, 1915, Gulf of Calif.
Rissoina lapazana Bartsch, 1915. La Paz.
Rissoina hystica Bartsch, 1915. La Paz.
Rissoina constribulata March, 1861 Sononata
Rissoina guadalupensis Strong Guadalupe Island
Rissoina lowii Strong
Rissoina willettii Strong
Rissoina effusa March, 1860 Central America
Rissoina fortis C.B. Adams, 1852 Panama
Rissoina diastoma C.B. Adams, 1852 Panama
Rissoina Janus C.B. Adams, 1852 Panama
Rissoina zebrata de Folin, 1867 Panama
Rissoina laevae-deformis Panama
Rissoina sigmo Bartsch, 1915 Panama
Rissoina dina Bartsch, 1915 Panama
Rissoina adamsi Bartsch, 1915 Panama
Rissoina tenuis Bartsch, 1915 Galapagos
Rissoina alba Bartsch, 1915 Galapagos
Rissoina inca dorbignyi, 1840 Bolivia and Peru
Rissoina helena Bartsch, 1915 Peru
Rissoina allomani Bartsch, 1931 Bay of Panama

Genus Rissoina d'Orbignyi, 1840.

Rissoina kelseyi (Dall and Bartsch) 1902. Redondo Beach, Calif. (Burch)

south to the Coronado Islands, Lower Calif. Type locality, San Diego.

Mr. A.M. Strong says of this species in his notebook: "Rissoina kelseyi differs from nearly all the species in the genus in being variously-colored, yellow to light red, unicolor, or longitudinally streaked, instead of uniformly pure white or bluish white. It belongs in the group with faint axial sculpture, but the spiral striations are strongly incised and continuous."

It was described as Rissoa kelseyi Dall and Bartsch, Nautilus, vol. 16, 1902. Alaba oldroydi Dall, Nautilus, vol. 13, 1905, p. 15: from 10 fms. off San Pedro Is in the synonymy.

Collecting data: A common dredged shell in comparatively shallow water; off Malaga Cove, L.A. Co. in 10 to 15 fms., sand bottom; off Redondo Beach in 25 fms., sandy gravel; off Ensenada, Mexico 15 fms. sand bottom; Punta Banda, Todos Santos Bay, L.C. (Burch) off S. Coronado Island in 18 fms. (Dr. F. Baker).

Rissoina californica Bartsch, 1915. Catalina Island, Calif. to Guadalupe Is-

land, L.C. Type Locality, South Coronado Island, L.C.

Mr. A.M. Strong says of this species: "Rissoina californica is a very small species and like the last has strong axial ribs with smooth interspaces but the whorls are not shouldered and there is an umbilical chink surrounded by a tumid area."

(Con.)
#56 p 5 January, 1946

Collecting data: Off South Coronado Island, L.C. (Dr. F. Baker); North Coronado Island (F. Stephens);

Rissolina bakeri Bartsch, 1902. Monterey, Calif. south to Cape San Lucas, L.C. Type locality, San Pedro, Calif.

Mr. A.M. Strong states of this species "Rissolina bakeri Bartsch is one of the smallest species in the genus. Spiral sculpture is entirely absent and the interspaces between the well developed axial ribs are marked by slender, very strong axial threads." Collecting data: Dredged off Monterey, Calif. in 15 fms. (Burch); 10-30 fms. in Monterey Bay. Specimens from the Bay are close to but not typical R. bakeri (A.C. Smith); No. Coronado Island (F. Stephens); South Coronado Island in 3-7 fms. (Dr. F. Baker); San Martin Island (Dr. F. Baker); Hilo, Hawaii (Dr. F. Baker). San Pedro (Lowe).

The Hawaiian record by Dr. F. Baker is of interest. Dr. Baker was a good student of this group. His material is all in the San Diego Museum of Natural History.

Rissolina newcombei Dall, 1897. Forrester Island, Alaska and south to Monterey, Calif. (Burch). Type locality, Carmel Inlet, British Columbia.
Collecting data: Dredged off Monterey, Calif. in 15 fms, shall bottom (Burch); Anchorage Island (Victoria Museum) (W.J. Eyredam).

Rissolina cleo Bartsch, 1915. Catalina Island, Calif. south to Guadalupe and San Martin Islands, L.C. Type locality, off S. Coronado Is., in 3 fms.

Mr. A.M. Strong states of this species "Rissolina cleo is a very small species with strong axial ribs, the interspaces between which the irregular wavy markings which give a watered silk effect." Collecting data: San Martin Island, L.C. and So. Coronado Islands (Dr. F. Baker).

Rissolina dalli Bartsch, 1915. San Pedro, Calif. to South Coronado Island. Type locality, San Pedro, Calif.

Mr. A.M. Strong comments on this species "Rissolina dalli is sculptured with numerous, very fine, closely spaced, axial threads. It is very similar to R. coronadensis Bartsch, but it is a smaller and more slender shell."
Collecting data: White's Pigeon, L.A. Co., Calif. littoral (Burch); San Pedro (Lowe); Coronado Islands (F. Stephens); White's Point and Avalon, Catalina Island (A.G. Smith).

Rissolina coronadensis Bartsch, 1915. Redondo Beach, Calif. (Burch) south to San Martin Island, L.C. Type locality, off Coronado Islands in 20 fms.

Mr. A.M. Strong comments on this species "R. coronadensis is a small, elongate-conic species sculptured with numerous, slender, axial threads separated by smooth spaces about as wide as the threads."
Collecting data: Dredged off Redondo Beach, Calif. in 75 fms.; Pleistocene of Timna's Point, San Pedro (Burch); San Martin Island and So. Coronado Island in 14 fms. (Dr. F. Baker).

Rissolina sp.— Monterey Bay (A.G. Smith).

Family Anaplocamidae

Reference: Rehder, Harald A.; Nautilus 56:49, 50, Oct. 1942. The last lines of Dr. Rehder's article will be self explanatory here "... the family Anaplocamidae and the name Anaplocamus borealis Dall, arc to be stricken from the rolls of marine mollusks."
Genus Jeffreysia Alder in Forbes and Hanley, 1850. Type (by original designation), J. diaphana Alder.

The proposition Rissoella Gray, 1847 vs. Jeffreysia Alder, 1850 has been debated on many occasions. The following data will outline the matter.

Dr. A. Myra Dean reached the following conclusion (Per. Comm., Nov., 1945): Rissoella Gray, 1847, Type, by original designation, Rissoa ? glabra Alder. Bartsch argues that Alder meant by Rissoa glabra the shell which later he named Jeffreysia diaphana, that this would therefore be type, and that Jeffreysia is a synonym of Rissoella. However, the Rissoa glabra of Alder is cited by him as the Rissoa glabra Brown. According to the International Rules, R. glabra Brown must therefore be the type of Rissoella. As Jeffreys points out in his British Conchology, Brown's description and illustration apparently refer to some species of Odostomia. Therefore, Rissoella is not available for use in the Rissoinidae and must be replaced by Jeffreysia Alder in Forbes and Hanley, 1850 (type by original designation, J. diaphana Alder).

Jeffreysia Alder—Shell thin, smooth and glossy; mouth oval or roundish oval, with a complete peristome; operculum rather thin, having the nucleus on the middle of the inner side, and a short rib on the under side, which proceeds from the nucleus in the direction of the outer margin.

Dr. Gray makes this synonymous with his undescribed genuslissoella.
The type indicated by him, in lieu of a description, is Rissoa glabra of Brown, which is evidently an Odostomia (probably of rissoideae), having a slight plication at the base. In Gray's classified list of the mollusca published in 1847, Rissoella is given as a synonym of Odostomia.

Mr. A. G. Smith called attention to the small hook-like part of the operculum of this genus.

Mr. A. M. Strong uses Rissoella and comments on the species placed under it as follows: The following species are placed here only provisionally. The operculum is known in only two species and the anatomy in none. They are small, thin, white, ovate shells, smooth or with very fine sculpture. Some are umbilicate, others not, and quite probably represent more than one genus.

Rissoella angulifera (de Poin), 1870, Panama Bay.
Rissoella bakeri Strong, 1938, Guadalupe Island, L.C.
Rissoella bifasciata (Carpenter), 1856, Cape San Lucas to Mazatlan.
Rissoella californica Bartsch, 1927, San Clemente Island to San Martin Island, L.C.
Rissoella exoculata Bartsch, 1920, Gulf of Calif.
Rissoella johnstonii Baker, Strong & Hanna, 1930, Cape San Lucas.
Rissoella tumens (Carpenter), 1856, Gulf of Calif.

Jeffreysia californica (Bartsch), 1927, Proc. U.S.N.M. vol. 70, p. 31, pl. 4, Fig. 2. San Clemente Island to San Martin Island, L.C. Type locality, San Clemente Island.

The original description of this species seems to have been omitted from Oldroyd. It follows:

Shell small, thin, semi-transparent, bluish white, broadly ovate. Nuclear whorls smooth, scarcely differentiated from the postnuclear turns. Postnuclear whorls very strongly inflated, strongly rounded, marked by rather strong, retractively slanting, incremental lines and very feebly developed, almost obsolete spiral threads. Periphery of the last whorl inflated, strongly rounded. Base short, inflated, strongly rounded, with a rather broad, open umbilicus which is marked at its external termination by an obsolete angle. The sculpture of the base is like that of the spire. Aperture broadly oval.
rather expanded at the junction of the basal and outer lips. Posterior angle acute; outer lip thin; inner lip strongly curved and expanded over the parietal wall, thus rendering the peritreme complete; the outside of the inner lip at the umbilicus is marked by strong incremental lines.

The type, Cat. No. 362453, USNM, was collected by Dr. R.H. Remper on rocks at San Clemento Island, Calif. It has 4.2 whorls and measures, length 2.6 mm, diam. 1.16 mm.

I am placing this species in the genus Rissoella with some doubt, but until I will have seen anatomic material I hesitate to give it a distinct generic designation.

Mr. A.M. Strong comments on it as follows * Shell broadly ovate, semitranslucent, with strongly inflated whorls, with strong lines of growth and very fessile spiral threads. The periphery and base is round and the rather broad umbilicus is bordered by an obsolete angle.

Family Acmeadac

Genus Acmea Hartmann, 1821. Type (by subsequent designation, Iredale, 1916). Acmea truncata Hartmann = Helix subcylindrica Linnaeus.

Dr. A. Myra Keen reached the following conclusion * To my surprise I find that we must abandon Truncatella Risso in favor of Acmea Hartmann, 1821, as the latter has five years priority. Acmea Hartmann, 1821, Neue Alpina, Ed. 1, p. 204 (fide Shorborn); type (by sub. desig., Iredale, 1915). Acmea truncata Hartmann = Helix subcylindrica Linnaeus.) As this species is also the type of Truncatella, there seems no alternative. One can appreciate Winckworth’s concern over the similarity of Acmea to Acmaea. Family, Hydrobiidae fide Winckworth.

* Shell minute, cylindrical, truncated; whorls striated transversely; aperture oval, entire; peristome continuous. Operculum corneous, subspirail. *(Tryon).

Acmea stimpsoni (Stoarls), 1872. Redondo Beach, Calif. south to Tres Marias Islands, Mexico. Type locality, False Bay near San Diego, Calif. (i.e. Mission Bay).

In Minutes # 48, p. 11, in the discussion of Pedipos unisculatus Cooper we mentioned that this species was found in vast numbers in the same habitat-roughly rubble above high tide and under usually about two feet of the rubble.

Collecting data: Malaga Cove below the Palos Verdes County Club at or above the high tide mark under stones interspersed with dead algae. Very abundant; Newport Bay; Avalon, Catalina Island. While it is true that occasional shells are collected in the between tides area or even dredged in shallow water, it will be found in my opinion that all of these will be dead shells washed down from above the tide mark. (Burch); National City, Calif. (Mrs. Sweet); San Diego (Hemphill and Orcutt); Redondo (Kate Stephens); Todos Santos Bay, L.C. (Orcutt);

Acmea californica (Pfeiffer), 1857. Santa Barbara, Calif. to San Martin Id., L.C. Type locality, San Diego.

Collecting data: Newport Bay, Calif.; Punta Banda, Todos Santos Bay, L.C.; Pleistoconic of Timm’s Point, San Pedro (Burch); San Diego Bay (Baker, Hemphill and Orcutt); San Martin Island (Dr. F. Baker) (San Diego Museum).

Mr. Henry Dodge, 6 Rochambeau Road, Scarsdale, N.Y. has just written a brief note about this species and inasmuch as my duplicate material is not at this time available his request may be taken care of by some of the members with my thanks. * I would be very grateful if you could find time to (con.)
#56 p 8 January, 1946

wrap up a few Truncatella californica Pfeiffer and send them to me. You sent me a nice lot of T. stimpsoni some time ago and I have a feeling that there are some californica among them. The only real difference in the two in the Binnny and the Stearns descriptions seems to be in the thinness or thickness of the outer lip and the manner in which the parietal portion of the lip adheres to the shell. Some of those in the lot of stimpsoni you sent look almost like our Atlantic bilabiata, i.e. there is a fairly well-defined double peristome." There is a variety of this species from the southern fauna, var. gundae-lupensis PILSBRY.

Truncatella bairdiana C.B. Adams, 1852 is listed by Mr. Strong from Panama.

Genus Cochliopa The following species listed by Mr. Strong.
Cochliopa currugata Stearns, 1890, Nicaragua
Cochliopa rowelli Tryon, Panama
Cochliopa trochulus Martens, Panama

Family Assimineidae

There seems to be a great deal of confusion among the authors about the proper taxonomy for this group, Bartsch, 1920 places Assiminea Jeffreys in the synonymy of Syncera. Thiele uses the family Assimineidae and genus Assiminea (Leach) Fleming, 1828 placing Syncera in the synonymy with a ?

Dr. Joshua L. Baily Jr., comments on this problem (Pers. Comm. Nov., 1945) - The choice between Syncera and Assiminea is somewhat involved. Syncera is the older name, but Gray's description is unsatisfactory. Gray does not describe the shell or the radula, but only the eyes. Now it so happens that Strombus has the same kind of eyes, and Gray's description therefore applies equally well to either Assiminea or Strombus.

Whether this is a legitimate reason for discarding Syncera I cannot say. If there is anything in the context to indicate that Syncera is meant for Assiminea, then Syncera is the correct name, but if there is nothing to show whether Assiminea or Strombus is meant, then Syncera is a nomen nudum. I can express no personal opinion as I have never examined Gray's work. I can only repeat what others have told me, and it is astonishing how evenly divided opinion seems to be.

Genus Assiminea Fleming, 1828 Type, A. grayana Fleming. *Shell conic, usually strong. Nuclear whorl smooth, the rest of the shell marked by lines of growth and fine spiral striations only. Outer lip simple; inner lip continuing over the base as a thick parietal callus. Operculum subspirall, thin, horny." (Bartsch.)

Assiminea transluens (Carpenter), 1864. Vancouver Island to Lower Calif. Type locality, San Diego, Calif. in shell washings.

Collecting data: Magu, Ventura Co., Calif. in debris along the edge of the lagoon, very abundant; very common in with Phytia setifer Cooper on the mud flats of Turnal Island; Malaga Covo, La. Co. above the high tide mark (Burch); Monterey Bay at low tide rare; Bolinas Bay; Anahoin Bay; Newport (cont.)
January 1946

Bay: White's Point (A.G. Smith); National City (Emery and Orcutt); San Francisco (Homphill).

Family Capulidae

Genus Capulus Montfort, 1810. Type (by original description), Capulus hungaricus Linnaeus.

"Shell conical, apex posterior, spirally recurved; aperture rounded; muscular impression horseshoe-shaped." (Tryon).

Capulus californicus Dall, 1900. Redondo Beach, Calif. (Burch) south to Cape San Lucas. Type locality on Pecten diegensis from off San Pedro in 20-25 fathoms.

Collecting data: We have taken it rather rarely off Redondo Beach and also off San Diego, always commensal on Pecten diegensis Dall (Burch); Catalina Island (Lowe).

Genus Piliscus Loven, 1859. Type (by monotypy), Pilidium commodium Midd. "Shell thin, patelliform, with thin epidermis; apex not spiral, somewhat inclined to the right and posteriorly." (Tryon & Pilsbry, Man. of Conch.)

Piliscus commodus (Middendorf), 1851. Arctic Ocean to Pribilof Islands, Bering Sea and the Okhotsk Sea (Dall). Type locality, Okhotsk Sea.

Family Hipponicidae

Genus Hipponix Dofiene, 1819. Type (by subsequent designation, Anton, 1839), Patella cornucopia Lamarck.

"Shell thick, obliquely conical, apex posterior; base shelly with a horseshoe-shaped impression, corresponding to that of the adductor muscle." (Woodward).

The name Amalthea Schumacher is often used, but according to Woodward, 1928, p. 375, this is a homonym of Amalthea Rafinesque.

Hipponix barbatus Sowerby, 1835. Crescent City, Calif. to Guayaquil (Dall) also Hawaii (Kein). Type locality, coral reefs around Toobouai, one of the Society Islands.

None of our members have recognized this species from California. Mr. E.P. Chace comments, Calif. records probably based on jumped locality labels or wrong identification. Zetek lists it from Panama. H.W. Lowe lists it from Acapulco, Tres Marias Islands, Mazatlan etc. Mr. Strong comments on following page.

Hipponix serratus Sowerby, 1835. Moss Beach, Calif. (Voorhees) (Stanford Coll.) South to Panama. Type locality, Mazatlan (Mexico).

Dr. A. Myra Keen makes an interesting comment on this species, (Por. Comms. 11/45) * It is possible that Hipponix antiquatus Linne is replaced on our coast by H. serratus and that we do not have the true antiquatus. H.W. Lowe lists the species from Mazatlan, La Paz and south. It is not in Zetek's list of Panama shells. Mr. E.P. Chace calls attention to the fact that Carpenter in Mazatlan Catalogue gives a description and many notes only about 1/4 of which is reprinted in Oldroyd.

Mr. A.C. Smith comments, Monterey (Dall). Think the record is doubtful and needs confirming before accepting it as valid.

Discussion continued on page 11.
Genus Hipponix De France, 1819. Type (by subsequent designation, Auen, 1839), Patella cornucopia Lamarck.

"Shell thick, obliquely conical, apex posterior; base shelly, with a horseshoe-shaped impression, corresponding to that of the adductor muscle." (Woodward).

The name Amalthea Schumacher is often used, but according to Woodring, 1928, p. 373, this is a homonym of Amalthea Rafinesque.

The following key and notes are from Mr. A. M. Strong's notebook.

Sculpture with the concentric laminae predominating.

- Radial sculpture fine, close, or obsolete
- Apex near the posterior edge
 - Crescent City, Calif., to Peru....................... antiquatus
 Oldroyd 2-3-112; Bull. Fish. Comm. 1900, p. 437
 - Apex central British Columbia to San Pedro cranioides
 - Radial sculpture of tuberculate ribs near the apex, continuing as indented strie near the edge
 Monterey to Panama................................. serratus
 Max., Cat. #346
 - Radial sculpture of low ribs, base spreading
 Gulf of California................................. planatus
 Max., Cat. #345

Sculpture with the radial ribs predominating.

- Ribs close, nodulous, margin crenulated
 - Crescent City to Panama............................. barbatus
 Oldroyd 2-3-114; Max., Cat. #349
 - Ribs sparse, margin acute, ribs smooth
 Crescent City to Socorro Island.................. tumens
 Oldroyd 2-3-113
 - Ribs sparse, ribs nodulous, margin laminated
 Gulf of Calif., to Peru............................ grayanus
 Max., Cat., #350; Tryon 8-135

Sculpture with concentric laminae near the apex and radial ribs near the margin.

- Gulf of California............................... delicata
 Bull. Mus. Comp. Zool. 43-331

Hipponix antiquatus Linnaeus, 1767
Crescent City to Peru

Hipponix tumens Carpenter, 1865
Crescent City to Clarion Island

Hipponix serratus Carpenter, 1865
Monterey to Panama

Hipponix barbatus Sowerby, 1835
Crescent City to Panama

Hipponix grayanus Monke, 1853
Maxatlan to Peru

Hipponix planatus Carpenter, 1857
Mazatlan

Hipponix subrufa Lamarck, 1819
Panama to Peru - Atlantic

Hipponix delicatus Dall, 1908
Panama

The type locality of H. antiquatus Linnaeus is not known. Carpenter lists the species from West Africa, West Indies and Gulf of California and Panama. Adams has H. panamensis, new name for H. mitrula Sby (not Lamarck, the West Indian shell). Carpenter in Max., Cat. gives this as a synonym of H. antiquatus but in P.Z.S., 1866, p. 365, as a synonym of H. subrufa Lam.

Both Dall in Peruvian Fauna and Zetek list H. subrufa as occurring from Panama to Peru in the Pacific as well as in the Atlantic.

It is possible that the species can be divided into the following geographic races.

H. antiquatus Linnaeus, West Africa
H. subrufa Lamarck, West Indies
H. panamensis C.B. Adams, Panama to Peru
H. serratus Carpenter, Gulf of Calif. to Central America (con.)
H. cranoïdes Carpenter, California

The type locality of H. barbatus Sowerby is in the Society Islands. It was applied to the Panama shell by C.B. Adams. There does not seem to be any other name applied to the west coast shell.

The type locality of H. grayanus Menke seems to be St. Vincent Island (Guinea), the Carpenter does not make a definite statement. Adams uses H. radiatus Gray, 1855 (not Q. & G., 1824). H. crispa Menke is also said to be a synonym but Carpenter does not state where it is from. ****************

Discussion continued from page 9

Hipponix antiquatus Linnaeus, 1767. Crescent City, Calif. to Peru. Type locality unknown. This species is listed from the Florida Keys, West Indies and elsewhere and is apparently of worldwide distribution. The above discussions indicate the diversity of opinion regarding it. It would be a waste of paper to attempt a list of collecting localities for this very common littoral species. In our experience it is to be taken in all rocky habitats from Monterey to Mexico. It is a littoral species but we have picked it up from as deep as 10 fathoms apparently living there. (Burch); Hilo, Hawaii; Narrabeen (San Diego Museum); Monterey Bay, common (A. Smith). Hipponix cranoïdes Carpenter, 1864. Vancouver Island to San Pedro. Type locality, Vancouver Island area.

It has always been my opinion that this is simply another of those species described from a variation caused by habitat. Obviously, H. antiquatus varies greatly to conform to its location, and I have considered cranoïdes of very doubtful value. However, if it should be found that our west coast species is not typical H. antiquatus, then it is quite possible that this is the name to be used for it. Mr. A.G. Smith comments: "Think cranoïdes has little systematic value and should be in synonymy with the typical form." Mr. E.P. Chace says: "I do not consider it even a subspecies—it is a very narrow crack in the rocks and could not assume the normal form." However, there are sets in the San Diego Museum with the following labels: Crescent City (Chace); Cambria (Wilcox); Pt. Loma (K. Stephens); La Jolla (Beckwith); Point of Rocks, Sowbory, Vancouver Island to San Pedro.

Hipponix tumens Carpenter, 1865. Crescent City, Calif. to Clarion Island. Type locality: Monterey-San Pedro-San Diego.

Collecting data: While it is true that we have collected this form littoral in almost the same habitat as antiquatus, the two differ in that tumens in our experience prefers crevices, and in addition we seem to have dredged tumens from considerably deeper water than antiquatus. We found tumens rather common in dredging on the shale off Monterey down to a deep at 40 fms., and have brought it up from 25 to 35 fms. off Redondo Beach and also off Catalina Island. It is unusually common in the rubble at San Onofre and also at Punta Banda. (Burch); Monterey 0 to 20 fms. (A.G. Smith); San Nicholas Island (Lowe); San Pedro (Lowe and P. Stephens); Cambria (Wilcox); San Diego (Hemphill); La Jolla (Bristol and Beckwith) (San Diego Museum).
Family Cropidulidae
Genus Cropidula Lamarck, 1801. Type (by monotypy), Patella fornicata Linnæus.

"Shell oval, limpet-like; with a posterior, oblique, marginal apex; interior polished, with shelly partition covering its posterior half" (Woodward).

The following list of species is from Mr. A.M. Strong's notebook.

<table>
<thead>
<tr>
<th>Species</th>
<th>Type Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cropidula onyx Sowerby, 1824</td>
<td>Monterey to Chilo</td>
</tr>
<tr>
<td>Cropidula excavata Broderip, 1834</td>
<td>Monterey to Peru</td>
</tr>
<tr>
<td>Cropidula adunca Sowerby, 1825</td>
<td>Vancouver to Cape San Lucas</td>
</tr>
<tr>
<td>Cropidula orbiculata Dall, 1919</td>
<td>Bering Sea to San Diego</td>
</tr>
<tr>
<td>Cropidula aculeata (Gmelin), 1791</td>
<td>Port Harford to Chile</td>
</tr>
<tr>
<td>Cropidula exuvia Nuttall</td>
<td>California and south</td>
</tr>
<tr>
<td>Cropidula incurva (Broderip), 1834</td>
<td>San Pedro tp Peru</td>
</tr>
<tr>
<td>Cropidula dilatata Lamarck, 1824</td>
<td>Gulf of Calif. to Chile</td>
</tr>
<tr>
<td>Cropidula aconata Broderip, 1834</td>
<td>Seaviews Lagoon to Peru</td>
</tr>
<tr>
<td>Cropidula cropidula Linnaeus, 1764</td>
<td>Gulf of Calif. to Peru</td>
</tr>
<tr>
<td>Cropidula squama Broderip, 1834</td>
<td>Panama to Patagonia</td>
</tr>
<tr>
<td>Cropidula lessonii Broderip, 1834</td>
<td>Panama</td>
</tr>
<tr>
<td>Cropidula rostrata C.E. Adams, 1852</td>
<td>Panama</td>
</tr>
<tr>
<td>C. (Cropipatella) longula Gould, 1846</td>
<td>Bering Sea to Panama</td>
</tr>
<tr>
<td>C. (Cropipatella) strigata Broderip</td>
<td>Peru to Magellan Strait</td>
</tr>
<tr>
<td>C. (Zeidora) nummarius Gould, 1846</td>
<td>Bering Sea to Nazatl</td>
</tr>
<tr>
<td>C. (Zeidora) limnitis Reeve, 1859</td>
<td>Vancouver to Panama</td>
</tr>
<tr>
<td>C. (Zeidora) perforans Val., 1846</td>
<td>Puget Sound to Panama</td>
</tr>
</tbody>
</table>

Genus Zeidora

Zeidora flabellum Dall, 1902. Clarion Island

Subgenus Cropidula s.s.

Cropidula grandis Middendorff, 1849. Cape Franklin, Arctic Ocean, south
and east to Sitka, Alaska. Also Kamchatka. (Dall).

Type locality, St. Paul Island, Bering Sea.

Collecting data: Izhut Bay, Afognak Island, Kodiak group, Alaska; Atka
Island, Aleutian Islands, 1932 (W.J. Eyord); fossil at Capitola, Santa
Cruz Co., and also Los Angeles near 5th and Olive (Grants and Gale) (E.P.
Chace).

Cropidula onyx Sowerby, 1824. Monterey, Calif. to Chile.

Type locality not given.

Collecting data: This very common species seems to thrive in almost
every habitat. It is found far up in the estuaries as well as in the open
sea. It is often taken on other species as well as stacking up on other
specimens of the same species. We have taken it from Poitén, Megathura, Kellettia,
Conus and many other littoral gastropods. The bathymetric range is of some
interest since we have found it rather common off Redondo Beach down to
nearly 50 fms.

There is a race of this species in Todos Santos Bay, L.C., that is much
smaller and of a uniformly different shape. The deck is obviously an onyx
deck though, and at best it could be a subspecies. However, they are
sufficiently different to be separable, and sooner or later I expect someone
to describe them. They may be found either in the Estero or out on Punta
Banda. (cont)
The subspecies rugosa buttall, MS, Carpenter, 1856 has been generally ignored or placed in the synonymy of the typical. It is supposed to be those with the heavy rough periostracum, but this species assumes almost every variation imaginable. It is of no consequence in my opinion (Burch).

Mr. E. P. Chace comments "Punta Banda form of C. onyx has a leaning towards C. incurva, a southern form. H. N. Lowe got incurva at Guaymas and south."

Mr. A. G. Smith writes "The Monterey record needs confirming and an extension of range this far north not accepted as valid until it is.*

* Note: "It is true that none of our members have reported C. onyx from Monterey. I have never recognized it from there. However, this is a Dall record and the material on which it is based is presumably in the U. S. Nat. Mus. We are therefore almost bound to continue these Dall records until they are definitely proven to be erroneous.*

Crepidula excavata Broderip, 1834. Monterey, Calif. to Peru.
Type locality, Real Llejos (Nicaragua).

Collecting data: Common on Polinices between Seal Beach and Hunting-ton Beach; also on Polinices in the Estero below Ensenada, common; a small form of excavata is very common commensal on the small Mitrella carinata in the Estero de Punta Banda and occasionally also found on Conus although the usual form on Conus is onyx. Dredged off Malaga Cove and also off Catalina Island in comparatively shallow water. Abundant in the Pleistocene of the Baldwin Hills, Del Rey deposit (Burch); Pt. Reyes on Halocithis rufescens, l fine specimen (A. G. Smith); a long narrow form grows on the tall spined shells, Turritella, Drillia etc., used to be fairly common at Seal Beach—also on Olivella bivalis at Seal Beach. (E. P. Chace); San Felipe, L. C. (F. Stephens); San Diego (Kelsey); Long Beach (Lowe); Montijo Bay, Panama (Lowe) (San Diego Museum);

Crepidula excavata naticarum Williamson, 1905. In my opinion there is no more useless name on the list. If anyone can show me how to separate C. excavata in my collection taken from a dozen or more different things and those from off the Polinices, I will be very much interested to hear.(Burch).

Agree that this has little or no systematic value. If you call nortisirum a species then wouldn't naticarum be a synonym of this rather than excavata? (A. G. Smith).

Crepidula norrisirum Williamson, 1905. Type locality, San Pedro on Norrisia. I hold forth for years that this is a good species. However, I am now disposed to think that it should be in the synonymy of excavata. After seeing specimens in Mr. A. G. Smith's collection and comparing them with typical excavata it is my present opinion that they cannot be separated. Obviously the specimens living on Norrisia would assume some variation. We have taken this everywhere we have found Norrisia, and for that matter there is apparently no difference between those from Norrisia and those from Halocithis and other forms. We have taken it from H. cracherodii at Cayucos, Calif. and south to Punta Banda and Arbolites. It is unusually common around Malaga Cove and in Todos Santos Bay (Burch).

Dr. Joshua L. Saly Jr. comments "Crepidula norrisirum looks like a good species to me, but Dr. Wesley Coe, of the Scripps Institution at La Jolla, does not. As he has raised it experimentally I would be inclined to accept his judgement."

However, for the benefit of those who may still maintain it as a species the following collecting localities have been submitted: Common on Norrisia at Refugio, Santa Barbara Co. (E. P. Chace); Coronado on Norrisia (Bristoi); San Diego (Chaney); Ocean Beach (Kate Stephens); La Jolla (Edna N. Wilson); San Diego (Gripp); San Pedro (Dr. F. Baker); Long Beach (Lowe).
La Jolla, Calif. (J. C. Smith), south to Peru.

The original description of this species which Mr. Smith now adds to the California fauna follows:

1. testa subovata, albidula rubro-fusca creberrima punctata; intus subrubra vel albidula subrubro maculata, septo abo: long. 1 1/8, lat. 7/8, alt. 4/12 poll. Hab. ad Sanctam Elgonam. (i.e. northern Ecuador)

This approaches Crepidula porcellana. The septum is somewhat distant from the margin, and the apex, which is also somewhat distant from it, is obtuse and obliquely turned towards the right side. From sandy mud, on shells, at a depth ranging from six to eight fathoms.

Crepidula incurvata Broderip, 1834. San Pedro, Calif. to Peru.

Type locality: Santa Elena and Xipixapi (Ecuador), 6-10 fms.

Testa fusco nigricante, tortuosa, corrugata, intus nigricante, septo albo, apice adumcro. Long 6/8, lat. 3/8, alt. 5/8 poll.

Collecting data: This is another species of the southern fauna with a very questionable "California record. I have certainly seen nothing from California that resemble those for example from Panama sent by Zetek (Burch). Many localities from Lower Calif. to Panama taken by Frank Stephens and Lowe (San Diego Museum-Miss Bristol).

The original description of this species was omitted from Oldroyd so we gave it above.

See discussion on page 16- top of page

Crepidula orbiculata Dall, 1919. Boring Sea to San Diego, Calif.

Type locality, Royal Roads, Victoria, Vancouver Island, B.C.

Collecting data: 52-55 fms. off Pt. Pinos (A.G. Smith)

Crepidula fornicata Linnaeus, 1758 Coast of Washington introduced from the Atlantic.

Collecting data: Willapa Bay, Wash., almost certainly introduced with seeds oysters (E. fec. Chace); on native oysters (Ostrea lurida) near Olympia, Wash. Introduced from Atlantic. (W.J. Eyedam)

Crepidula convessa glauca Say, 1822. Alameda, Calif. introduced with seed oysters from the Pacific. Johnson gives the Atlantic range, Nova Scotia, to Florida and Texas.

Mr. A.G. Smith calls attention to Packards records of this species. South San Francisco Bay near the oyster beds (Packard). Packard, 1918, Molluscan Fauna of S.F. Bay, p. 325, places glauca in the synonymy of convessa.

Crepidula adunca Sowerby, 1825. Vancouver Island to Cape San Lucas.

Type locality not given.

Collecting data: Our experience has been to find this a very common species in the northern part of the range becoming increasingly rare in southern California. We have taken it at Crescent City; Monterey; San Simeon; Cambria; Cayucos—common on Tegula; dredged off Monterey in 10 to 20 fms.; Bird Rock and Mission Bay, San Diego Co. (Burch); dredged off S. Coronado Island in 14 fms. (Dr. F. Baker); Puget Sound (W.J. Eyedam); Crescent City to So. Coronado Islands. (San Diego Museum).

Crepidula aculeata (Gmelin), 1792. Port Harford to Chile.

Type locality: Ad insulas Américae Mediae

This species must be of world wide distribution or else not well enough known. Johnson reports it from the Atlantic, North Carolina to Texas and... (con.)
West Indies. I note that in my collection I have sets from Queensland as well as New South Wales, Australia; Brazil; Hawaiian Islands; South Africa etc. They all look very much alike.

Collecting data: Our experience has been to find this species comparatively rare. However, we have taken it from a great many localities: Cayucos, San Dimas, Monterey, Malaga Cove, Point Fermin, Bird Rock, La Jolla, San Onofre, and other points. One possible note of interest is that an excellent place to look for them is on kelp holdfasts. (Burch). It was suggested by Mr. A.G. Smith that perhaps some of the records of this species such as mine from Monterey may be of C. orbiculata Dall, 1919. This is quite possible since very few of us are familiar with orbiculata.

Mr. W.J. Eyerdam writes: I have this species through exchange from Florida and several other Atlantic localities. I have collected it at Cayucos, Calif., Mazatlan, Mexico; Gulf of Panama, Honduras; La Union, Salvador; Corinto, Nicaragua; Supe, Peru; and Arica, Chile. They are all about the same.

Genus Crepipatella Lesson, 1830. Type (by subsequent designation, Gray, 1847): Calyptraea adolphoi Lesson—Crepidula dilatata Lamarck.
In dilatata, as in lingulata, the deck is separated from the shell on one side. (Dr. A.M. Koen). See discussion bottom of page 17.

Collecting data: This common species may be found on almost all rocky rubble reefs and such places as the San Pedro breakwater; also common commonal on other mollusks. Astraea unonca Wood is frequently covered with them. In dredging it is brought up from all depths to as deep or deeper than 50 fathoms. We have it in great numbers from off Monterey in 10 to 40 fms.; off Redondo Beach and Catalina Island in 25 and 35 fms.; very common on the dredged Kellettia kellettii Forbes from off Redondo Beach. It is a common species in some of the San Pedro Pleistocene deposits. (Burch); Crescent City to Ensenada and the Coronado Islands (San Diego Museum); Port Orchard and Agate Pass, Puget Sound, Wash.; Drier Bay, Knight Island, Alaska, 1923 on stones and dead shells (W.J. Eyerdam).

Crepidula con.

Subgenus Inanaceus Morch, 1852 Cat. Yoldi, p. 146. Type (by subsequent designation, Harris, 1897): Crepidula plana Say. No description in original. Evidently intended for the thin, flat, white Crepidulae like our numaria.

And in connection with the above Crepidula unguiformis Lamarck, 1818

Lam, An. sand Vert. VI, Pt. 2, p.28, No.4.

The above data is mentioned in order to make what may seem to many a facetious suggestion, and that is that insofar as the small white species are concerned we might do well to go back to Linnaeus and throw everything else in the synonymy down to date. Say, when he described C. plana, as well as most of the other authors have expressed doubt that their species is distinct. If anyone seriously thinks that he can take a mixed lot of these shells taken from the apertures of dead gastropods from literally all over the earth and separate them, I would be greatly interested in the method. There is some discussion by authors of the notch or lack of it, but I see the same deck and the same notch in all of them. Please understand that it is simply my personal opinion that this is but one world wide species, and that I am a minority opinion of one. Therefore, the approved nomenclature of the majority will follow. (Burch).
Crepidula nummaria Gould, 1846. (C. navicelloides Nuttall)

Plover Bay, Boring Strait to Panama. Type locality: Classet (Straits of Juan de Fuca).

The problem involved here is whether or not this is distinct from the small pure white species commonly found in the apertures of dead gastropods etc. The original description of nummaria specifically mentions a "thick yellowish epidermis" which seems to be entirely absent from the other species which must correspond to the Atlantic C. plana Say. C. nivea C.B. Adams might cover the pure white species adequately if it is distinct. The majority of recent writers have been disposed to place nivea in the synonymy of nummaria. Mr. Allyn G. Smith first suggested that perhaps the heavy species commonly found under large stones in such localities as San Simeon, Cayucos etc. and also on such things as the San Pedro breakwater are nummaria, and that nivea is a distinct and good species.

Collecting data: Mr. A.G. Smith writes "We have not found this in Monterey Bay although it is found both north and south of this locality. Have never found this in pholad holes, have you? The pholad hole species is perforans (—nivea C.B. Adams) in my opinion."

Crepidula nivea C.B. Adams, 1852. Cat. of Shells collected at Panama, no. 351, p. 228. The original description follows:

Shell ovate-elliptic; rather thick; within snow white; without dingy white, sometimes with a faint tinge of brown; very irregularly concentrically more or less wrinkled, with very distinct striae of growth; apex turned more or less to the right, moderately prominent, marginal: septum longitudinally subangular, with a deep sinus at the left and a shallow one at the right: margin thick, exhibiting striae of growth. It closely resembles C. unguiformis, but constantly differs in characters and station. Length 1.4 inches; breadth 1 inch; height 4 inch.

Station: Under stones, near low water mark
Habitat: Panama

45 specimens collected on reef."

Mr. A.G. Smith advises on this species "Gordon and I put the following in synonymy: sinibriata Reeve, perforans Valenciennes (—exuvia Nuttall) on the basis that they are more situ forms. I have specimens in my collection from San Pedro that seem extremely close to the eastern C. plana Say."

Mr. E.F. Chase comments "I have smooth specimens of C. nivea from Pecten shells, Mugu Bay, that are anything but white—range from light brown to very dark brown all except the decks."

Miss Viola Bristol of the San Diego Museum reports "Dr. J.L. Baily says this is a synonym of C. squama Broderip, 1834 and ours are so labelled."

Specimens from Magdalena Bay to Panama.

However, the majority opinion at this time seems to be to use this name for our pure white species without epidermis commonly taken in the apertures of dead gastropods. Records usually read as follows: "from dead Thais shells at Monterey;" "from dead Togula at San Simeon;" "from dead Muraa and Keliotia dredged in 25 fms. off Redondo Beach. This is a very common Pleistocone fossil in the Tim's Point and other San Pedro deposits, also Baldwin Hills Del Rey etc. (Burch); Port Armstrong, Baranof Island, Crepidula 1917; Port Orchard, Kitsap Co., Wash.; Islay Bay, Afognak Island, Alaska, 1922 (W.J. Eyordam).

Crepidula nivea perforans Valenciennes, 1846. (C. exuvia Nuttall Reeve, 1859)

Puget Sound to Panama. Type locality not given. Habitat in pholad holes. This is another subspecies described from a form caused by habitat. This entire group is disposed to vary to suit their location and naturally this suits itself to a pholad hole. I consider it of no consequence whether it is nivea, nummaria or what. Have collected it in many localities: dredged in

(con.)
#56 p 17
January, 1946

pieces of shale off Monterey in 10 fms.; Cayucos, Calif. in pholad holes in stones just off the townsite; White's Point, Los Angeles Co., in pholad holes in shale. (Burch); Kino Bay (Lowe); Montijo Bay (Lowe); La Jolla (Brière & Biot)
Crepidula fimbriata Reeve, 1859. Vancouver, B. C. to Panama. Type locality: Vancouver Strait. This is another species to be placed in the synonymy by the consensus of opinion. Dr. A. Myra Keen comments "Seems unnecessary." Smithand Gordon place it in the synonymy. The San Diego Museum has sets labelled using it as a subspecies of nummaria. Mr. E. P. Chase comments "I have specimens from Panama that look exactly like the figure in Reeve Conch Icon. An occasional specimen of C. nivea or nummaria has a leaning toward it.

Crepidula glottidiarum Dall, 1905. Santa Monica, Calif. to San Pedro on Glottidia albida Hinds. Type locality, San Pedro.

This species is usually considered a subspecies of nummaria. It may be. However, the statement that it is found only on Glottidia is incorrect. We have dredged it on stones off Redondo Beach in 25 fms. gravel, and it still retains its general shape and can be easily separated. Of course, it may be that after attaining a growth to the form on Glottidia these specimens were accidentally moved to the stones. One thing seems clear and that is that if the two species discussed above, nivea and nummaria are really two species, then glottidiarum should be a subspecies of nummaria rather than nivea because it does have a very definite yellow epidermis. Inasmuch as Glottidia albida is itself a very common dredged form all around Santa Monica Bay, this Crepidula is also more or less common. (Burch). Mr. A. G. Smith suggests that it would be of value to study the anatomy of this species, radula etc., and compare with nivea and or nummaria. Mr. E. P. Chase comments "My opinion is that it is a situs form. As you know almost any Crepidula will grow in almost any shape—especially true of C. nummaria and nivea." Reported from Treminal Island, San Pedro (Lowe) (Set in San Diego Museum).

* Continued discussion of Crepitatella from page 15.*

The following statement has been received from Dr. W. P. Woodring, United States Department of the Interior, Geological Survey, Washington, D.C.

"Crepidatella Lesson, 1830, Voyage de la Coquille, Zoologie, vol. 2, pt. 1, p. 389. Type (designated by Gray, 1847) Calyptraea adolphi Lesson (Crepidula dilatata Lamarck, fide Dall), Recent, Peru. The type species lacks pronounced sculpture, but the deck has a deep abapical indentation and a minor indentation and swelling near the middle. On account of the peculiar deck characters, I prefer giving generic rank to Crepitatella—Verticumbo, which has the same deck characters, might be given subgeneric rank under Crepitatella, on account of the sculptured apex. I am, however, not recognizing it. Crepitatella charabdis is probably closely related to the unfigured Crepitatella orbiculata, which has no sculpture."

We are disposed to follow Dr. Woodring's suggestion and use Verticumbo as a subgenus of Crepitatella.

"Shell subcrepiduloid, but with an expansive, clearly spiral, excentrico
dextral shell, and a strongly excentric concave deck within." Type V. char-
abdis Berry, 1940.
It seems from Dr. Woodrings conclusions that we must consider the species discussed on page 14, *Crepidula orbiculata* Dall, 1919, a species of the genus *Crepidatella*.

Crepidatella (Verticulum) *charybdis* (Berry), 1940. Bulletins of American Paleontology, vol. 25, no. 94A, Paleontological Research Institute, Sept. 28, 1940, pp. 8-9, Pl. 1, figs. 6-10.

Shell subcrepiduloid or haliotoid, rather thin, chalky, fragile, almost circular, moderately elevated; nucleus of about 1½ whorls, strongly spirally mammillate, excentric, posterior, the shell thence expanding rapidly to maturity; highest at nucleus or just in front of it; exterior surface either unsculptured except for numerous growth lines of varying strength, or exhibiting a varying number 9 up to 15 or 16) of coarse, irregularly sinusous, radial (i.e. spiral) ridges, running in general perpendicular to the tangent of the growth lines. Interior white to light buff, polished, the short wide angle convex, strongly excentric, and covering perhaps a quarter of the main cavity. Measurements of holotype in mm.: Long. 8.7; lat. 9.2; alt. 3.6.

Type locality—Lower Pleistocene, bluff in alluvial south of Second St. and east of Pacific St., San Pedro, Calif.

In the discussion following the description Dr. Berry states *"Crucibulum, Calyptraea and Crepidula all exhibit certain points of similarity, but the persistence to maturity of an indisputable spiral shell, as well as the corresponding structure of the dock and interior cavity, separates it from each of these. To which of the genera mentioned it is most closely allied is thus not clearly apparent, and perhaps will not be unless and until its presence is revealed in the recent fauna and an investigation can be made of the anatomy. That it should so come to light would surprise me not at all, although to date, I have not seen the species even as a fossil in any later formations than those indicated. Considerable variation is evident in the shells in hand, all my larger shells from Timm's Point being smooth, but I feel that the sculptural differences noted are more likely to prove of situ than of race or even of the stage of maturity, although the latter consideration is of course not out of the question. The holotype is doubtless immature, but was selected because of the clear showing of some of the more trenchant characters."*

Collecting data: Dredged Recent in 50 fathoms off Redondo Beach, Calif. on both sides of the submarine canyon; also very common in the Pleistocene of Timm's Point, San Pedro, Calif. This is a very distinctive species although at first glance reminding one of *Crepidula aculeata* (Gmelin) (Burch).

Additions and Corrections
Family Calyptraeidae

Genus Crucibulum Schumacher, 1817. Type (Monotypy): C. planum Schumacher = Patella auricula Gmelin. Dr. A. Myra Keen comments "I am in some doubt as to whether this is truly monotypy; Schumacher named two species as types of two sections, C. planum and C. rugosocoatatum, but according to Dillwyn, both names apply to the same biologic entity, an Antillean species.

"Differs from Calyptraea in the internal cup-shaped lamina, which is entire and attached along a line on one side to the inner wall of the shell." (Tryon).

The following list of species and notes are from Mr. A.M. Strong's notebook.

Genus Crucibulum Schumacher, 1817.

Crucibulum spinosum (Sowerby), 1824 Trinidad to Chile
Crucibulum imbricatum (Sowerby), 1824 La Jolla to Chile
Crucibulum quirquimum Lesson, 1830 Gulf of Calif. to Magellan Strait
Crucibulum pectinatum (Sowerby) Gulf of Calif. to Panama
Crucibulum umbellum Deshayes, 1830 Gulf of Calif. to Panama
Crucibulum trigonale Adams and Reeve, 1850 Central America
Crucibulum radiatum Broderip, 1834 Panama
Crucibulum serratum (Broderip), 1835 Peru

Genus Trochita Schumacher, 1817.

Trochita radians Lamarck, 1822 Gulf of Calif. to Panama
Trochita trochiformis Gmelin, 1791 Panama to Peru
Trochita intermedia d'Orbigny, 1841 Peru

Genus Cheilea

Cheilea eopea (Broderip), 1834 Gulf of Calif. to Panama (equestris L.)
Cheilea corrugata (Broderip) Gulf of Calif. to Peru

Genus Calyptraea Lamarck, 1799

Calyptraea contorta Carpenter, 1856 Catalina to Gulf of Calif.
Calyptraea mamillaris Broderip, 1835 Magdalena Bay to Peru
Calyptraea conica Broderip, 1834 Gulf of Calif. to Panama
Calyptraea subflexa Carpenter, 1855 Gulf of Calif.
Calyptraea lichen Broderip, 1834 Ecuador
Calyptraea unguis Broderip South America

Crucibulum imbricatum Sowerby, 1824. Tryon uses C. scutellatum Wood. This is from Wood's Index Test, Suppl. This should be credited in Hanley and dated 1828. Under this are placed C. dentatus Menke, 1847; C. gemmacomum Wal.; extinctorium Sby; C. planatum Morch; C. rugosocautatum Lesson, 1839 (not Desh.); Dall places C. auratum Reeve here but Tryon gives it from West Indies.

Crucibulum spinosum Sowerby, 1824. Tryon calls this a variety and uses the name C. tuberiferum Lesson which should take the date 1830. Under this are placed C. pozizum Hanley(Wood), 1828; C. hispidum Brod., 1834 and C. cinereum (Gray), 1842.

Crucibulum quirquimum Lesson, 1830. Tryon calls this a variety but Dall lists it as a distinct species. Carpenter says of this "The quirquina of Lesson and d'Orbigny belongs to a southern type which may be distinct; though it has characters enough in common to make it not impossible that it is a course variety. It is characterized by a more solid texture, light reddish brown color, entire absence of spines, and less angulated cup." (con.)
Under this are placed C. tenuis Brod.(Tenua); C. lignarium Brod.,1835; C. rugosum Desh. (not Lesson); C. ferrugineum Reeve, 1833; and C. spectrum Reeve, 1859. C. maculosum Brod., 1834 is placed here by Dall but under C. spinosum by Carpenter and Tryon. The same applies to C. striatum Brod. (not Say).

Crucibulum radiatum Broderip, 1834. Tryon gives this species as doubtful and Dall makes no mention of it. Carpenter says of it, "The C. radiata, in most respects agreeing with C. spinosa, differs in the remarkable flattening of the cup, and in its greater separation from the margin."

Crucibulum umbrellatum Deshayes. Tryon places this under C. imbricatum Sby. Carpenter says of it, "This latter species (comparing with imbricatum) is generally longer, more spreading, of a lighter color, and with the cup only adhering close to the apex. The ribs are also less developed and never pitted." Carpenter says this equals C. rude (rufus) Brod., 1834.

Crucibulum trigonalis Adams and Reeve, 1850. Carpenter says of it, "China Seas. This scarcely differs in any essential particular from Crucibulum lignarium Brod. and its varieties from South America. The trigonal form may be an accident of growth."

Crucibulum postinatum Carpenter, 1856. Carpenter places C. corrugatum Crp. (not Brod.) and C. jewettii Crp. here. Dall and Tryon place these under C. imbricatum Sby. See Reeve, pl. 3, fig. 7 for description and figure.

Crucibulum serratum Broderip. Dall and Tryon place this under C. imbricatum Sowerby. Carpenter says of it, "Like the young of C. postinatum; nearly transparent; white with purple ray." See Reeve, pl. 7, fig. 21 for description and figure.

Trochita radians Lamarck, 1822. Of Trochita ventricosa Carpenter he states, "It differs from the S. American T. radians and also from the Gulf species T. spirata, in the great convexity of the whorls, which are so produced at the shoulder that the sides form nearly a right angle." It seems probable that C. radians Lam., C. spirata Forbes and C. ventricosa Carpenter are all one species. To these should be added Patella pectunculum (Wood) Hanley.

Trochita trochiformis Gratien, 1791. As described by Dall this is a distinct and smaller South American species. Dall places under it C. armata Less. C. dilata Sby. and C. sordida Brod. The last is said by Carpenter to be a Galerus.

Trochita intermedia d'Orbigny, 1841. Listed by Dall from Peru. No further references or a description found.

Cheilaea equestris Linnaeus, 1758. Tryon and Dall both use the name of the West Indian species and place the West Coast C. capnacea Broderip, 1834 under it. Carpenter says of C. capnacea. "This shell is easily distinguished from the West Indian species, C. equestris, etc. both by the vertex and the markings." A number of other names are listed but if described from the west coast the fact is not so stated.

Cheilaea corrugata Broderip. Listed by Tryon and Dall as distinct. Seems to be distinguished by a coarser sculpture.

Calyptroa tortilis Reeve and Calyptraea alveolata Reeve from the Galapagos are listed as questionable species of Cheilaea.
Calyptraea fastigiata Gould, 1846. Seems to be a distinct Puget Sound species as listed by Dall.
Calyptraea contorta Carpenter, 1856. Seems to be a distinct Southern Calif. species as listed by Dall.
Calyptraea mamillaris Broderip, 1834. This is C. regularis C.E. Adams and G. Tamarcki like (not Desh) according to Carpenter. Carpenter distinguishes the species mainly by the nuclear whorls which are generally rather separated from the shell, and of an elegant discoidal shape like Pianorbas, displaying the whorls and the sunken apex. Tryon places everything from the coast under this species.
Calyptraea conica Broderip, 1834. This is C. aspera C.E. Adams and of Reeve according to Carpenter. Carpenter says of the nucleus, 'the vertex in this species is generally eroded, but when perfect, about .02 across, not prominent, with the outer whorl enveloping the rest, apex not visible.'
Calyptraea subroflora Carpenter, 1855. See Tryon and Reeve for description.
Calyptraea lichen Broderip, 1834. Dall recognized this as distinct in Peruvian Fauna. Carpenter says in speaking of C. mamillaris in Mus. Conings "Some of these as well as C. lichen, closely resemble the young of C. conica."

A microscopic examination of the nuclear vertices would probably decide the question.

Calyptraea unguis Broderip. Carpenter says, 'The C. mamillaris of d'Orb. is the C. unguis of Brod, and appears a distinct species, of which C. soror-dida Brod. is probably a variety; the laminae being so much reflected as to pass into Crucibulum, the young of which however it does not resemble at all.' There seems to be no further records of this species which is left of uncertain standing.

Genus Crucibulum Schumacher, 1817.
Crucibulum spinosum (Sowerby), 1824. Trinidad, California to Tose, Chile and the Galapagos Islands. Type locality not given.

Collecting data: A very common species in great abundance in certain localities. Newport Bay on dead valves of Pecten and Ostrea; very common all around Mission Bay, San Diego Co. especially on dead valves of Ostrea; dredged off Malaga Cove in 10 to 15 fathoms on gravel and shell, and these specimens are slightly different from the typical bay form; common on dead shell in the Estero de Punta Randa, L.C. An interesting note on these was the large percentage of albinos among them, many of them almost pure white but otherwise perfect living specimens. (Burch); San Felipe, Gulf of Calif. (Harl Huffman); Guaymas, Sonora, Mexico (Mrs. A. Stalman); Guifio de Nisyoa (Mr. Valerio); Panama, Taboga Island (Baker-Zotok); Scammons Lagoon (Dr. F. Baker); Guaymas, Mex. (W. J. Bowser); Mr. A.C. Smith writes "Willard M. Wood reported taking 9 specimens at Monterey in 1893, but none have been reported from there since. The record is doubtful until confirmed." The same would apply to the Trinidad record.

Crucibulum imbricatum (Sowerby), 1824. This is a species of the southern Fauna as discussed above and not of California. Dr. Joshua L. Bailly Jr. explains the origin of the California record of La Jolla in a recent letter "Crucibulum imbricatum from La Jolla. If you base this record on my note in the Nautilus you had best discard it. I was only 14 years old when I found that specimen and didn't know what C. imbricatum really was. Also, I didn't get it at La Jolla, but at Pacific Beach. This opportunity to correct an error is welcome, and I hope you will publish my retraction of this mis-statement."

Collecting data: W. J. Eyordan reports taking this species from Mazatlan, Gulf of Fonseca, Honduras, Corinto, Nicaragua and Talaran, Peru, and C. spinosum from Mazatlan, Gulf of Fonseca, Honduras, La Union, Salvador, Corinto, Costa Rica.
Genus *Calyptraea* Lamarck, 1799. *Type (by monotypy), *Patella chilensis* L. *Shell oval, limpet-like; with a posterior, oblique, marginal apex *inter-*ior polished, with a shell portion covering its posterior half.* (Woodward).

Calyptraea fastigiata Gould, 1856. Port Etches, Alaska to Redondo Beach, Calif. (*Burch*). *Type locality, Puget Sound.

Grant and Gale place this in the synonymy of *C. mamillaris* Dredcrip, 1834. The general idea seems to be that *fastigiata* is strictly a northern species ranging no farther south than Puget Sound whereas *mamillaris* is a southern species ranging not as far north as San Diego. All in between must therefore be *C. contorta*. There is a great deal of confusion about the species under this genus.

Mr. George Willett in Trans. San Diego Soc. Nat. Hist., 1937, vol. 8, no. 30, states "... *C. contorta* may be a stunted, southern form of *fastigiata*, but both differ from *mamillaris* of southern waters in their thinner shell."

However, we have been disposed to think that we have been getting two distinct species of *Calyptraea* off Redondo Beach — the small *C. contorta* Cpr. in great abundance from the comparatively shallow gravel beds ranging from 15 to 30 fathoms and what we considered the northern *C. fastigiata* in from 50 to 75 fathoms.

We also dredged another lot from the shale off Monterey which we understand may be a new species. They are being considered by Mr. Allyn Smith and Mackenzie Gordon.

Collecting data: Dredged off Redondo Beach in 50 and 75 fathoms gravel bottom (*Burch*); Point No Point, San Juan Islands, Washington in rock and shell bottom (*Miss R.E. Coats*); dredged in Puget Sound (*T. Kincaid*); Puget Sound (*Randolph*); Orcas Is., F.S. in 10 to 30 fms. (*Dr. F. Baker*); San Juan Islands (*Lowe*) (San Diego Museum); Puget Sound, San Juan Islands; Ishut Bay, Afognak Island and Drier Bay, Knight Island, Alaska — dredged (*W.J. Eyordam*).

Mr. A.C. Smith writes "I have seen no undoubted specimens from Monterey, although reported from there by Cooper.*

Calyptraea contorta Carpenter, 1865. Monterey, Calif. to Gulf of Calif. *Type locality: This has been generally published as Monterey but Dr. A. Hyra Keen advises that it is Catalina Island, Calif. from the holotype label in the U.S.N.M.

Collecting data: As stated above under discussion of *fastigiata*, we have found this small species extremely abundant usually attached to pieces of shell or small gravel off Malaga Cove in 15 fms.; Redondo Beach in 25 fms.; Point Vicente in 20 fms.; Avalon, Catalina Island in 25 fms.; off Santa Cruz Island in 50 fms. (*Burch*). Of course, it is quite possible that we have a single species with the specimens from deeper water and naturally colder water attaining much greater size. The principle difference seems to be that the deeper specimens are simply much larger and much lower spired. (*Burch*). Monterey Bay in 15 to 40 fms. This is a good species of small size (*A. Smith*); S. Coronado Island (*Dr. F. Baker*); San Felipe, Gulf of Calif. (*Frank Stephenson*); San Diego (*Gripp*); San Pedro (*Lowe*) (San Diego Museum).
Family Naticidae
The following keys and lists are from Mr. A.M. Strong's notebook.

Shell porcelainous, thick or fairly so
- Operculum shelly ... Natica
- Operculum horny ... Polinices
Shell thin, more or less pellucid
- Shell oval or oblong Buminata
- Shell depressed, aperture ear-shaped Sinum
Shell minute, spire elevated Elachisina

Genus Natica
Umbilicus closed by a solid callous pad
- Shell uniformly white
 Height 20 mm. Bering Sea to San Diego clausa
- Shell yellowish white, faintly banded
 Height 14 mm. Esteros Bay to Gulf of Calif. salimba
Umbilicus more or less open
- Shell obliquely depressed
- Whitish, closely longitudinally lined with chestnut
 Diam. 35 mm. Lower Calif. to Ecuador elena
- Shell oblong or globose
- Surface with fine axial or spiral striations only
- Brownish, a white band on upper part of whorls
 Height 20 mm. Gulf of Calif. to Peru unifasciata
- Yellowish brown, without color markings in the adult
 Height 20 mm. Bay of Panama othello
- Peru ... undata
- Entire surface with axial plications
- Fawn color, with 3 articulated dark chestnut bands
 Gulf of Calif. to Ecuador broderipiana
- Axial plications between shoulder and suture only
- Fawn color, with 3 mottled white bands
 Height 13 mm. Gulf of Calif. to Panama catenata
- Pale brown, with 3 obscure pale bands
 Height 17 mm. Bay of Panama sectora

Genus Polinices
Umbilicus more or less filled with callus
- Shell depressed
 - Whitish or broadly chestnut banded
 Diam. 50 mm. Lower Calif. to Peru glauca
 - Milk white, with obsolete spiral lines
 Diam. 9 mm. Galapagos littorinus
- Shell oval to globose
- Whorls flattened
- With an orange colored subsutural band
 Height 35 mm. Lower Calif. to Peru otis
- Unicolor, not banded
- Umbilical caliris white
 Height 75 mm. Crescent City to Chile recluziana
- Umbilical caliris purplish brown
 Height 40 mm. Monterey to Newport Bay alta
- Whorls quadrangularly compressed at the sides
 Height 50 mm. Panama panamensis

(con.)
Whorls rounded, convex

Umbilical callus purplish

Shell pyriformly ovate, white, solid
Height 35 mm. Gulf of Calif. unimaculata

Shell ovately globose, bluish or bluish white
Height 35 mm. Galapagos to Peru atracycnsis

Umbilical callus white

Shell oblong turbinate, white, solid
Height 35 mm. Gulf of Calif. to Peru iber

Similar but with a persistent epidermis
Galapagos to Peru philippianus

Shell ovate, body whorl slopingly shouldered
Pwru ... alveatus

Shell rounded, ellipsoid, dirty milk white
Height 12.5 mm. Alaska to San Diego baerinus

Shell globose

Shell large, thick and heavy
Peru and Chile iberia

Shell small, rather thin

Shell polished, white
Height 12 mm. Chile strebeli

Epidermis minutely spirally banded
Height 16 mm. Monterey to Coronado Islands .. aconismitus

Umbilicus without an entering callus

Umbilicus large, funnel shaped or cylindrical

Whorls with a flattened band at the posterior third
Height 100 mm. British Columbia to Newport Bay ... lowisi

Whorls obliquely flattened below the sutures
Height 23 mm. Ecuador to Peru ravida

Whorls flat topped, translucent white
Height 26 mm. Panama to Peru agujanus

Whorls rounded, convex

With faint indications of spiral threads
Height 50 mm. Alaska to Laguna draconis

Surface smooth, white
Height 22 mm. Magellan Straits vaginatus

Umbilicus narrow

Shell brownish, with 2 narrow white spiral bands
Height 45 mm. Cape San Lucas to Acapulco bifasciata

Shell transparent white, flesh tinged
Height 13 mm. Galapagos globella

Shell uniformly white

Body whorl slightly elongated, wrinkled at suture
Height 15 mm. Panama and Galapagos crawfordianus

Whorls slightly flattened below the suture
Height 6 mm. Chile pisiformis

Whorls constricted in front of sutures
Height 20 mm. Magellan Strait constrictus

Whorls depressed, milk white /pa
Diam. 14 mm. Panama and Galapagos pedroanus

Whorls evenly rounded, convex

Surface smooth, polished
Height 17 mm. Peru and Chile solitus

Upper half of whorls axially wrinkled
Height 8 mm. Alaska to San Diego canonicus

Shell large, white, with distant dark markings
Height 50 mm. Galapagos macrostoma
Genus Eunaticina
Sculptured with extremely fine wavy spiral striæ
Height 35 mm. Oregon Coast to San Diego oldroydii

Genus Sinum
Adult shell over 20 mm. in diameter
- Shell white or waxy, inside and out
 Diam. 38 mm. Monterey to Todos Santos Bay californicum
- Inside of shell brownish
- Shell very flat, with a minute flattened apex
 Diam. 25 mm. Catalina to Gulf of California debilo
- Shell moderately elevated
 Diam. 50 mm. Panama to Peru concavum
Adult shell less than 10 mm. in diameter
- White, sculptured with sharp spiral grooves- shell suborbicular
 Diam. 6.5 Catalina .. keratium
- Grayish white, sculpture microscopic- shell depressed
 Diam. 9 mm. Catalina to Panama pazianum

Genus Elachasina
Sculptured with fine uniform striæ
Height 3 mm. San Diego .. grippi

Genus Natica Scopoli, 1777.
Natica (Cryptonatica) calimba Dall, 1919. Esteros Bay to Gulf of Calif.
Natica (Cryptonatica) clausa Brod. & Shy., 1829. Bering Sea to San Diego
Natica chemnitzii Preyer, Gulf of Calif. to Peru
var. unifasciata Lamarck
Natica broderipiana Reclus, 1847, Cerros Isl., Gulf of Calif. to Ecuador
Natica ctenata Philippi, 1851, Gulf of Calif. to Ecuador
Natica elenae Reclus, 1849, Lower Calif. to Ecuador
Natica idioforma Philby & Lowe, 1932, Nicaragua
Natica undata Philippi, 1852, Peru
E. (Gohillic) othullo Dall, 1903, Bay of Panama
E. (Gohillic) sectatrix Dall, 1908, Bay of Panama
Natica collina Strong and Hartman, 1937, West Mexico

Genus Polinices
P. (Euspira) pallidus (Brod. & Shy.), 1829. Arctic Sea to Cortez Bank
P. (Euspira) Towisii (Gould), 1847. British Columbia to San Pedro
P. (Euspira) caurinus (Gould), 1847, Puget Sound to San Diego
P. (Euspira) draconis Dall, 1903. Alaska to Laguna
P. (Euspira) acosmitus Dall, 1919, Monterey to Coronado Islands
P. (Euspira) canoniatus Dall, 1919, Alaska to San Diego
P. (Euspira) amphiyanus Dall, 1908, Panama to Peru
P. (Euspira) pardonanus Dall, 1908, Panama and Galapagos
P. (Euspira) literatus Dall, 1908, Galapagos
P. (Euspira) crawfordianus Dall, 1908, Panama and Galapagos
P. (Euspira) solutus (Gould), 1847, Peru and Chile
P. (Euspira) pacifirmus (Reclus), 1843, Chile
P. (Eusspir) strobell Dall, 1908, Chile
P. (Eusspir) constrictus Dall, Magellan Straits
P. (Neverita) reclusianus (Deshayes), 1839, Crescent City to Chile
P. (Neverita) alta Dall, Monterey to Newport Bay
P. (Neverita) lauca (Lesson), 1826, Lower Calif. to Peru
Polinices otis Broderip and Sowerby, 1829, Lower Calif. to Peru

(cont.)
Polinices uber Valenciennes, 1833 Gulf of Calif. to Peru
Polinices interornata Philippi, 1857 Gulf of Calif. to Panama
Polinices bifasciata (Gray) Gulf of Calif. to Acapulco
Polinices unimaculatus Reeve Gulf of Calif.
Polinices panamensis (Recluz), 1843 Panama
Polinices philippianus (Rötel), 1845 Galapagos and Chile
Polinices ravicus (Eydoux & Souleyet), 1852 Ecuador to Peru
Polinices alveatus (Troughton), 1852 Peru and Chile
Polinices rupululima Pilsbry, 1933 Panama
Polinices macrostoma (Philippi), 1852 Nicaragua and Galapagos
Polinices gibbosa (Reeve), 1855 Nicaragua and Galapagos
Polinices crickmangi Palmer and Hertlein Galapagos

Genus Eunaticina Fischer, 1855
Eunaticina oldroydi Dall, 1897 Oregon to San Diego
Eunaticina helmi Jordan, 1936 Galapagos

Genus Sinum Roeding, 1796
Sinum californicum Oldroyd, 1917 Monterey to Todos Santos Bay
Sinum dobile Gould, 1852 Catalina to Gulf of Calif.
Sinum piazanus Dall, 1919 Catalina to Panama
Sinum keratium Dall, 1919 Catalina
Sinum concavum (Lamarck), 1822 Panama and Chile
Sinum noyesii Dall Nicaragua to Panama
Sinum sanctus Johannis Pilsbry & Lowe, 1932 Nicaragua

Genus Elachisina Dall, 1918
Elachisina gripsi Dall, 1918 San Diego

Family Naticidae
Genus Natica Scopoli, 1777 Type (by subsequent designation, Harris, 1897), Natica vitellus Linnaeus (Natica rufa Born of authors) fide Woodring, 1928, P. 377
Shell oval globular, porcellaneous, solid, generally smooth, covered by a fine epidermis, which is transparent, and generally not very persistent; umbilicated, or umbilicus more or less filled with callus; aperture semilunar, vertical, the outer lip simple. Operculum large, semilunar, paucispiral, cornaceous or calcareous. (Tryon, Manual of Conchology).

Subgenus Natica s.s. Not represented north of San Diego—N. unifasciata Lamarck.

Subgenus Tectonatica Sacco, 1890 Type (by monotypy), Natica tectula Bonelli.
Shell globose; umbilicus entirely filled with a callus deposit; operculum externally smooth.

Note—Dr. Dall placed them all under Cryptonatica Dall, 1892.

Natica clausa Broderip and Sowerby, 1829 Arctic and Bering Seas, south in gradually deepening water, to Japan on the west and San Diego, Calif., on the east. (Dall). Type locality not given. Johnson gives the Atlantic range Labrador to off North Carolina in 16-15-17 fathoms.
Collecting data: San Nicholas Island (Lowe); Bear Bay, Peril Straits, (con.).
Alaska (Kate Stephens); Port Graham, Alaska (Baker); Spitzbergen and Tromsø, Norway (Capt. Andrews) (San Diego Museum); Monterey Bay, 389-571 fms. (U.S.F.C.) (A. Smith); W. J. Eyerdam reports from the following stations, Puget Sound, Wash.; Kola Fjord, Russia, 1928; Izhut Bay, Afognak Ida., Alaska., 1922; Drier Bay, Knight Island, 1923; Sitkalidak Island, Kodiak Islands; Raspberry Ida.; Hinchinbrook Ida., Pr., Wn. Sound; Unalaska Island, Atelutias; Unimak Ida.; Atka; Ugamik Bay; Kodiak Ida.; Uyak; Tromsö und, Norway (Norberg); Gulf of Kronotski, Kamchatka; Tsuruga Bay, Japan; Mr. Eyerdam comments on the specimens as follows: * The specimens from N. Europe are mostly what we have been calling N. ruça. The northern race should retain the name of alutica at least as a subspecies because it grows so much larger. I have specimens taken alive that I collected at Unimak Island 2½ inches high. The specimens from Iceland are like some of the small forms of Natica alutica from Izhut Bay and Ugamik Bay. Those from Kola Fjord, Russia and Tromsø Fjord, Norway are the small brown, rusty colored form that we generally call ruça, but may be the more typical European Natica clausa inasmuch that the different lots have been classified by that name by four of the best authorities on N. European marine shells, namely Odner of Riksmuseum, Stockholm, Hindholm, the late director of the Academy of Science, Lehingrad, Hans Schlesch of Copenhagen and Soot-ryen, director of Tromsø Museum, Norway. The specimens that I collected in Tsuruga Bay, Japan, merge into Natica lanistoma but lack the violet color inside the aperture. I am still at a loss as to what is really Natica clausa as it is also closely related to several other so called species. If any competent member of the shell club wishes to make a more thorough investigation of the status of N. clausa and desires to use my rather large series I shall be glad to loan them.

Natica ruça Gould, 1859. Bering Strait to Forrester Island, Alaska, to Puget Sound (Dall).

There has been no end of confusion about the above two species. Mr. Willett was of the opinion that many records of clausa should be for ruça. Dr. A. Myra Keen in Abridged Check List confines the range of clausa to the north and gives the range of ruça south to San Diego. Grant and Gale state of ruça * ... attains a larger size than Natica clausa. It also has a distinctive brownish color and a larger callus plug than Broderip and Sowerby's species with which it has undoubtedly been confused. Mr. Willett of the Los Angeles Museum has a series of N. ruça which well illustrates the uselessness of the name alutica.

However, I have a large set labelled N. alutica Dall, 1919 collected by Mr. Eyerdam from Unimak Island, Atelutia Islands and they certainly seem different to me from the shells I have as ruça. I have large sets of clausa from the Atlantic and nothing else I have looks like they do. And Mr. Willett personally identified some specimens from the Pleistocene of Timn's Point as ruça, that certainly could never be connected with the shells above mentioned labelled alutica. (Burch).

Dr. A. Myra Keen writes (Per. Comm. Nov. 1945) * Some years ago I sent Mr. Willett my only duplicate print of a National Museum photograph of Natica ruça Gould. In his next letter he commented that this was not the shell he had been calling ruça, that it was something he had never seen before, and that he would recommend the adoption of alutica again. Perhaps Dr. Hill can locate this print for you. * Note: We will run a photo of this print on one of our forthcoming plates. *

Concerning this shell I made the following notes at the National Museum: * Natica Ruca Gould. No. 188401, Jeffreys Collection, U.S.N.M. The holotype is lost; this specimen is a tepotype collected by Stimpson in Bering's Straits and sent by Gould to Jeffreys. Dr. Dall's discussion (Proc. U.S.N.M. (conc.)
Natica aleutica Dall, 1919. North end of Nunivak Island, Bering Sea; south on the west from Kamchatka to Japan; on the east to the Aleutian chain and Puegt Sound. (Dall). Type locality, Unalaska, Aleutian Islands.

See discussions under N. clausa and N. russa. The final consensus of opinion is that this is a good species. Figures will appear on one of our plates in the near future.

Natica affinis Gmelin, 1792. Arctic Ocean north of Bering Strait. Also Greenland.

Dr. A. Myra Keen advises on this species and the next as follows (Per. Comm. Nov. 1945) "I omitted N. affinis and janthostoma because they are outside our area. The "an hujus tribus" is a misprint for "an hujus tribus" and should have been left out of the locality description by Mrs. Oldroyd, as it is Gmelin's comment on systematic position of the species; he says in effect that he does not know its affinities."

Natica janthostoma Deshayes, 1841. Commander Islands, Bering Sea; Kamchatka and south to Japan. (Dall). Type locality, Kamchatka. Figured in Bull, 112.

Collecting data: Sets in the San Diego Museum of Natural History from Japan and Notoro Bay, Hokkaido from Dr. Fred Baker; Mr. W. J. Eyerdam writes "I have collected this species in the Gulf of Kronotski, and at the mouth of the Kamchatka river, Kamchatka, also Attu Island, Bering Island and in Tsuruga Bay, Japan. It has a deep violet coloring in the aperture and the umbilicus has a curved slit while in N. aleutica or N. clausa it is closed. There is no reason for skipping this one as it is a distinct species.""}

Natica salimba Dall, 1919. Off Esteros Bay, California, and south to the Gulf of California in deep water. (Dall).

Type locality, between Santa Barbara and San Nicholas Island, Calif. in 216-339 fms.

Collecting data: Off Redondo Beach, Calif. in 100 fms, mud bottom. (Burch). Catalina Island in 30 fms. (Lowe).

Natica sp. Off Redondo Beach, Calif. in 150 fathoms. (Burch).

Genus Polinices Montfort, 1810. Type (by original designation), Polinices albus Montfort (= Helix mamillaris Linnaeus, 1767).

Shell oval or suboval, solid, smooth, spire short, sharp; aperture semicircular, inner lip oblique, callous, the callus extending into the umbilicus. Operculum corneous. Color usually white, sometimes colored but not banded or spotted. (Tryon, Manual of Conchology).

Subgenus Buspira Agassiz in Sowerby, 1838. Type (by subsequent designation, Dall, 1908, 1909), Natica glaucinoides Sowerby, not Deshayes (= Natica labellata Lamarck). (Fide Grant and Gale, p. 803.)

"Shell globose; spire moderate; outer lip straight, slightly retracted to suture, inclined about 30 degrees from vertical; inner margin with light callus on parietal wall; umbilicus open and without any funicle; operculum horny." (Marwick).
Pelinices pallidus Broderip and Seweryny, 1829. Arctic Ocean at Point Barrow and southward on the east to Forrester Island, Alaska. On the west at the Island of Kolguief in the Polar Sea and in the Okhotsk Sea (Middendorff) south to Redondo Beach, Calif. in 100 fathoms. (Burch).

Collecting data: The specimens we dredged off Redondo Beach in 100 to 150 fathoms were identified as this species by Mr. George Willett who had collected it extensively in the north. (Burch); Izhut Bay, Afognak Id.; Friday Harbor, San Juan Islands, Wash.; Tromsö, Norway; Hinchenbrook Id.; Pr. Wm. Sound, Alaska (W.J. Eyerdam); Orcas Island, Puget Sound in 10 to <30 fms. (Dr. F. Baker); Illiamna Island, Alaska (Dr. Baker); San Juan Islands (Oidroyd); Katz Is., Cape Espenberg, Alaska (Lowe); Ferreter Island, Alaska (Willett).

Type locality on advice of Dr. A. Myra Keen is Icy Cape.

Pelinices gronlandica (Beck) Moller, 1842. Arctic Seas southward in gradually deeper water to Monterey, Calif. Also Greenland.

Type locality, Greenland.

Collecting data: Petersburg, Alaska (George Willett); Izhut Bay, Afognak Id., Alaska, 1922; Victoria, B.C. (Eyerdam); Point Barron, Alaska (Brower); Wrangell, Alaska in 50 fms. (Willett); Dogger Beach, North Sea; Swedn; (Nat Hist. Mus. of San Diego); 296 fms. off Pt. Ano Nuevo, 121-766 off Pt. Pinos (USFC).

Pelinices acosmitus Dall, 1919. Monterey to Coronado Islands in deep water.

Type locality, off Monterey Bay, Calif.

Collecting data: Dredged off Redondo Beach, Calif. in 100 fms. mud bottom (Burch); 627 fms. off Pt. Pinos (USFC) (A. Smith).

Type locality, Captain's Bay, Unalaska in 75 fms. to Drier Bay, Pr. Wm. Sound, Alaska, 1923 (Eyerdam).

Pelinices algidus Gould, 1848. Coal Harbor, Shumagin Islands, Alaska to Puget Sound. Type locality "Rio Negro" (Gould).

Pelinices politianus Dall, 1919. Petrel Bank, Bering Sea.

Type locality, in 600 fathoms.

Pelinices caurinus Gould, 1847. Norton Sound, Alaska to Puget Sound, and in deep water (822 fathoms) to San Diego, Calif.

Type locality, Straits of Juan de Fuca. Monterey Bay in 278-581 fms. (USFC).

Pelinices cananonicus Dall, 1919. Off Alaska Peninsula in 1365 fathoms and off San Diego, Calif. in 822 fathoms. (Dall).

Type locality, off San Diego in 822 fathoms.

Pelinices lewisi (Gould), 1847. Duncan Bay, British Columbia to Todos Santos Bay, L.C. (Burch). Type locality, Puget Sound.

Collecting data: This abundant species found in our experience in every estuary on the coast. They are particularly abundant during the summer months. It seems odd that all of the published records for the range should stop at San Diego or even farther north when Todos Santos Bay, L.C. abounded with them. We even picked up a number in our dredged off Ensenada, Mex., in 10 to 15 fms. The bathymetric range is not great but they seem to be common enough down to 25 fms., or a little deeper off Monterey, Pacific Grove, Redondo Beach, Catalina Island etc. One item of possible interest is that only by dredging in our experience do you get the very young. We have series of them from the size of a sugar bowl down to the size of a pin head all off Redondo Beach.
The very young give some study when first seen. Not uncommon in the San Pedro Pleistocene. (Burch); * This is the largest species in the world of the family Naticidae and seems to reach its maximum size in Puget Sound where it is very common. Although its sand collar egg cases are very common on the mud flats I have never seen any of the very young. This species reaches a maximum height of 5 inches. * (W.J. Eyerdam); San Quintin, L.C. (Fortiner); Scammons Lagoon (Capt. Porter); Mission Bay (E.W. Wilson); Olympia, Wash. (Hemphill); Del Mar (Bristol); Monterey 0 to 25 fms. (A.G. Smith).

Polinices draconis Dall, 1903. Port Althorp, Alaska to Todos Santos, Bay, L.C.
Type locality, Drakes Bay, Calif.* Collecting data: In our experience this is a much rarer species than lewisii. It seems to be almost entirely a deeper water species. We have dredged it off Monterey; off Redondo Beach in 25 fms.; off Avalon, Catalina Island in 25 fms.; off Ensomada, Mex. in 15 fms. The fun commences with sorting out a box of the very young of this species and lewisii mixed. Separation of the adults is a simple matter but their young are amazingly alike. It can be done though (Burch); Newport (Lowe); Del Rey (Lowe); Drakes Bay and also Catalina Island (Lowe); 12 to 50 fms. in Monterey Bay (A.G. Smith).

Polinices uber Valenciennes, 1833. Mission Bay, Calif., south to Peru. Dr. Joshua L. Baily, Jr. adds this southern species to the California fauna (Proc. Comm., Nov., 1945) * Polinices uber has been found in False Bay, Maxwell Smith has a specimen—also Miss Mary Williams got one. Her collection I believe is at Pomona College.*
This species is possibly in the subgenus Polinices s.s.

Subgenus Neverita Risso, 1826. Type (by monotypy), Neverita josephina Risso.
* Shell ovate; sutures tangential, appressed; apertural callus thick, coalescing with a huge funicle, which fills the umbilicus; aperture greatly inclined. * (Warwick).

Polinices recluzianus (Deshayes), 1839. Crescent City, Calif., south to Tres Marias Islands, Mexico. Type locality, Mers de Californie.
Dr. Pilsbry discusses this group very thoroughly and figures them well. In this paper he suggested a new subgenus or section of Neverita to be called Glossaulax, with recluzianus as type.
Collecting data: The common typical form of this species needs no discussion. It is found in all estuaries in southern California as well as the open coast. We have dredged it in a 30 foot deep 25 fms. but it is not a deep water species. (Burch).

Mr. A.G. Smith comments on the published ranges of this species and the following * We have not found it at Monterey and would be inclined to look with considerable suspicion on all records north of Pt. Conception, as this is a warm water shell. * Mr. Smith's observation coincides both with our experience as well as with all of the collecting records submitted.

Polinices recluzianus imperforatus 'Stearns' Dall, 1909. Crescent City to San Diego.

The original description of this subspecies as reprinted in Oldroyd is so inadequate that it is impossible to figure out exactly what it is. Dr. Pilsbry in the paper mentioned above discusses it as follows: * In shape (con.)
the shell is smaller and generally more depressed than recluziana, but it
varies to forms equally high. The parietal and umbilical callus is white,
or there may be a faint brown tint toward the outer margin; old ones have a
brown streak on the callus contiguous to the posterior part of the outer
lip. The callus covers the umbilicus typically, as in Fig. 4, but in some
samples the closure is not complete, a small shallow or deep pit being left
open. The shell is smaller than recluziana, the diameter usually 30-40 mm.,
but sometimes it reaches a larger size. Some apparently adult shells are much
smaller, down to about 20 mm. diameter. The Pleistocene specimen figured
by Arnold and those sent by Wooding from Pacific and Oliver Sts., San Pedro,
are small and agree with the living shells from Newport.

It seems to be the opinion of the majority of west coast collectors
that this variety is of little consequence, and we have been placing all such
specimens in the synonymy of the typical.

Polinices altus Arnold, 1903. The Paleontology and Stratigraphy of the
Marine Pliocene and Pleistocene of San Pedro, Calif., Arnold, Ralph, Stan-
ford University, 1903, p. 316.

Range: Monterey to San Diego.

Arnold merely mentions that Dall had described such a form. He does
not say where or when. Dall in 1909 in U.S. Geol. Survey, Prof. Paper 59,
p. 88, gives a brief description and this reference has been generally used
and is reprinted by Mrs. Oldroyd.

Dr. Pilsbry at the suggestion of H. N. Lowe in the paper referred to
above in the Nautilus considers altus a distinct species and not a subspecies.
He discusses it at length and figures it. He says of it in part: In the
Recent specimens the umbilicus varies in size but is always partially open
and deep. The umbilical callus is brown (rarely pure white). The callus
in some specimens, such as those figured from Newport, pl. 6, Figs. 5, 6,
is long and tongue shaped at the end. In others, pl. 6, Figs. 7, 8, 9, Alamitos
Bay, it has the usual shape of N. recluziana. Such variations are seen in
our eastern N. duplicata....

Collecting data: There are times when this form seems to come into
the estuaries from deeper water. We have seen, for example Mugu Bay, Ventura
Co., when all specimens collected were altus. Our experience has been not to
find altus and typical recluzianus together to any extent. They are easily
separable and in my opinion altus is a good name, but whether or not it is a
species or a subspecies I do not know. I have seen no obvious intermediates.

(Burch); San Diego Bay (Baker and Emory); Mugu Bay (Lowe); San Pedro and
Long Beach (Lowe); Newport Bay and Morro Bay (Lowe); Ensenada (Lowe);
Redondo (Tremper) (San Diego Museum).

Dr. Joshua L. Daily Jr. comments on the above species as follows (Pere.
Comm., Nov. 1945): The two varieties of P. recluziana, altus and imperfecta
suggest a peculiar problem. Altus is distinguished by an elevated spire,
imperfecta by a large callus which completely fills the umbilicus. What
should we call a specimen that has both an elevated spire and a completely
filled umbilicus? Since altus is now generally considered a good species
and imperfecta is not considered even a good variety, such a form as I have
hypothesized would be considered a variety of altus. But if altus and imper-
fecta had happened to be varieties of equal rank, my hypothetical form
(which apparently does not exist) would have to be given a new varietal name,
or else be considered to belong simultaneously to two varieties. And whenever
two varieties based on independent characteristics are assigned to the same
species, a potential third variety is implied. If three such varieties are
assigned to the same species, there are four potential varieties, and in gen-

ber of hypothetical postulated varieties is given by the formula 2n (n-1) when a large number of varieties are assigned to a single species collectors ought to be on the lookout for these hypothetical forms. If they do not occur with reasonable frequency a problem for the geneticist is indicated.

Subgenus Polinices s.s.

Polinices nanus (Moller), 1842. Arctic Ocean to the Aluitians and southward in gradually deeper water to near San Diego, Calif. (640 fathoms). Also Greenland.

There is a set in the San Diego Museum of Natural History from Aberdeen, Scotland in the Dr. F. Baker Collection.

Genus Sinum Roeding, 1798. Type (by subsequent designation, Dall, 1915) Helix haliotoides Linnaeus.

Shell ear-shaped or naticoid, spire small, low; body whorl rapidly enlarging, with a very large aperture; sculpture consisting of fine revolving grooves, sometimes crossed by curved growth lines; operculum small, horny, subsphiral.

Range: Monterey to Todos Santos Bay. Type locality: Miocene of Astoria, Oregon. Type locality of S. californicum is San Pedro.

Collecting data: Magu, Ventura Co., Calif.; Newport Bay; Estero de Todos Santos Bay, L.C.; Mission Bay, San Diego Co. (Burch); Monterey (Mrs. Fackenthall) (A.G. Smith).

Sinum debile (Gould), 1853. Catalina Island, Calif. to Gulf of Calif. Type locality: La Paz, Lower Calif.

Grant and Gale state "This species has a very flat shell, which is much smaller than mature shells of scopulosum."

Collecting data: San Felipe, La Paz and Kino Bay (H.N. Lowe Coll.); Dr. Joshua L. Baily Jr. reports "We have two distinct species of Sinum in False Bay—S. debile, which resembles S. perspectivum of the east coast, and another with a more inflated shell which I take to be scopulosum."

Sinum pazianum Dall, 1919. Catalina Island, Calif. to Panama. Type locality, off La Paz in 26½ fathoms. Figured in Oldroyd.

Sinum keratium Dall, 1919. Catalina Island, Calif.

Genus Eunaticina Fischer, 1855. Type (by monotypy), Natica papilla Gmelin.

Shell umbilicated, oval oblong, thin ventricose; spire sharp; inner lip straight, thin anteriorly, with a median callus. Tryon, Manual of Conch.

Eunaticina oldroydii Dall, 1897. Oregon to San Diego, Calif. Type locality, off Catalina Island, Calif.

Collecting data: Off Monterey, Calif. in 50 fms. mud bottom (Burch); Monterey Bay 30 to 70 fathoms (A.G. Smith).

Genus Elachisina Dall, 1918. Type (by monotypy), Elachisina grippi Dall.

Shell minute, elevated, with naticoid spiral sculpture, umbilicate.

Elachisina grippi Dall, 1918. Off San Diego, Calif. in 16 to 20 fms.
January, 1946

Genus Bulbus Smith, 1838. Type (by monotypy) Bulbus smithii Smith.
Dr. A. Myra Keen advises on the taxonomy of this genus as follows: As nearly as I can make out without seeing the original reference, Bulbus should be cited as of Smith, 1838, with type by monotypy, Bulbus smithii Brown, Smith.

Shell globular, spire very short; columellar margin incurved, columella twisted; lip fragile. Tryon, Manual of Conchology. This is the description of Acrybia H. & A. Adams, 1853.

Bulbus apertus (Loven), 1847. Icy Cape, Arctic Ocean, south to the Aleutian Islands and eastward to the Shumagin Islands. (Dall).

Dr. A. M. Keen advises on this species as follows: B. apertus was described by Loven in 1847 and figured by Middendorff in 1851. The type locality is Finnmark.

The original description of Natica aperta Loven (Ofversigt af Kongl. Vetens. Acad. Forh. for 1846, 1847, p. 149) is:

A. congeneribus forma testae recedens, Sigaretum fere referens, N. flavae Gould affinis, testa rimata, tenue, pellucida, ovata-globosa; anfr. 4, un timo maximo, inflato; spira brevis, obtusa; apertura ampla, longitudinallis, ovata, postice, emarginata anfractu penultimo; lamina columellaris tenuissima, supra umbilicum omnino tectum incrassata, effusa, revoluta, deinde sensim angustata, producta, et in labrum continuata, acutum, tenuissimum, arcuatum; operculum ignotum; 13.5 mm.

Genus Amauropsis Morch, 1857. Type (by subsequent designation, Dall, 1909), Natica helicoides Johnson (= ? Natica islandica Gmelin), fide Grant and Gale.

Shell with canaliculated sutures. Scarcely distinct from Amaura.

Amauropsis purpurea Dall, 1871. Arctic coast westward from Bernard Harbor, to Point Barrow and south to Plover Bay and Nunivak Island, Bering Sea.
Type locality: St. Michaels, Norton Sound, Alaska.
Collecting data: Cape Simpson, Alaska (W. J. Eyerdam);

Family Vanikoridae

Dr. Joshua L. Baily Jr. comments on this name: Vanikoro is not a classical name, and is not Latinized. Perhaps that is why Cooke uses the name Natica instead.

Genus Megalomphalus Brusina, 1871. Type (fide Fischer, 1885), Megalomphalus azonus Brusina.

The systematic position of this group seems to be a matter of some difference of opinion. For example, Theile puts it in the family Fossaridae. But for that matter Theile also puts Isolica Dall, 1918, which we have under Fossaridae, in the family Pyramidellidae and at that uses it as a section of another genus. We are trying to answer all such puzzles as these.

Megalomphalus californicus (Dall), 1903. Santa Barbara Islands to San Diego (Stanford Coll.).
Type locality, Santa Barbara Islands.
Family Vanikoridae
Genus Vanikora Quoy and Gaimard
This genus is not represented in the California fauna but the following species are listed by Mr. Strong from the south.
Vanikora aperta (Carpenter), 1864 Cape San Lucas to Acapulco
Vanikora insculpta (Carpenter), 1865 Acapulco
Vanikora cypriophila (Carpenter), 1857 Mazatlan
Genus Choristes Carpenter, 1872
Choristes carpeni Dall, 1908. Acapulco to Panama
Genus Xenophora
Xenophora robusta Verrill, 1870 Gulf of California

Genus Megalomphalus Brusina, 1871. Type (fide Fischer, 1885), Megalomphalus axonius Brusina.

Megalomphalus californicus (Dall), 1903. Santa Barbara Islands to San Diego (Stanford Collection).

The following species are from the southern fauna.
Megalomphalus occidentalis Bartsch, 1907. Magdalena Bay to Gulf of Calif.
Reported from San Felipe, Gulf of Calif. and from Mazatlan by H.N. Lowe.
Megalomphalus souverbicell de Folin Panama
Megalomphalus hancocki Strong and Hertlein, 1939 Panama

Family Acmaeidae
The following genera are not reported from California but are from the southern fauna, as listed by Mr. A.M. Strong

Genus Patella
Patella mexicana Brod. and Sby., 1829 Gulf of Calif. to Peru
Patella magellanica Gmelin, 1791 Chile to Magellan Strait

Genus Scurria
Scurria aeruginosa Midd., 1849 Gulf of Calif. to Peru
Scurria scura (Lesson), 1830 Peru
Scurria parasitica (d'Orbigny), 1841 Peru and Chile
Scurria zebrina (Lesson), 1830 Peru to Magellan Straits

Genus Acmea Eshscholtz, 1830
Acmea limatula Carpenter, 1866 Crescent City to Socorro Island
Acmea digitalis Eshscholtz, 1833 Aleutians to San Diego
Acmea digitalis textilis Gould, 1845 Alaska to San Diego
Acmea patina Eshscholtz, 1833 Bering Sea to Socorro Island
Acmea pelta Eshscholtz, 1833 Bering Sea to Socorro Island
Acmea pelta monticola Carpenter, 1866 Monterey to San Pedro
Acmea pelta olympica Dall, 1914 Alaska to San Diego
Acmea pelta nasellioides Dall, 1871 Alaska to San Diego
Acmea scabra Gould, 1846 San Francisco to Socorro Island
Acmea conus Test, 1945 Point Conception to Cape San Lucas
Acmea persona Eshscholtz, 1833 Aleutians to Socorro Island
Acmea atrata Carpenter Lower Calif. to Gulf of Calif.
Acmea discors Philippi Gulf of Calif. to Clarion Island
Acmea pediculus Philippi, 1846 Gulf of Calif.
Acmea fascicularis Menke, 1851 Magdalena Bay to Gulf of Calif.
(con.)
January, 1946

Genus Lottia Gray, 1834
Lottia gigantea Gray, 1834 Crescent City to Cerros Island

Genus Helcioniscus
Helcioniscus nigriquisquatus Reeve Chile

* Note* Our discussion of the family Acmaeidae will be found in a later issue of the Minutes.

O.E. Fox, Sitka, Solomon Islands. The following letter from the Rev. Fox to Dr. W. E. Eyordam contains some very interesting items. Excerpts from the letter follow: "Your letter of March 23 reached me June 4. I received about a dozen letters from American Universities about my shells; but yours is quite different, with the ring of the real enthusiast. My collection I sent to the U.S.A. Naval Museum. Many officers asked for it, and I wanted to show my gratitude to Americans for all I owe them (e.g., not getting shot). It had some rare and many beautiful shells which I may never get again, but I have begun again with the nucleus of some 600 duplicates remaining over, and am adding. Eventually it will go to Auckland Museum where they have a very good conchologist, A. W. Powell, who is going to identify for me. But if I get a chance I am going to send you some. Of course I know all Mala wall and San Cristoval and Rennell (some days on the lake One) but not Choisoul (where there are still Japs). I envy you belonging to a Conchological Club. Any practical hint about collecting would be most gratefully received. There must be something wrong about my technique as I have turned over idly with my foot many rocks without finding Gloria maris. Yet that is the technique in Miss Rogers book.

As to land shells I'll remember you. I only found 4 Placostylus on M. Mala and now the beautiful green one of San Cristoval which the Mala men didn't know. I had already identified Cypraea isabella but of my 50 or so Cypraea only a few are identified. I am now after the blood red Cypraea (con.)
January, 1946

of Mala, but it is deep and has to be dived for. What is it's name? The natives are afraid of touching it because of its brilliant blood red color. Thanks for identifying the Voluta. I had 8 or 9 sp. of Pterocera, but have only 6 left and can only identify 2.

I tried taking as you suggest, but no results. Something wrong in my method.

I hope to get about a bit soon. My work is simply that of overseeing language work in the Mission and writing Dictionaries and Grammars. I wrote a dictionary of 30,000 words of Arosi (San Cris,) and am now doing Gela. But I have no fixed duties and can go about as I please. But you can't have left me many Solomon Island shells to collect.

What is?

1. Pterocera with 10 fingers and deep purple lip
2. " with 5 long very slender fingers, purple lip
3. " with thick massive fingers & horizontal striations- quite small
4. " with 14 fingers, medium size
5. Cypraea rather smaller than aurantium, more oblong & sharp pointed, massive, canary yellow
6. Cypraea small white with 3 broad coal black bands across it (brown in worn specimens).

Jack Schmidt, 406 North K St., Lake Worth, Florida. Jack indicates his interest in purchasing if necessary a specimen or so of the species we list as Ferraria catalinensis Oldroyd, as well as any of the west coast species of the genus Trophon. It is an interesting thing to puzzle about when we read the records of some of the collectors of thirty or forty years back, and note that they picked up this species ashore after storms around San Pedro etc. Mrs. Eshnaur had any number of them washed in on Terminal Island. And yet my personal experience with this species has been to bring it up from certainly deeper than 50 fathoms and this is definitely beyond the depth where even the most violent of storms will wash them ashore. Maybe they have just decided to move out into deeper water.

Mrs. Aurora Trethewey, 3796 4th Ave., San Diego, Calif. This is the new address of Mrs. Trethewey. She has moved from 1129 Alberta Place.

S.L. Kimball, Master, Engineer Dredge Sacramento, Fleet Post Office, San Francisco, Calif. I have been receiving the Minutes of the C.O. of S. Calif regularly and they have been of great interest to me and several members of my crew, but as I plan to be leaving here about Feb. 15th I request that from now on you send them to my home in Weaverville, Calif. P.O. Box 46 where I expect to remain from then on. My collection of shells from here at Okinawa is much bigger and better than from any of the other islands where we have been which includes Guam, Eniwetok, Johnston, Midway, Palmyra, Christmas and Oahu. You are doing a great job and I am sure there will be many more collectors added to your list in the near future. Hope to be seeing you early next summer.

Mr. A. Byron Leonard, University of Kansas, Department of Zoology, Lawrence, Kansas. We are pleased to add the above name to our subscription list.

Mr. Leonard has done some excellent work in conchology and we have several of his papers in our library at this time. We hope and expect to see more.
MINUTES OF THE CONCHOLOGICAL CLUB OF SOUTHERN CALIFORNIA
February 1946

These papers are published by a group of interested students for our
own pleasure and financed by voluntary contributions of members and friends.
It is not our intention to offer subscriptions and guarantee regular period-
ical publication. However, non-members of our club will be placed on our
mailing list and receive all papers published for contributions to our fund
of $2.50 per year or $1.25 each six months.

We are now meeting the first tuesday of each month at 7:30 P.M. at
the Los Angeles Museum, Exposition Park, Los Angeles, Calif.

Please mail all news to your editor,
John Q. Duff,
4206 Halldale Ave.,
Los Angeles 37, Calif.,
Phone Ax. 2-7965

**
Family Lamellariidae
Genus Lamellaria Montagu, 1815. Type (fide Winckworth, 1932) Lamellaria
tentaculata Montagu (= Bulla latens Muller, 1776).
- Shell internal, ear-shaped, thin pellucid; spire lateral, very small;
aperture large, patulous, both lips regularly arced; axis imperforate.
- No operculum. (Tryon, Manual of Conchology).

Lamellaria sharonae Willett, 1939. Nautilus 52:123,124, pl. 9, figs. 1,1a,1b.
Mr. Willett told a number of us while he was working on this species
that he was not entirely satisfied that it should go under Lamellaria, but
this seemed to be the only allocation available without describing a new
genus for the species. It is certainly quite different from any of the other
West Coast species of this genus.

Collecting data: We collected perhaps 100 specimens all in the same
habitat. They were on yellow sponge growing on the bridge pilings in Anahim
Bay and in almost the same habitat in Newport Bay. A number of us carried
this in our collections for several years before its description under a
number of different names so all sets bearing unusual 'specific' names of
related genera should be checked for this species.

The range is confined to Anahim and Newport Bays so far but surely it
will be found elsewhere in similar places.

The original description was L. sharoni s. o. nov. However, Dr. A. Myra
Keen advises that the name should be emended to sharonae since it was named
in honor of Mrs. Ruby Sharon.

The original description follows:
- Shell fragile, entirely internal, naticoid, indperculcate, imperforate;
white, covered with a very thin, light pinkish epidermis. Aperture rounded
below the outer lip and columella merging to form three-fourths of an almost
perfect circle. Outer lip thin meeting the body at an acute angle. Columella
light brown, thin, regularly curved, with a shallow groove between it and
the body whorl. Surface of shell marked by irregular growth lines and very
fine spiral striations. Shell higher than wide, about the shape of some
specimens of Polinices alta Dall, though very much smaller. Measurements
of shell: Max. diam. 5.5; min. diam. 4.9; alt. 7.4 mm.; alt. 6.; diam. 4.3 mm.
(cont.)
Mantle of animal completely covering shell, roughly papillosa, vinaceus rufous above, somewhat lighter below. In the center of the mantle, above, is a rather poorly defined hexagonal, flattish area, the diameter of which is about one-fourth the length of the animal. From each of the six angles of the central area a poorly defined ridge runs to the lower part of the mantle, each ridge being ornamented with from one to three dusky spots; also in the middle of the central area, and in each of the six areas between the ridges is a single black spot (Fig. 1b).

The naticid form of this shell at once distinguishes it from Lamellaria stearnsi, diegensis, rhombica, or diguetii, as well as from any other species of the group known to the writer. Of the subgenera usually placed under Lamellaria, it is probably closest to Marsenina or Coriosella in shell characters. The mantle, however, is not fissured.

Lamellaria stearnsi Dall, 1871. Alaska to Tres Marias Islands ('Strong & Hanna). Type locality, Monterey, Calif. Figured in Oldroyd.

Collecting data: In our experience this is by far the most common species of the genus and it is not common. We have taken it by pulling up holdfasts from a rowboat off Malaga Cove, L.A. Co.; a number of them collected on sponge under stones at Cayucos by Mrs. John Q. Burch. (Burch); Pacific Grove, Calif. (A.G. Smith); Crescent City (Chaco); Monterey (Button); San Pedro (Lowe); Mission Bay (Mr. and Mrs. Ralph Bormann).

Lamellaria stearnsi orbiculata Dall, 1871. Sannakh Islands, Alaska to Gulf of Calif. Type locality, Monterey, Calif. Also figured in Oldroyd.

Collecting data: We have labelled specimens with this name, but I see nothing important about collecting a dozen specimens in one spot and selecting the larger and more mature specimens for orbiculata and calling the rest of them just stearnsi. It is probable that I do not know the real distinctions if there are any. (Burch); * Agree that this subspecies has doubtful taxonomic value* (A.G. Smith); / to Pts. Penasco, Gulf of Calif.

Lamellaria diegensis Dall, 1885. San Pedro and the Islands to San Diego, Calif. Type locality, False Bay, near San Diego, Calif. (Mission Bay).

Collecting data: We have taken typical specimens from the type locality in Mission Bay (Burch); Mission Bay (Lowe); San Pedro (Lowe); Pts. Penasco (Lowe) (San Diego Museum).

Lamellaria digueti Rochebrune, 1895. We are dropping this name from our faunal list. The matter was discussed under our work on Pleurobranchus. The error is obvious since Dr. Dall gives exactly the same reference even to page for both Pleurobranchus digueti and Lamellaria digueti. The consensus of opinion is that digueti is a species of Pleurobranchus.

Subgenus Marsenina Gray, 1850. Type (by monotypy), Lamellaria probida Loven.

Collecting data: Monterey (Oldroyd); Pacific Grove 0-15 fms. (A.G. Smith)

Gohus Onchidiopsis Bergh, 1853. Type (by monotypy): O. groenlandica Bergh. And in addition on this genus Dr. A.Myra Keen advises *I note that Dall proposes a subgenus Atlantolimax for O. hannai (Proc. Acad. Nat. Sci. Philadelphia for 1916, p. 376), type by original designation. * Adult with a large dorsal foramen in the notaeum. Whereas he describes Onchidiopsis s.s. (con.)
Subgenus Atlantolimax Dall, 1916. Type (by original designation), O. hannahi Dall.

Onchidiopsis sp. Reported by Mr. W.J. Eyeram from Drier Bay, Knight Island, Pr. Wm. Sound, Alaska, 1923; and Raspberry Island, Alaska, on stones, 1945.

Family Velutinidae

Genus Velutina Fleming, 1821. Type (by original designation and absolute autonony) Bulla velutina Muller. (Velutina vulgaris Fleming) — Helix laevigata Linneus.

Shell thin, with a velvety epidermis; spire small; suture deep; aperture very large, rounded; peristome continuous, thin. No operculum.

The original description follows. This species was overlooked by both Dr. Dall in Bull. 112 and Mrs. Oldroyd.

In life similar to V. cryptospira but animal bright vermilion in color (this color soon dissapears in alcohol). Shell smaller than that of cryptospira, rounder and with only a trace of spire. The type measures 16½ mm in length by 9 mm in breadth. This type together with four additional specimens were taken on Forrester Island by the writer. Three of these specimens were found at extreme low tide mark and the other two were dredged in 40 fathoms.

Velutina prolongata Carpenter, 1865. Bering Strait to Monterey, Calif.

Type locality, Neah Bay.

Collecting data: Forrester Island, Alaska (G. Willett); Mr. A.G. Smith advises on the Monterey record as follows — Dall's Monterey specimen in the U.S.N.M. looks like an abnormal V. laevigata according to Gordon. The Monterey record needs confirming. I specimen of prolongata from Little River, Mendocino Co; San Juan Isds, Wash (Eyeram).

Velutina zona Gould, 1841. Icy Cape, Arctic Ocean to Monterey, Calif.

Also Atlantic. Type locality, Chelsea Beach, Massachusetts.

Collecting data: Puget Sound (Lowe); Mr. A.G. Smith comments — Dall's record is the only one reported south of the Pribilof Islands. I consider it doubtful for this northern species.

Velutina laevigata (Linnaeus). Icy Cape, Arctic Ocean to Wayucas, Calif.

San Luis Obispo Co. (Burch). Type locality not given.

Collecting data: Dredged off Monterey in 15 fms, shale bottom; San Simeon, Calif. at minus tide under rocks; Wayucas, Calif. in rocky rubble (Burch) Crescent City (Chace); Orcas ID. (Dr. F. Baker); Forrester ID. (Willett); Puget Sound (Batten); Sweden (Anderson) (San Diego Museum); Izhut Bay, Afognak Island, Alaska, 1922; Drier Bay, Knight Island, Alaska, 1923; (Eyeram); Monterey Bay 0-12 fathoms (A.G. Smith).

Velutina conica Dall, 1886. Aleutian Islands eastward to Kodiak and south to Forrester Island, Alaska/ Type locality, Unalaska.
#57 p 4 February, 1946

Velutina granulata Dall, 1919. Monterey, Calif. in 55 fathoms.
Mr. A. C. Smith sent in the collecting record *28-35 fms. off Pt. Pinos (U.S.F.G.). Known only from the type specimen.*

Velutina coriacea (Pallas), 1788. Bering Sea and the Okhotsk Sea.
Mr. A. N. Keen advises on this species. The type locality of Velutina coriacea (Pallas) is Kultur Island. The reference given by Oldroyd is not quite accurate. It should be: Nova Acta Acad. Sci. Imp. Petropolitanae for 1784 (1788), vol. 2, p. 243, pl. 7, figs. 31-32.*

In Nautilus 33:25 Mr. George Willett comments on this species and his species rubra as follows: I am very much averse to referring this and the next species to the genus Velutina, as in life they are so entirely dissimilar to lasavigata, the type of that genus. In lasavigata the shell is mossy and is, so far as I have seen, entirely bare, while in these two species the shell is smooth and completely covered by the animal. On the other hand, both the animal and shell differ markedly from the genus Lamellaria.*
Collecting data: Forrester Island, Alaska (Willett). Gulf of Kronotski, Kamchatka, 1925 (W. J. Eyerdam).

Velutina sitkensis A. Adams, 1851. Bering Sea; Sitka, Alaska (Adams).
Type locality, Sitka, Alaska.

Genus Torellia Jeffreys, 1867, ex Loven NS. Type (by monotypy), T. vespertita Jeffreys.

Torellia ammonia Dall, 1919. Southwest of Sannakh Island, Alaska in 41 fms.

Family Lepetidae

Genus Lopota Gray, 1847. Type (by monotypy and original designation), Lopota caeca Muller.
Shell patelliform, the embryonic nucleus spiral, lost in the adult, apex in front of the middle; no internal septum.*

Subgenus Cryptobranchia Middendorff, 1851. Type (by subsequent designation, Dall, 1870), Lopota caeca var. concentrica Middendorff.
Mr. A. N. Keen advises that Dall's later substitute, Cryptobranchia, 1918, was unnecessary.
Dr. Joshua L. Baily Jr. comments on this matter (Per. Comm. Nov. 1945).
Cryptobranchia was discarded by Dall because Cuvier had used this name long before Middendorff. But Cuvier did not apply it to a genus, but to an order of equal rank with Pectinibranchia, therefore Middendorff's name is not preoccupied, and Dall was wrong in substituting Cryptobranchia for it. His name falls into the synonymy of Middendorff's name.*
Apex inclined forward, the anterior terminations of the muscle-scar not in front of it. Surface not granulate; color whitish. Apex of rhacidian tooth tricuspidate, the cusps nearly equal; unciinate spatulate.* (Pilsbry).

Lopota concentrica Middendorff, 1851. Icy Cape, Arctic Ocean, on the west to the Okhotsk Sea and Shantar Islands, on the east to Forrester Island, Alaska (Dall), to Puget Sound (Oldroyd).
Type locality: Okhotsk Sea.
Collecting data: Mr. George Willett in Minutes #13 stated "... is rather (con)
common in moderate depths in Alaskan waters, The sculpture and proportions are quite variable in this species, and I doubt whether Lepeta alba is distinct from it. Its lighter color, inside and out, readily distinguishes it from most Acmaeas.

Mr. W.J. Eyerdam reports the species from Izhut Bay, Afognak Island; Drier Bay, Knight Island, 1923; Sitkalidak Island, 1931; Raspberry Island, 1945; Glacier Bay, Alaska (Kate Stephens); Bear Bay, Peril Straits and Windfall Harbor (Kate Stephens); Orcas Island, Puget Sound (Dr. F. Baker); Seward, Alaska (Dr. F. Baker); Drier Bay, Knight Island (Brown) (San Diego Museum).

* Note* In Minutes # 18: 3,4 Mr. George Willott discussed this genus in his paper *Some Limpet-like mollusks of western North America.*

Lepeta caecoides Carpenter, 1866. Arctic and Bering Seas to Hakodate, Japan, the Aleutian Islands and south to the Parallones Islands, California (Dall). Type locality, Puget Sound and the Parallones.

Collecting data: Izhut Bay, Afognak Island, Alaska 1922; Drier Bay, knight Island, 1923; Evans Island, 1924; Sitkalidak Island, 1931; Thum Bay, Knight Island, 1940; Raspberry Island, 1945 (W.J. Eyerdam).

Lepeta alba Dall, 1869. Bering Strait and Sea south to Fuca Strait. Type locality: Seniavin Strait and Plover Bay, East Siberia.

Collecting data: Sitkalidak Island, Alaska, 1931; Raspberry Island, Alaska, 1945 (W.J. Eyerdam).

Lepeta alba instabilis Dall, 1869. Unalaska to the Shumagins and south to Sitka Sound, Alaska. Type locality, Sitka, Alaska in 10 fms.

Family Acmaeidae

No family group in our fauna has been the source of more differences of opinion than this one. Not only the identification of species but the taxonomy of the entire group has been in a state of confusion. When and if the problems are all settled the lists of synonymy will be long.

Mrs. Avery Grant Test was awarded her Ph. D. degree from the University of California in 1937 for her work on the genus Acmaea. Many of her conclusions have been passed among us more or less by word of mouth and have been rather generally accepted. We sincerely hope that Mrs. Test's entire thesis will be published and made available for general use. Therefore, we feel some reluctance even in this informal discussion to quote Mrs. Test when such quotations are without having asked her permission and are at least in legal parlance *hearsay* and inadmissible.

Dr. A. Myra Keen advises on this matter: *Some years ago, when I was preparing the Abridged Check List, Mrs. Avery (Grant) Test gave me a list of corrected ranges and names for Acmaea which I found of great use, as she had given the group thorough study for her thesis (unfortunately not yet published). She indicated that she had arrived at the following classification on the basis of study of radulae as well as shells:

Acmaea (Acmaea)
mitra, depicta, funiculata, sybaritica,
Acmaea (Collisella) Type, o.d, Dall, 1881, Acmaea pelta)
asmi, digitalis, instabilis, limatula, ochracea, seabra, triangularis, oona
Acmaea (Patelloida)
tenuestra, fenestrata, cribraria, instabilis, testudinalis, persona, testudinalis (?) - tesselata, scutum, testudinalis testudinalis,
Acmaea (Rhodopetalia)
Rosea (Rhodopetalus)
(con.*)
Genus Acmaea Eschscholtz in Kotzebuen1830. Type (by subsequent designation, Dall, 1871), Acmaea mitra Eschscholtz.

Shell conical, patelliform, apex more or less anterior. The shells may generally be distinguished from Patella by the different texture and margin border inside. (Tryon & Pilsbry, Manual of Conchology).

Dr. Joshua L. Daily Jr. comments on the type designation (Per. Comm.)

Dall did not designate Acmaea mitra as type of Acmaea, but merely stated that Philippi's designation was published, and I do not know where Philippi's designation was published and apparently no one else does, for I have never seen this species credited to any other author than Dall, except in Dall's own paper. If this designation by Dall is illegal— and I believe it is, the next designation must be used. I do not know what other designations have been made, but I believe there have been others, as Acmaea mitra was at one time believed to be a Scurria. If any student should decide that distinction between Acmaea s.s. and Colisella is of generic value the old familiar name Acmaea will have to be discarded, which would be very unfortunate."

Subgenus Acmaea s.s. Type: A. mitra Eschscholtz

Acmaea mitra Eschscholtz, 1833. Pribilof Islands, Bering Sea south to San Martin Island, (Baker). Type locality, Sitka, Alaska.

Collecting data: Our experience with this species has been very interesting. Of course, we collected them in numbers from Puget Sound south to Cayucos, Calif. littoral with the numbers becoming fewer as we progressed southward. The species even in the north seems to be a little lower in the water than the rest of the littoral species. We were therefore quite amazed to bring up A. mitra in dredging off Redondo Beach from such a surprising depth as 75 fathoms. Another surprise came to us while collecting in and around Todos Santos Bay, L.C. We had been working the rubble reef at Punta Banda and collecting the warm water species, many of them either not recorded at all north of there or extremely rare such things as Acanthina lugubris and Pallochiton languinosus. We decided to climb over the range of hills to the open sea on the outside of the bay at Arbolitos. When we stepped out on the rocky rubble at Arbolitos we could scarcely believe our eyes. The rocks were covered with Acmaea mitra and other northern forms. Placiforcola velata was common on the rocks. Even the crustaceans reminded us that we were back to Monterey or farther north. The secret of the situation seemed to be that the shore dropped off abruptly to some depth resulting in an upsurge of cold water. Obviously temperature is more important to molluscan fauna than latitude. We took it from the backs of Halotis rufescens at Morro Bay, and dredged it off Monterey most common around 20 fathoms. Not uncommon in the Pleistocene of Timm's Point, San Pedro. (Burch); "I have collected this species at many localities in Alaska and Puget Sound, always near low tide mark. It is often infested with peculiar knobly nullipores. Some of the largest are 1 1/2 inches in diameter. I have a whole drawer full showing many variations." (W.J. Eyerdam); Port Graham, Alaska (Baker) to So. Coronado Island. (Baker) (San Diego Museum).

Acmaea funiculata (Carpenter), 1864. Shumagin Islands, Alaska to Magdalena Bay, L.C. Type locality, Monterey, Calif.

Dr. G.D. Hanna and Allyn G. Smith were authors of a fine paper on this species in Nautilus 45:21-25, pl.2, July, 1931.
In this paper the authors establish the facts that funiculata differs from mitra anatomically and that it does belong in Acmaea which was at one time questioned. However, there is some difference of opinion about the above conclusions and this species is frequently placed in the synonymy of Acmaea mitra.

Collecting data: Mr. George Willett dredged this species off Forrestor Island, Alaska and also in the channel between Catalina Island and the mainland. We failed to dredge it locally but have fine specimens dredged off Monterey in 20 fathoms on the algal (Burch); Catalina Island in 35 fms. (Love); Izhut Bay, Afognak Island, Alaska, 1922; Raspberry Island, 1945; Sitkalidak Island, 1951 (W. J. Eyerdum).

Acmaea depicta (Hinds), 1842. Santa Barbara, Calif. to Lower California on Zostera. to lat. 27° (Keen). Type locality, San Diego, Calif.

Collecting data: Our experience has been to find this species comparatively rare in number of localities but exceedingly abundant where found. It is found on the broad leaved eel grass of the estuaries and in our experience nowhere on the open coast. We have taken it in great numbers from the eel grass of Mission Bay, San Diego Co. and also from the Estero below Ensenada, Mexico. We found it in the dredgings of Newport Bay indicating that it has been there comparatively recently. However, we finally decided to label the Newport Bay specimens subfossil since no living member of the club could reliably recall having a living specimen. It is not uncommon in the Pleistocene of Hilltop Quarry. (Burch); LaPlaya (Bristol); La Jolla (Orcutt); S. of Ensenada (Love).

Acmaea sybaritica Dall, 1871. Plover Bay, Eastern Siberia, to Hakodate, Japan on the west; on the east from the Pribilof and Aleutian Islands to Chirikoff Island. (Dall). Type locality, St. George's Island, Pribilof Group, Bering Sea.

Type locality: Chika Island, Akutan Pass.

Acmaea tessulata (Muller), 1776. (A. testudinalis (Muller))

Range: Southern Bering Sea northward and eastward to the Atlantic.

The following data from Dr. A. Hyra Keen (Per. Comm.) Mrs. Test considered out of the scope of the Atlantic testudinalis; she found that the typical variety of the latter occurs on our coast, also. I note that Winckworth (Jour. Conch. vol. 20, 1932, p. 219) places testudinalis Muller in the synonymy of tessulata Muller, 1776. According to Sherborn both name were used by Muller, Z. Dan. Proct., 1776, p. 237. I have not seen the original reference. Evidently the type locality (fide Dillwyn) is Norway. Mrs. Test gives the range on the American West Coast as Southern Bering Sea northward and eastward to the Atlantic. There are specimens in the Stanford Collection from Kodiak Island.

In the synonymy of this species we should no doubt place Acmaea emydia Dall, 1914. Arctic Ocean and northern Bering Sea to Nushagak, Alaska and the Pribilof Islands, and Attu Island. (Dall). The original reference is Nautilus 28:14, June 1914 in which Dr. Dall under a recognizable mutations of A. patina (con.)
lists as follows...; emydia Dall (the Arctic testudinalis of my 1891 paper) figured and described in Am. Jour. Conch. v.6, p.249, pl.14, fig.5.

Dr. A. Myra Keen advises Re emydia Dall. Apparently Mrs. Test inclines to Dall's 1871 view that the Arctic form is testudinalis Muller. Hence, she would synonymize emydia. The radula only was figured by Dall, Am. Jour. Conch. vol.6, p. 249, pl.14, fig.3, 1871.

Acmaea testulata scutum Eschscholtz, 1835. Southern Bering Sea to Tugur Bay and the Shantar Islands on the west, and from the Pribilof and Aleutian Islands on the east south to the Gulf of California and Socorro Island. (Dall). Type locality, Sitka, Alaska.

Dr. Joshua L. Baily Jr. comments on the name scutum. Dall used Acmaea scutum instead of Acmaea patina, and Acmaea cassis instead of Acmaea pelta because the names he used had page priority. I reversed this usage and followed Carpenter, the first reviser of Eschscholtz's work, on the advice of Dr. Pillsby.

There are among other described forms of scutum the following color varieties: A. patina Eschsch., 1833; A. pintadina Gould, 1846. The consensus of opinion is that they are of no consequence and should be in the synonymy.

Collecting data: I have a great many lots of this species and its intergrades from Washington to Lanchatka, but have given up trying to name them exactly (W.J. Eyerdam). Most of the rest of us will ditto these remarks.

Another form to be placed in the synonymy is A. scutum paralela Dall, 1914. Sitka, Alaska to Victoria, British Columbia on eel grass. The original description of this species amounted to a mere listing by Dr. Dall in Nautilus 28:14. In this paper he listed under recognizable mutations of patina... and paralela Dall; the latter corresponding to the A. alveus of the Atlantic coast. I have a large set of this form collected by Mr. George Willett in 1936 at Ketchikan, Alaska. It seems to be obviously a situs form growing on eel grass. (Burch.). Mr. Eyerdam reports taking it at Victoria, B.C.

Acmaea fenestrata fenestrata (Reeve, 1855). Cayucos, Calif. south to Lower California.

Dr. A. Myra Keen writes on this problem as follows (Per. Com). The International Rules provide that when an author bestows several names simultaneously on what later is seen to be a single species, the decision of the first reviser as to the proper synonymy will stand. Mrs. Test found that the first person to recognize the identity of cassis and pelta chose the latter name; the first person to recognize the identity of patina and scutum chose scutum. For the cribraria-fenestrata tangle: she found that there is geographic as well as morphologic separation. From Sitka to Cayucos (lat 57 to 35) one finds cribraria; southward of Cayucos one finds fenestrata. She said, as I remember it, that the principal difference is in the bluish tint of the interior.

The original description of A. fenestrata follows:

Patella fenestrata Reeve, March, 1855. Conch. Icon. pl.39, sp. 120. Type locality, Upper California. Original English description: "Shell ovate, a little attenuated in front, rather thin, depressely conoid, apex prominent, rather obtuse, radiately densely finely striated, striate a little waved; greenish, finely tessellately mottled with ash-olive, interior bluish-ash, with a broad black border."
#57 p 9 February, 1946

Mr. A.G. Smith commented on this species after having observed "Shells having a fine tessellated or "fenestrated" color pattern, with dark apex, which is whitish at the extreme tip".

Collecting data: Our experience with this species has been to find it rather scarce. We took large sets of them from the beaches north of Santa Monica and also at Dana Point. The habitat of the Santa Monica specimens was on large stones on and surrounded by sandy beach. (Burch).

Acmaea fenestrata cribriaria Carpenter, 1866. Alaska, Aleutian Islands south to Cayucos, Calif. Type locality purchased in the Sandwich Isles.

Collecting data: We now have this matter neatly disposed of. If you get it from the town site in Cayucos it is cribriaria but if it comes from across the channel in Morro Rock it is then typical fenestrata. (Burch).

Mr. W.J. Eyerdam reports the species from: mouth of Speel River, S.E. Alaska, 1926; Unimak Island, Aleutians, 1932; Raspberry Strait, Alaska, 1945; Port Ludlow, Jefferson Co., Wash.

Acmaea insessa (Hinds), 1842. Alaska south to Magdalena Bay, L.C.

Type locality, San Diego, Calif. on seaweed.

Collecting data: Abundant from Monterey south to Todos Santos Bay in my experience and particularly abundant on the genus Egregia. However, we have taken it from other species of algae. The habitat is on the stalks or holdfasts of the algae. (Burch); Chalama Bay, Strait of Fuego, Wash. (Eyerdam); San Simeon (Wilcox); Monterey (Orcutt); San Diego (J.K. Cooke); La Jolla (Bockwith and Bristol); Santa Barbara (Carl Hubbs); kolp barge from Carpon-teria to Summerland. (San Diego Museum)

Acmaea paleacea Gould, 1853. Vancouver Island to Guadalupe Island (Strong).

Type locality, Santa Barbara, Calif.

Collecting data: As distinguished from A. diploptera of the estuaries, this species is found on the narrow eel grass (Phyllospadix torreyi Wats.) of the open coast. It is particularly abundant in such localities as Dana Point, Orange Co. and San Chafre. We have it from Crescent City, Calif. to Todos Santos Bay. (Burch); No. Coronado Id. (F. Stephens); Crescent City (Chace); Santa Coronado Island in 6 to 8 fms. (F. Baker); Laguna Beach (Lowe); La Jolla (Bristol and Orcutt); San Diego (J.K. Cooke).

Acmaea persona Eschscholtz, 1833. Shumagin Islands, Alaska to Monterey, Calif.

Type locality, Sitka, Alaska.

Dr. A. Myra Keen comments on this species and the subspecies following (Per. Comm. Nov. 1945) The paragraph from Tryon and Pilsbry in Oldroyd (vol. 2, pt. 3, p. 155) refers to digitalis, not persona, due to Carpenter’s mididentification of persona.

The taxonomic history of the name strigillata is complicated. In June 1864, Carpenter (Ann. Mag. Nat. Hist., ser. 3, vol. 13, p. 474) described Acmaea strigatella with the type locality Cape San Lucas (description in Lutin copied in Oldroyd, p. 155, as strigillata). Carpenter comments, "This might be regarded as a cross between the northern forms A. polta and A. pat- ing about to change into the Gulf species, A. macoleuca." In August, 1864 (Suppl. Rept. Brit. Assoc. p. 618) he referred to this description in the Annals and cited the page but erroneously spelled the name as Acmaea strig- illata. He mentions that the species also occurs at Margarita Bay. In 1866 (Am. Jour. Conch., vol. 2, p. 334) Carpenter described a new variety (con)
of Acmaea patina var. strigillata, from a MS name of Nuttall's. No type locality was given other than Northwest Coast. After comparing it with the typical and with A. pelta he says "but young shells, with the outside abraded, are very difficult to determine or to separate from A. strigillata of Cape San Lucas; q.v. in Ann. Nat. Hist." Dall in Dall, 112 listing cites Carpenter's second 1864 usage and his 1866 usage, neither of which would seem to be valid. One is a typographical error, the other a homonym. If we recognize this form as variately distinct, we must use the name strigillata. However, I leave it to you collectors to decide on the biological validity of the form.

Collecting data: The large distinctive specimens of this species from the north need no comments. We have collected it around Puget Sound, Crescent City, Calif., etc. The only problem arises when you run into large specimens from middle California and wonder whether it should be labelled typical or the variety strigillata. There seems to be no question but that the two are separable if typical specimens from the north are compared with southern specimens. It seems to me that persona grades into strigillata with the latter the common form in southern California. (Burch): "I have collected this species and varieties at many localities in Puget Sound and Alaska" (Eyerdam); Mole Harbor, Admiralty Islands, Alaska (Kate Stephens).

Acmaea persona strigillata Carpenter, 1864. Monterey to Lower Calif.
Collecting data: Our common small southern California shell with the dark grey interior is my idea of strigillata. The theory being that persona is the northern form and strigillata the southern form of the same species. (Burch).

Subgenus Callisella Dall, 1871. Type (by original designation), Acmaea Pelta Eschscholtz.

Acmaea pelta Eschscholtz, 1833. Okhotsk and southern Bering Sea, Nushagak, Alaska, the Aleutian Islands south to Rosario Bay, Lower Calif., and Socorro Island (Dall). Type locality, Sitka, Alaska.

The following are thought by many including myself to be mere variations of a very variable species conforming to habitat: A. nacelloides (Esch.), 1833; A. nacelloides Dall, 1871; A. monticola Carpenter, 1866; A. olympica Dall, 1914. There may be those of the opinion that the above or some of them are valid subspecies. I feel quite certain that the form we know as nacelloides being the rough stout ribbed one and nacelloides being either the kelp form or from stones after having started its life on the kelp, should be in the synonymy. It is possible that olympica, a small conical form which seems to be confined to a habitat commensal on Ostrea or Mytilus, largely around Puget Sound may be a good subspecies. There are a number of other names such as nacelloides Hemphill which seems to have been based upon a form such as nacelloides but unusually high. I have a set of pelta collected at Nemuro, Japan. They seem to be typical. (Burch). W. J. Eyerdam reports on this species as follows: "This species and many varieties are common on the rocks of Puget Sound and along the whole coast northward to Alaska and the Aleutian Islands. I have about 1000 specimens showing much variation. Lots collected by Eyerdam in Kamchatka and Japan seem to be typical. Acmaea olympica Dall, 1914. I have several hundred paratypes from Olympia, Wash. on native oysters; also in several localities in Alaska from mussels. None (con.)
February, 1946

of them are over \(\frac{3}{4} \) inch in length. It also has distinctive markings, and should be considered either a species or a subspecies of \(A. \) pelta which is much larger and has a different habitat. The many lots of Acmaea nacelloides in my collection are quite distinct from \(A. \) pelta and certainly rate at least a subspecific name. Acmaea (cassis)\(\times \)pelta monticola Carpenter. I have this subspecies from Del Rey, California collected by Stanley Field. It is commensal on mussels and is perhaps the counterpart of the northern \(A. \) pelta olympica but is higher in elevation and with a different color pattern. Seems to be a good species.

Miss Bristol of the San Diego Museum of Natural History reports many localities in Alaska and down to San Diego. Also from Eomuro and Abaskiri, Hokkaido, Japan by Dr. F. Baker.

The consensus of opinion among the members is that this is but one very variable species with the following in synonymy: cassis Esch., 1833; fimbriata Gld., 1846; pileolus Midd., 1847; cinis Rve., 1855; multitubulata Rve., 1855; leucophaea Rve., 1855; textilis Adams, 1846; fimbriata Gld., 1862; pintadina Gld., 1863; tessellata Binney, 1863; var. nacelloides Dal1., 1871; var. hybridra Shepard, 1895; olympica Dal1., 1914; monticola Dal1., 1914.

There are sets labelled hybridra in some southern California collections. It might be of interest to reprint the original description of this variety - Shepard, I.M., 1895 - Nautilus 9:72-73. In one natural color phase, the entire external surface is beautifully glossy black (the variant nacelloides, \(\ldots \)), while others with normal color patterns are black and white, in various designs and proportions of the two colors. Still others show the pure black coloration on the lower half of the shell, but have a black and white pattern on the upper half of the shell. Such specimens are often compressed and spread in the lower half of the shell, in which case they have been called hybridra Shepard, 1895.

Acmaea asmi Middendorff, 1849. Sitka, Alaska to Socoro Island, Mexico.

Type locality, Sitka, Alaska.

Collecting data: The only confusion that I have noticed with this species is that I recently observed some shells identified as this species that are in reality the small black form of \(A. \) pelta which is in places very common on sea weed as well as adjoining stones. However, the two are easily separable and about all they have in common is size and both being black.

We have taken asmi always on Tegula from Crescent City to Todos Santos Bay. In the northern part of the range the habitat seems to be on Tegula funebralis, but around Todos Santos Bay they are found on Tegula gallina, (Ehr); Crescent City (Chace); Cambria (Wilcox); S. of San Quintin Bay (Orcutt); San Diego (Hemphill); Todos Santos Bay (Orcutt); San Nicolas Island (Lowe).

Acmaea instabilis (Gould), 1846. Kodiak Island, Alaska south to San Diego.

Type locality, Fugit Sound.

Collecting data: The southern range of this species may be in doubt.

I note that Dr. Koon stops the southern range at Monterrey. However, I have collected it at Cayucos, San Luis Obispo Co. and see no reason why it might not be taken farther south, rarely. It is particularly abundant at Crescent City, Calif. (Ehr); Farallones Islands (Arneheim); Neah Bay, Wash. (Oldroyd); Crescent City (Chace); San Simeon (Wilcox); Duxbury Reef (Lowe); Pt. Reyes (W. P. Cook) (San Diego Museum); Challam Bay, Clallam Co., Wash. 1925 on kelp holdfasts (Eyerdum).
Aomaea ochracea Dall, 1871. (peramabilis Dall 1879) Alaska to San Miguel Island. (Test). Type locality, Vancouver district.

• Apex in second quarter of shell, erect, forming an obtuse cone. All faces nearly plane. Aperture oviform. Sculpturing of straight, unbranched sharp cut striae (threads) proceeding from apex to border with very little increase in magnitude. Interspaces exceedingly small near apex wider as margin is approached; very flat. Margin entire, sharp. Internal finish highly lustrous, of very thin nacre, with external coloring and sculpturing showing through. Interior characterized by broad pinkish tawny border, pink tinged intermediate area, and chestnut apical area of good size but no special shape. Color of interior yellowish-buff, tinged here and there with rose. The species is sometimes infected with fungus (Einar, 1936), sometimes coated with a heavy coat of red brown algae, sometimes flecked with spots of coralline algae, but most often in large part free of infecting extraneous growths." Variations: "The pale variant has likewise been considered to intergrade with scutum. This error was caused by the failure on the part of some workers to distinguish light-color phase specimens of limatula which had fine sculpturing from scutum, and who considered such specimens to be intergrades between scutum and ochracea. A study of the radular ribbon alone suffices to disprove this idea, since it shows that scutum and ochracea do not belong to the same subgenus." ... does not actually extend up into the intertidal belt at all. Individuals are almost never found exposed by the tide, not even located in isolated tidpools, but only where the tide leaves a considerable amount of water which is continually replenished by wave action throughout the intertidal period." The chosen roosting site of individuals of this genus is very characteristic, being upon solitary, rather small rocks which are usually devoid of other kinds of inhabitant." (Test)

The above are extracts from some of Mrs. Test's work and noted by one of the members. It is of great interest because the validity of this species has been in some question. The general idea seems to have been that they wore juvenile scutum. Mr. and Mrs. E.P. Chace collected specimens of this species from the deeper tidpools at Pt. Pinos and noted that about 1/2 of them wore light colored. It is difficult to analyze this situation. It is obvious that shells from the deeper tidpools will be of smaller size, less eroded, show their ribs better than perhaps the same species higher up. Apparently no member of the club has reported taking this species south of the Monterey region. While the range is listed as given by Mrs. Test south to San Martin Island, it seems certain that the same shells collected by the Chaces at Pt. Pinos are exceedingly rare in southern California if found at all.

Another interesting thing about this problem is the placing of peramabilis Dall in the synonymy. That species has been considered distinct. Mrs. Test we are told considers it a synonym, but for the sake of the record here the data on that species follows.

Aomaea peramabilis Dall, 1872. Shumagin Islands, Alaska on granite rocks only. South to Prince William Sound. (Eyrdam). Type locality, Shumagin Islands.

Collecting data: Dior Bay, Knight Island, Alaska, 1923. "A small rare species - dredged on stones. The five specimens that I collected were identified by Dall. They resemble Lopota coccidea but are pink. There is no close relationship to scutum in these specimens." (Eyrdam).
Acmaea triangularis Carpenter, 1864. Sitka, Alaska to the Gulf of Calif. (Bull.) Type locality, Monterey, Calif. We are advised that the Gulf record is seriously questioned. Dr. A. Lyra Koon advises the latitude range for A. triangularis should be 37-39, not 33-39 as I gave it in my Abridged Check List.

Collecting data: Our only experience with this species which seems to be very distinct indeed was in the Monterey Bay dredgings both off Del Monte and off Pacific Grove. Having specimens collected in some numbers from coralline algal littoral, Mr. E. F. Chase was responsible for first collecting this littoral and showing us where they were in our group.

Acmaea digitalis Eschscholtz, 1833. Alutian Islands to Socorro Island, Mox. Type locality, Sitka, Alaska.

This is one of the most abundant species on the coast and easily collected in any number from points above or near the tide line. The two varieties listed in Bull. 112, umbonata Reeve, 1855 and textilis Gould, 1846 are in my opinion of no consequence. A. oregonensis Reeve, 1855 and strigillata Binney, 1863 are also in the synonymy, "a taxonomic opinion of Mrs. Test. It is certain that umbonata and textilis both intergrade and appear in every large lot taken."

Acmaea acabra (Gould), 1846. (A. spectrum Auct.) Vancouver Island, B.C. south to Cape San Lucas. Type locality, San Francisco, Calif.

This common species with the rough radiating ribs should require no comment. However, there are specimens that require so much study that a genuine problem is involved whether to place them with A. digitalis or A. acabra. I may be in error, but it is my opinion that a number of these species do actually intergrade. The habitat is high, above the tide line.

Acmaea conus Test, 1945. Nautilus 53:92-93. Point Conception, Calif. to Cape San Lucas and the Revilla Gordo Islands. Type locality, Point Fermin, San Pedro, Calif. The original description follows: "Apex near anterior third of shell, erect, highest point of shell. Lateral and anterior faces plane of slightly convex. Sculpturing of roughly rounded ribs, often branched, irregularly spined, with a suggestion of spines near the apex. Interspaces usually wider at margin than ribs, and often finely corded in irregular fashion. Margin crenate due to slight projection of ribs. Surface of interior highly lustrow, with large brown "owl" filling apical area inside muscle scar; intermediate area white, with pencil lines from exterior often showing through; border irregularly marked with brown; muscle scar not conspicuous. External color pattern of ivory ribs alternating with interspaces tinged throughout with pale ordigris streaked with demasculizing pencil lines of brown, the brown lines frequently forming a network, which near the apex is stelliform. Soft parts of the animal with distinctive coloring, the side of the foot being white speckled with black pinhead dots (unlike that of any other species of Acmaea)on the west coast of North America except A. acabra, which is similar." Largest of type specimens 17.5 x 13.7 x 6 mm. high.

The ribs may be sharply defined, smoothly rounded, and very narrow in comparison with the interspaces. They may be much lighter in color than the interspaces, which are frequently gray or dark. The ribs may be completely unbranched, and frequently have no suggestion of spines. The interior may
be blue in the intermediate area, and the border may be dark interrupted
by white where the ribs are. The central area may be white. The external
coloring may be of various patterns in gray between ivory ribs. Occasion-
ally, the ribs also are gray. Sometimes the entire color pattern is obscured
by the ravages of fungus infection."

The apparent difference at a glance is that the interior of conus is
shiny whereas that of scabra is dull.

Aomaea limatula Carpenter,1864. Puget Sound to Maria Madre Island, Mex.
also Gulf of Calif, as far north as Coronados Islands. (Test).
Type locality not selected.

This is one of our most abundant species. The only difficulty in separ-
ating it is possible confusion with A. scutum in the young. It is necessary
to put a glass on the ribs if they are in any way worn at times also. An
interesting thing about limatula is the prevalence of albino specimens.
Pure white or, rather cream colored specimens are common in all colonies
along with the odd mixture of those with white blotches on them. Common
on stones above tide mark.

The subspecies A. l. morchii Dall,1878 is in my opinion of no conseque-
ence. It is possible to select a set to fit the description of this high
arched form from any large series of limatula. Of course, there are locations
where this high arched form seems to predominate. The San Pedro breakwater
is an excellent place to get a lot of limatula that you can label morchii
(but be sure to throw out all of the flat ones you take with them.)

Subgenus ?

Aomaea rosacea Carpenter,1864. Ketchikan, Alaska south to Acapulco, Mex.
Type locality, San Pedro, Calif.

Collecting data: Our experience has been to find this a moderately
deep water species and never taken littoral. It is a very common small
species in the dredgings from off Redondo Beach in 25 fms. gravel; Malaga
Cove in 15 fms.; off Avalon, Catalina Island in 25 fms.; (Burch); off
Coronado Islands, L.C. in 14 fms.; off Ballast Point, San Diego; Magdalena
Bay (Dr. F. Baker); Taboguilla Is., Panama- dredged (Reed); Guaymas in
20 fms. (Lowe); Monterey (Hemphill and Lowe); Imperial Beach (Randall);
La Jolla (Bristol). (San Diego Museum). * Note* this species does come in
with washed in kelp holdfasts.

Subgenus Rhodopotala Dall,1921. Type (by monotypy), Aomaea rosea Dall.
There is serious question about whether or not this belongs even in
the family Aemaciidae. Its exact position is very doubtful. Perhaps we may
receive some later information on it.

Aomaea rosea (Dall),1872. Kyska Island, Aleutians to the Shumagin Islands
Alaska. Type locality, East side of Simeonoff Island, Shumagins.
The following notes on *Acmaea* are of interest:

Acmaea strata Carpenter, 1864. According to our data this is a Gulf of California and Lower Californian species. However, Dr. W.O. Gregg has two sets, one from Santa Monica and one from San Pedro that were identified by the late Dr. Dall as being *this* species. We question this record but it should be carefully investigated.

Acmaea conus Test, 1945. Dr. A. Lyra Keen calls attention to the following: "*Acmaea conus* Test, 1945 was figured (but fortunately not validated with a description) by S.F. Light in 1961 in his "Laboratory and Field text in Invertebrate Zoology," a lithoprint publication sold at the Univ. of Calif. Associated Students store for $5.00. The figures are: pl. 12, figs. 20, 30; pl. 15, figs. 3; pl. 14, figs. 5-6. They check well with the specimens Allyn Smith had."

Mr. W.J. Eyerdam reports on some of the species as follows:

Acmaea rosea Dall, 1872. Izut Bay, Afognak Island, 1922, rare; Sitkalidak Island, 1931, rare; Port Vits, Raspberry Island, 1945.

Extended geographical range— Several hundred miles eastward to Kodiak Islands.

The following are species of *Acmaea* not included in your list that I have in my collection.

Acmaea patina Eschscholtz— Drier Bay, Knight Island, Alaska.
Acmaea spectrurn Dall— San Pedro, Calif.
Acmaea pelta elevata— Puget Sound
Acmaea otrata Carpenter, 1864— Piedras Blancas, Calif.

Note: Most of the above species were placed in the synonymy in our report given above.

Dr. W.O. Gregg contributed some comments on *Acmaea*. Most of the points raised are covered in our discussion above.

Acmaea cassis Eschscholtz— If page priority means, this cassis stands and *pelta* is only a variety, subspecies or perhaps a synonym. Dall quoted the wrong page too but this was corrected by Oldroyd. Dall gives page 11 in Eschscholtz's Atlas but it should be page 19. On page 19 the following species are described in the following order: (4) *A. cassis* (5) *A. pelta* (6) *A. scutum*, and (7) *A. patina*. In *Nautilus* 28:13-15, for no reason at all, Dall makes *cassis* a form of *A. pelta*. At least a reason not stated is as good as no reason at all. Do you have access to Carpenter's description of *A. monticola*? We used to call the form that grows on mussels *A. c. monticola*. Others call it *naecloides* making no distinction from the form which grows on floating kelp. They certainly are distinct enough although obviously only situs forms doubtless also influenced by food supply. I am of the opinion that *patina* and *pintadina* should be placed in the synonymy with *A. scutum*. That *Acmaea cassis* hydrida thing is purely a situs form which gets its start on either kelp or *Mytilus* and later moved to a rock and the later growth is like that of a normal *A. cassis*. I have specimens of this form which started on kelp and others which started on *Mytilus californiae* (obviously) and then finished on rocks where I took them, all labelled *Acmaea cassis* hydrida *Hemphill."

Note: Most of the above questions were discussed on previous pages.
Genus Lottia Gray,1833. Dr A. Myra Keen advises on this genus as follows: "Lottia" was described by Gray in 1833 (Phil. Trans. R. Soc., pp. 774, 600), but no species was mentioned by name. According to the International Rules, the first species assigned to such a genus becomes type. This would be Lottia gigantea Sowerby, 1834 (Gen. Shells, no. 42, fig. 1); as Sowerby included one or two other species in Lottia at the same time, perhaps we should consider the type as confirmed by subsequent designation of Dall, 1871. Sowerby gave name and figure only, no locality."

"Shell patelliform, depressed, the apex anterior. The typical and only species is among the largest and most active of limpets, the shell attaining three inches in length."

Lottia gigantea Sowerby, 1834. Crescent City, Calif. south to Guadalupe and Cerro's Islands. Type locality not stated.

Collecting data: A very common species, largest of the group, found at or above high tide mark usually on cliffs and large stones exposed to the full surf of the open sea. I have never seen a specimen in an estuary or protected habitat. It seems to increase in size toward the southern end of the range producing giants in Lower California. We have exceptionally large specimens also from the islands especially San Clemente. (Burch) San Luis Obispo Co. (Lowe); San Nicholas Id. (Hemphill); N.E. Guadalupe Id (Huey); Ascencion Id. (Huey); No. Coronados (F. Stephens); Turtle Bay (Burgess); Santa Barbara (Ocruitt) (San Diego Museum);

Lottia gigantea albomaculata Dall, 1910. Crescent City to Rosario Bay, Lower Calif. No type locality stated. Dr. Dall in Nautilus 24:90 gave the following which is complete and original description. "Another shell which seemed particularly attractive and which was new to me, was a variety of Lottia gigantea, which may be called albomaculata, offering, instead of the usual brown and gray upper surface, the feature of being spotted with rounded white maculations regularly disposed."

This is another color variety which may be collected from any series of Lottia. Anyone wishing to label some shells albomaculata may visit Mal-eaga Cove, the San Pedro brackwater or almost any rocky locality and this variety will be evident among the more juvenile and protected specimens. I propose to put it in the synonymy of the typical. (Burch).

Family Caeculinidae

Genus Caeculina Dall, 1882. Type (by subsequent designation, Dall, 1908)

Caeculina rathbuni Dall."

"Shell patelliform, apex posteriorly inclined, with a deciduous spiral nucleus; margin entire. The shell resembles that of the Patellidae, but the animal is more nearly allied to Fissurellidae" (Dall).

In Minutes #18, p. 3, Mr. George Willett in discussing this genus commented as follows: "Lopeta is most common in from 10 to 30 fathoms, and Caeculina is known only from considerably deeper water. My specimens of Caeculina are from a depth of 70 fathoms in southeastern Alaska and the only reason they were not discarded as young Amaeas at the time of collection was because of my realization that Amaea did not belong in that depth of water, particularly at such latitude. Two species of this genus are recorded from the Atlantic Ocean and two more from the Pacific, all from deep water."

Caeculina agassizii Dall, 1908. Off Queen Charlotte Islands, B.C., 145 fms. Gulf of Panama, 556 fms. (Dall).

Caeculina esanica Dall, 1919. Kasaan Bay and Stevens Passage, Alaska, 95 to 130 fms. Type locality, Kasaan Bay, Alaska.

Family Draciidae
Family Phasianollidae

Genus Phasianollia Lamarck, 1804

The following list of species is from Mr. A.M. Strong's notebook.

P. (Tricoliida) compata Gould, 1855 Lago Lagoon to San Diego Bay
P. (Tricoliida) pullicides Carpenter, 1865 Puget Sound to Gulf of Calif.

In discussion of the family name it is interesting to note that Woodring, 1923 uses a family name Tricoliidae to include all American species from both coasts on the statement that Phasianollia Lamarck, 1804, embraces exotic species more than twice the size of any of the American species. However, Dr. W.P. Woodring (Pest. Comm. Nov. 1945) states "I did not propose the family name Tricoliidae, but I do not remember where I got it. Differences between Phasianollia and Tricoliu involve more than difference in size. See Pilsbry, Manual Conch., vol. 10, pp. 162-164, 1886."

Grant and Gale and others use the genus Tricolius Risso, 1826, a practice which I had adopted. However, Mr. A.M. Strong in "West American Mollusca of the Genus Phasianollia," Proc. Calif. Acad. Sci. vol. 17, pp. 167-203, pl. 10, 1928 uses Phasianollia with Tricoliu as a subgenus. I am disposed to follow Strong if the principal difference between the two is size. We have giants and pygmies in other genera.

Genus Phasianollia Lamarck, 1804. Type (by original designation, P. esculenta australis Gmelin.) (Fide Woodring, 1928, p. 418.)

Subgenus Tricoliu Risso, 1826. Type (by subsequent designation, Gray, 1847), Turbo pullus Linnaeus.

"Shell small, ovate, body whorl inflated. Aperture broadly ovate. Outer lip thickened, abruptly angulated and slightly channeled where it meets callus on parietal wall. Umbilical opening reduced to a narrow trough like groove or virtually closed. Operculum calcarious, outer surface inflated, inner surface concave and bearing near its lower inner edge an eccentric spiral nucleus." (Woodring, 1928, p. 418.)

Phasianollia compata Gould, 1855. Crescent City, Calif. (Burch) south to Gulf of Calif. Type locality, San Diego, Calif.

Collecting data: Crescent City, Calif.; Monterey; San Simón; Cayucos; Mugu, Ventura Co.; Santa Monica, dredged in 10 fms; San Onofre; Newport Bay; very abundant on the eel grass in Mission Bay; also very abundant in the Estero de Todos Santos Bay, L.C.; common in many of the Pleistocene deposits of San Pedro. (Burch); San Diego and San Pedro (Lowe).

Dr. Dall in Bulletin 112 and Mrs. Olroyd following him list two subspecies of Phasianollia compata. P. compata puntuata Dall, 1906 is placed by Mr. Strong in the synonymy of the typical P. compata pullicides Carpenter, 1865 is placed by Mr. Strong in the synonymy of P. pullicides Carpenter.

We are following Strong in this matter.

Phasianollia pullicides Carpenter, 1865. Puget Sound to Cape San Lucas and the Gulf of California. Type locality on advise of Dr. Koon is Santa Barbara according to the holotype label.
Collecting data: Our experience has been to find this species much larger and finer in comparatively deep water than
compta, and to find it rather rare in littoral collecting. We have such records as: off Malaga Cove in 15 fms.; off Avalon, Catalina Island in 25 fms.; off Redondo Beach in 10 fms.; off Punta Banda in Todos Santos Bay; from the back of Haliotis rufus close down about 25 ft. off Morro Bay, Calif.; from Pacific Grove, Calif. in 15 fms.; off Santa Cruz Island in 25 fms. Of course, it is to be taken littoral all down the coast usually in algae (Burch); Mont- orey and Laguna Beach (Lowe); La Jolla (Orcutt and Bristol); San Diego (Hemphill).

Phasianella pulloides olatior Carpenter, 1865, type locality, Santa Barbara, Calif., is placed in the synonymy of the typical by Mr. Strong.

Subgenus Eulithidium Philby, 1895, Type (by subsequent designation for Eucosmia, Philby, 1888), Eucosmia variegata Carpenter, (not P. variegata Lamarck) plus Tricola substriata (Carpenter) variety typica (Fidt Grant and Calo), p. 314). However, Woodring, 1928, and Moll. Jam., p. 420, simplified this by stating Type (herewith designated) Eucosnia variegata Carpenter. Therefore I assume that the proper statement should be (by subsequent designation, Woodring, 1928).

Phasianella rubrilinata Strong, 1928 Proc. Calif. Acad. Sci. 4th Ser. vol. 17, no. 8, p. 197, pl. 10, figs. 8, 9, 10, 1928. Type locality, Point Loma, San Diego Co. Range: Monterey to Todos Santos Bay to San Martin Id.

According to Mr. Strong, California species that have been identified as typica are this species and the range of typica is farther south from Magdalone Bay to Cape San Lucas. Phasianella typica (Dall), 1906.

The extension of the range northward to Monterey is based upon a verbal statement made to me some time ago by Mr. Allyn G. Smith to the effect that they had taken this species from shore to 15 fathoms off Monterey. I tried to recognize it in our material and failed to do so.

The original description follows: "Shell minute, depressed turbinated, smooth, except for microscopic lines of growth; whorls four, apex flattened, the succeeding whorls rapidly enlarging and well rounded; body whorl somewhat oblique; first two whorls whitish, third whorl clouded with white and brown or rose, often showing a few more or less distinct spiral lines of color, body whorl with alternating oblique spiral lines of rose and white which grow narrower and closer spaced from the suture to the base, upper portion of the whorl often with large white blotches; aperture large, nearly circular, outer lip thin, somewhat flaring, the inner lip surface showing the color lines very distinctly; inner lip slightly flattened, umbilical groove broad, longitudinally striated. Operculum calcareous, outer surface convex, white, darkening toward the outer edge, which is microscopically subspirally striated. Height 2.1, diameter 1.9 mm."

Specimens of this species were found in all the collections examined. Three specimens, No. 3310 in the Hemphill collection at the Academy, from Todos Santos Bay, Lower Calif., were marked "Phasianella rubrilinata Cpr. Types." As all three were dead shells a living specimen is picked for the type but the name, which does not seem to have been polished, is retained. (Con.)
In the older collections the specimens of this species are usually labeled P. cyclostoma Carpenter, but they have more recently been identified as P. typica Dall. They differ from those species in the Cape San Lucas material in being smaller, more depressed, with a proportionately larger aperture and a distinctly different color pattern. They are easily distinguished from the young of P. puziloides Carpenter of the same size by the more prominent umbilicus, larger aperture and different color pattern.

Living specimens have been collected along the southern California coast from the smaller sea weeds in the tifo pools, and dead shells are quite plentiful in the dredgings outside the kelp line. Additional localities from which specimens have been examined are Catalina Island, San Clemente I Island, Point Vicente and Point Fermin in southern California and South Coronado Island and San Martin Islands in Lower Calif.

Phasianella substritata (Carpenter), 1884. Monterey, Calif. (Dall). Type locality, Cape San Lucas.
Collecting data: Our experience has been that an exclusively dredged shell from moderate depths. It is comparatively common off Redondo Beach in 25 fms, gravel and elsewhere, around Todos Santos Bay. It is not uncommon in the Pleistocene of Timm's Point, San Pedro (Burch); off South Coronado Island in 10 fms. (Dr. F. Baker); San Pedro in 10 fms. (Löys.)

Phasianella lurida Dall, 1897. Vancouver Island to Mendocino Co., Calif. (Dall). Type locality, Skidgate Channel, Queen Charlotte Islands in 20 fms.
Collecting data: Crescent City, Calif. (W.P. Chace).

Family Turbinidae

Genus Astraea Roeding, 1798. Type (by subsequent designation) Sutor, 1913), Trochus imperialis Grisel — Trochus holiotropium Martyn) ; Recent New Zealand.

Subgenus Pomaualax Gray, 1850. Type, Trochus unicos Wood.
"Shell large, conic, solid, imperforate; periphery carinated; base flattened; umbilical tract with a strong, curved rib; operculum obvate, narrower toward the proximal extremity, nucleus terminal, outside with four strong granulose ribs radiating from the nucleus." (Pilsbry).

Grant and Gale state of this "This subgenus is readily distinguished from Astraea s.s. by its imperforate axis, whereas the typical subgenus is widely umbilicate. Pachypoma Gray differed in its long and very convex operculum and the absent or very obscure semicircular rib in the umbilical region." Note: "The earliest type designation for Pomaualax was of Cossmann, 1918: Trochus japonicus Bunker." (Dr. A. M. Keen).

Astraea undosa (Wood), 1828. Mugu Lagoon, Ventura Co. to Corros Island, L.C. Type locality, California.
Collecting data: An interesting thing in our experience with this species has been that we have found it a shallow water species in Santa Monica Bay with the A. inacqualis in deeper water. Perhaps the largest individual specimen we ever collected came from about 10 fathoms off Avalon, Catalina Island. The most abundant locality for the species in our experience was Punta Banda, L.C. on the far side of Todos Santos Bay in October, 1936. They were literally so thick it was difficult to stop and not hit one. We have found them in the estuaries as well as the open sea. They seem to be seasonal in coming in in great numbers although our records show that we have collected them in almost every month of the year. (Burch)

(continued bottom of Page 21)
Family Turbinidae

The following keys and notes are from Mr. A.M. Strong's notebook.

Base flattened or concave Astraea
 Operculum oval
 • Outside of operculum with 3 spiral ribs (Pomaulax)
 • Periphery with an undulated spiral rib.
 Diam. 110 mm Mugu Bay to Cerros Island undosa
 • Periphery with 2 rows of nodules
 Diam. 41 mm Magdalena Bay turbinica
 • Outside of operculum with 2 spiral ribs (Uvanilla)
 • Periphery with about 16 rounded projections
 • Periphery winged and armed with vaulted projections.
 • Umbilical region white
 Gulf of Calif. to Peru buschii
 • Umbilical region orange-red
 Gulf of Calif. to Panama olivacea

Operculum oblong, very convex (Pachypoma)
 • Spire with 3 spiral grooves cutting the axial ribs
 • Axial ribs on body whorl about 70
 Diam. 60 mm British Columbia to San Diego inaequalia
 • Axial ribs on body whorl about 30
 Diam. 37 mm Santa Cruz Island barbarensis
 • Axial ribs on body whorl about 20
 Diam. 31 mm Gulf of Calif.spirata
 • Spire with 4 spiral grooves cutting the axial ribs
 Diam. 38 mm Magdalena Bay magdalena
 • Spire with alternating beaded spiral cords
 Diam. 36.5 mm Cerros Island lithophora

Base rounded, convex
 • Shell large, outer surface of operculum convex Turbo
 • Outer surface of operculum smooth (Turbo)
 • Sculptured with spiral rows of elevated scales
 Diam. 25 mm Gulf of Calif. to Peru squaniger
 • Sculpture fine or obsolete
 • Columella with a longitudinal rib
 Diam. 30 mm Peru to Magellan Strait niger
 • Columella simple
 • Shell large, delicately axially striate
 Diam. 170 mm Ecuador to Peru magnificus
 • Shell small, obsolescently spirally striate
 Diam. 12 mm Chile elevatus
 • Shell large, outer surface of operculum convex
 • Outer surface of operculum spirally grooved (Callipoma)
 • Surface sculptured with nodose spiral ribs
 Diam. 65 mm Gulf of Calif. to Peru fluctuosa
 • Surface roughened by axial and spiral laminae- subsutural tubercles
 Diam. 50 mm Gulf of Calif. to Peru saxosa
 • Shell small, operculum concave with a raised margin Homolapoma
 • Sculptured with fine spiral striae
 Diam. 5 mm Puget Sound to San Martin Island bacula
 • Sculptured with distinct spiral threads
 • Body whorl with about 15 subequal spirals
 • Interspaces equally the threads in width
 Diam. 9 mm Alaska to Cape San Lucas carpenteri

(cons)
Interpaces narrower than the threads

Puget Sound to Cape San Lucas *lurida*

Body whorl with about 12 wide spaced spirals

Diam. 9 mm. San Diego to Tia Juana *juanonsis*

Body whorl with about 8 strong spirals

Diam. 5 mm. Monterey to Coronado Islands *paucio-costata*

Body whorl with 5 major and many minor spirals

Diam. 6 mm. San Diego *grippi*

Body whorl with 3 major and many minor spirals

Diam. 11 mm. Bay of Panama *panamensis*

Genus Turbo Linnaceus, 1758

Turbo (Senectus) squaniger Reeve, 1842 Gulf of Calif. to Peru

Turbo (Calloponia) fluctuusus Wood, 1828 Gulf of Calif. to Peru

Turbo (Calloponia) magnificus Jonas, 1847 Ecuador to Peru

Turbo (Calloponia) masaticicus Pilsbry & Lowe, 1932 Gulf of Calif.

Turbo (Calloponia) niger Wood, 1828 Peru and Chile

Turbo (Calloponia) saxosus Wood, 1828 Gulf of Calif. to Peru

Genus Astraea Roeding, 1798

Astraea (Pomaullax) turbinius Dall, 1910 Magdalena Bay

Astraea (Pomaullax) undosus Wood, 1828 Magu Lagoon to Corros Island

Astraea (Fachiypoma) barbarenais Dall, 1919 Santa Cruz Island

Astraea (Fachiypoma) inaequalis Martyr, 1784 Vancouver to San Diego

Astraea (Fachiypoma) magdalensis Dall, 1910 Magdalena Bay

Astraea (Fachiypoma) spirata Dall, 1919 Gulf of Calif.

Astraea (Uvanilla) babelis Fischer, 1874 Ecuador

Astraea (Uvanilla) bravispinus Lamarck, 1822 Atlantic? Panama

Astraea (Uvanilla) bushii Philippi, 1844 Gulf of Calif. to Peru

Astraea (Uvanilla) olivascus Wood, 1828 Gulf of Calif. to Ecuador

Astraea (Uvanilla) unquis Wood, 1828 Gulf of Calif. to Panama

Genus Homolopoma Carpenter, 1864

Homolopoma bacula Carpenter, 1864 Puget Sound to San Martin Island

Homolopoma carpentori Pilsbry, 1888 Sitka to San Martin Island

Homolopoma conceptionis Lowe Gulf of Calif.

Homolopoma cunninghami Smith, 1881 Chile

Homolopoma grippi Dall, 1911 San Diego

Homolopoma juanonsis Dall, 1919 San Diego to Tia Juana

Homolopoma lurida Dall, 1885 Puget Sound to Cape San Lucas

Homolopoma panamensis Dall, 1903 Panama

Homolopoma paucio-costata Dall, 1871 Monterey to San Martin Island

Continued from page 19-

Subgenus Pachiypoma Gray, 1850. Type (by subsequent designation, Pilsbry 1888) *Trochus inaequalis Martyr.*

Shell similar to *Pomaullax,* but umbilical area scarcely ribbed and operculum small, externally very convex, white and smooth, with a broad central convexity and obscure, narrow side ribs.

Astraea gibberosa Dillwyn, 1817. (Astraea inaequalis (Martyr)

Vancouver Island, B.C., to San Diego, Calif.

The substitution of the above name for our familiar *inaequalis Martyr* has been adopted after considerable discussion and by no means agreement. Dr. Joshua L. Bailey Jr., is in favor of retaining the Martyr names as long as possible. However, if they must be abandoned the sooner we start getting the next available names the better off we will be. Dr. A. Myra Keen writes (con.)
on this matter (Por, Comm. Nov. 1945) * If we are to abandon Martyn's names and I am convinced Martyn is, as Winchworth says, both non-binomial and non-binomial, we must find a substitute for Astraea inaequalis. The first available substitute seems to be A. gibberosa Dillwyn, 1817 * (Desc... Cat. Recent Shells, vol. 2, p. 805). Based on Trochus gibberosus Dall, vol. 10, p. 287; Martyn Univ. Conch. pl. 21; Pavanee, vol. 2, p. 13, Type loc:... New Zealand and Friendly Islands (the latter is Martyn's locality, obviously wrong). Dillwyn's description: *Shell conical, with oblique plaits on the upper part, a transverse row of tubercles below, and the margin of the whorls spinose. Shell about an inch and 3/4 long, and two inches broad, of an olive or greenish or reddish brown colour.*

Collecting data: We have found this species comparatively common from Monterey south to off Redondo Beach, Calif. in about 35 fathoms. We dredged any number of them off Monterey in all depths from very shallow down to approximately 40 fathoms. Among the various lots we have collected including those from off Redondo Beach it is my opinion that it would be possible to select all of the specimens you wished to fit the descriptions of the subspecies pacifica. *Cabrillo* propose to place in the synonymy of the typical following Grant and Gale and others. The subspecies montereyensis Oldroyd 1927 (Stanford Univ. Publ. Geol. Sci. vol. 2, pt. 3, pl. 85, 165, Type locality: Monterey. I have taken perhaps several hundred specimens of this species from Monterey Bay and have never been able to detect the slightest difference between any of them and a similar lot from anywhere else. It is my opinion that montereyensis is also properly placed in the synonymy.*

Astraea barbara Dall, 1919. Off Santa Cruz Island, Calif. in 50 fms.

Genus Homalopoma Carpenter, 1864. (Leptothyra Dall) Type (by mono-typy), Turbo sanguineus Linnaeus.

Shell small or minute, globose, depressed, solid, compact; umbilicate or imperforate; whorls 3-7 spirally sculptured, the last generally somewhat deflected at the aperture; aperture subcircular, white and nacreous within; columella generally but not always bluntly denticulate near the base, Operculum subcircular, nearly flat or concavo-convex, inside with a very thin cornose layer, slightly convex, with many gradually increasing whorls, the nucleus subcentral, outside calcareous, subspiral, with a slightly convex concentric elevation or ridge around the margin, most prominent at its termination, the middle portion concavo and more or less rugose * (Pilsbry)

Homalopoma carpenteri (Pilsbry), 1888. Sátka Sound, Alaska to San Martin Island, L.C. Type locality, California.

Collecting data: In our experience, one of the commonest of small littoral shells from Monterey to Mexico. We have also brought it up in the dredges from some rather surprising depths. It is common as deep as 25 fathoms off Redondo Beach with some as deep as 50 fathoms, always from rock or gravel bottom. Dredged off Catalina Island in 35 fathoms. (Burch); Forrester Island (Willett); Monterey (Humphill and Lowe); Cayucos (Wilcox); San Pedro and Laguna Beach (Lowe); La Jolla (Bristol); Redondo (Kate Stephens) (San Diego Museum).

Homalopoma luridum (Dall), 1885. Puget Sound to Cape San Lucas. Type locality, on advice of Dr. A.M. Keen *San Diego, according to holotype label in the U.S.N.M.*

Collecting data: Puget Sound (W.J. Eyerdam); San Juan Island, P.S. (Lowe); La Jolla (Beckwith); Imperial Beach (Kate Stephens) (San Diego Museum).
Homalopoma baculum (Carpentor), 1864. Puget Sound to San Martin Island.

Collecting data: Our experience has been to find this smooth species with carpentor in southern California and Todos Santos Bay littoral. We did not recognize it from Monterey Bay. Our records read Malaga Cove southward (Burch); Monterey (Hemphill); San Pedro (Lowe); San Martin Island (Dr. F. Baker); So. Coronado Island (Kelsey) (San Diego Museum).

Homalopoma paucicostatum (Dall), 1871. Monterey south to San Martin Island (Baker) and to Guadalupu (Strong and Hanna). Type locality, Monterey.

Collecting data: Dredged off Monterey, Calif. in 10-15 fathoms; off Redondo Beach in 50 fathoms north side of the canyon. Our experience has been to find this a deepwater species never having recognized it in littoral collecting. (Burch); San Pedro (Hemphill); La Jolla (Chaney, Wilson, and Bristol); Pt. Loma (Dr. F. Baker); So. Coronado Island in 16 fms. (Baker).

Homalopoma paucicostatum fanostratum (Bartsch), 1919. Monterey to Coronado Islands. Type locality on advice of Dr. A. M. Keen "Monterey on hole-type label."

Grant and Gale state "Typical paucicostatum (Dall) is readily distinguished by its few, prominent, spiral ribs. However, a series of specimens obtained by Mr. George Willett from off Catalina Island seems to include specimens intermediate between paucicostatum and carpentor, and it is possible that the difference between these two shells is varietal rather than specific."

Homalopoma juanensis (Dall), 1919. San Diego, Calif. to Tia Juana, L.C.

Type locality, Tia Juana, L.C.

Homalopoma grippi (Dall), 1911. San Diego, Calif. in 100 fathoms. to Catalina Island in 50 fathoms.

Collecting data: Catalina Island in 50 fms. (Lowe).

Homalopoma engbergi (Willett), 1929. Type locality, Olga, Wash. and known only from the type locality. Nautilus 43:27, 28, pl. 3; fig. 4, 1929.

Original description follows: "Shell small, globose, solid, either perforate or imperforate; whorls convex, marked by thread-like spiral riblets, which are rendered minutely nodulous by the intersection of the growth lines. On the last whorl there are about thirty of these riblets. Aperture about half the height of the shell, almost circular, white to bluish white within. Outer lip rather thin; inner lip thickened. Columella acute, flattened, without tooth. Color of shell dark brown to dull black in unworn specimens. Operculum of several whorls, shelly, concavo, with nucleus a little anterior to the center and considerably nearer to the columella than to the outer lip. Alt. 3.3 mm. diam. 3.2 mm. Type No. 1017 Collection Los Angeles Museum. Para-types in collections of Drs. Engberg and the writer. This type and many additional specimens were collected by Drs. Carl C. Engberg at Olga, Wash.

This well marked little shell is perhaps nearer to L. bacula Carpenter than to any other known species of west American Leptothyra. It differs markedly from that species however, in much smaller size, difference in coloration, lack of columellar tooth, and in the fact that it is often perforate. Of 28 specimens sent in by Drs. Engberg, 20 are perforate in greater or less degree, and the remaining imperforate."

#57 p 23

February, 1946

Homalopoma baculum (Carpentor), 1864. Puget Sound to San Martin Island.

Collecting data: Our experience has been to find this smooth species with carpentor in southern California and Todos Santos Bay littoral. We did not recognize it from Monterey Bay. Our records read Malaga Cove southward (Burch); Monterey (Hemphill); San Pedro (Lowe); San Martin Island (Dr. F. Baker); So. Coronado Island (Kelsey) (San Diego Museum).

Homalopoma paucicostatum (Dall), 1871. Monterey south to San Martin Island (Baker) and to Guadalupu (Strong and Hanna). Type locality, Monterey.

Collecting data: Dredged off Monterey, Calif. in 10-15 fathoms; off Redondo Beach in 50 fathoms north side of the canyon. Our experience has been to find this a deepwater species never having recognized it in littoral collecting. (Burch); San Pedro (Hemphill); La Jolla (Chaney, Wilson, and Bristol); Pt. Loma (Dr. F. Baker); So. Coronado Island in 16 fms. (Baker).

Homalopoma paucicostatum fanostratum (Bartsch), 1919. Monterey to Coronado Islands. Type locality on advice of Dr. A. M. Keen "Monterey on hole-type label."

Grant and Gale state "Typical paucicostatum (Dall) is readily distinguished by its few, prominent, spiral ribs. However, a series of specimens obtained by Mr. George Willett from off Catalina Island seems to include specimens intermediate between paucicostatum and carpentor, and it is possible that the difference between these two shells is varietal rather than specific."

Homalopoma juanensis (Dall), 1919. San Diego, Calif. to Tia Juana, L.C.

Type locality, Tia Juana, L.C.

Homalopoma grippi (Dall), 1911. San Diego, Calif. in 100 fathoms. to Catalina Island in 50 fathoms.

Collecting data: Catalina Island in 50 fms. (Lowe).

Homalopoma engbergi (Willett), 1929. Type locality, Olga, Wash. and known only from the type locality. Nautilus 43:27, 28, pl. 3; fig. 4, 1929.

Original description follows: "Shell small, globose, solid, either perforate or imperforate; whorls convex, marked by thread-like spiral riblets, which are rendered minutely nodulous by the intersection of the growth lines. On the last whorl there are about thirty of these riblets. Aperture about half the height of the shell, almost circular, white to bluish white within. Outer lip rather thin; inner lip thickened. Columella acute, flattened, without tooth. Color of shell dark brown to dull black in unworn specimens. Operculum of several whorls, shelly, concavo, with nucleus a little anterior to the center and considerably nearer to the columella than to the outer lip. Alt. 3.3 mm. diam. 3.2 mm. Type No. 1017 Collection Los Angeles Museum. Para-types in collections of Drs. Engberg and the writer. This type and many additional specimens were collected by Drs. Carl C. Engberg at Olga, Wash.

This well marked little shell is perhaps nearer to L. bacula Carpenter than to any other known species of west American Leptothyra. It differs markedly from that species however, in much smaller size, difference in coloration, lack of columellar tooth, and in the fact that it is often perforate. Of 28 specimens sent in by Drs. Engberg, 20 are perforate in greater or less degree, and the remaining imperforate."
Family Liotiidae

The following keys and lists are from Mr. A.H. Strong's notebook.

Surface latticed with equal axial ribs and spiral cords Liotia
Surface not latticed
 * Periphery with smooth or nodulous spiral cords or keels Arene

Genus Liotia

- Shell 4 mm. or more in diameter
- Shell turbinated, with the spire elevated
 Diam. 8 mm. Peru and Chile cancellata Gray
 Diam. 4 mm. Monterey to Gulf of Calif. fenestrata Carpenter
- Shell depressed, with flattened spire
 Diam. 4 mm. Monterey to Gulf of Calif. fenestrata Carpenter

Genus Arene

- Entire surface roughened by axial lines
 * Spiral sculpture of 2 or 3 major spiral cords
 ** Finer spiral striae present
 *** Fine spiral striae present over entire surface
 Diam. 4.7 mm. Magdalena Bay to Tres Marias Islands rummata Dall
 Diam. 4.6 mm. Panama balboai S. & H.
 ** Finer spiral striae absent
 *** Spiral keels on body whorl 2
 Diam. 2 mm. Galapagos Islands scitula Dall
 *** Spiral keels on body whorl 3
 Diam. 1 mm. Mazatlan striulata Carpenter
 * Spiral sculpture of numerous, more or less nodulous cords
 ** Whorls strongly shouldered
 ** Base with 3 nodulous spiral cords
 Diam. 6 mm. Socorro Island socorraensis Strong
 ** Base with 4 nodulous spiral cords
 Diam. 5.5 mm. Gulf of California carinata Carpenter
 ** Whorls not strongly shouldered
 ** Base with 7 spiral cords
 *** Cords on periphery undulated, not beaded
 Diam. 6.2 mm. Panama olivacea Dall
 *** All spiral cords beaded
 Panama var. litharia Dall
 ** Base with 5 tuberculate spiral cords
 *** Spire moderately elevated
 Diam. 8 mm. Nicaragua winclowae Pilsbry & L.
 Diam. 7.7 mm. Manzanillo, Mexico hidiiana Pils. & Lowe
- Spiral sculpture on body whorl of 6 to 9 keels
 ** Spiral sculpture on body whorl of 6 keels
 ** Interspaces between keels smooth
 Diam. 3 mm. Monterey to Tres Marias Islands acuticornicostata Carp.
 *** Interspaces between keels with axial threads
 Diam. 3 mm. Monterey to Gulf of Calif. var. bristolae Baker
- Spiral sculpture on body whorl of 9 keels
 ** Spiral sculpture on body of 20 or more cords
 ** Axial sculpture present
 Diam. 2 mm. Panama erici S. & H.
February, 1946

Axial sculpture absent
Diam. 1.6 mm. Cape San Lucas lucasensis Strong

Peripheral nodes 6, blunt, rounded
Diam. 23 mm. Lower California californica Dall

Peripheral nodes 8, flattened, spinose
Diam. 15 mm. Gulf of California pacis Dall

Family Liotidae

Shells small, turbonate, with a thickened, continuous outer lip and open umbilicus. The operculum is corneous, multispiral, with an outer layer of calcareous pearly grains" (Strong).

Genus Liotia Gray, 1847. Type (by original designation) Delphinula can-
- cellata Gray.

"The shells placed in Liotis s.s. have the surface deeply pitted
between strong axial ribs and spiral cords." (Strong).

Liotia fenestra Carpenter, 1864. Monterey to San Martin Island

Liotia c.s.-adamsi Carpenter, 1857 Mazatlan

Liotia cancellata Gray, 1826 Peru and Chile

Genus Arens H. & A. Adams, 1854. Type (by subsequent designation),

Turbo cruentata Hagerle von Muhlfield.

"In Arens the spiral sculpture is distinct while the axial sculpture
is absent or reduced to fine lines, in some species giving the surface a
scaly effect." (Strong).

Arens aucticostata Carpenter, 1854. Monterey to Gulf of California

var. bristolae Baker, 1929 San Pedro to Gulf of Calif.

var. stearnsii Dall, 1918 Gulf of Calif.

var. supranodosus Strong, 1833 Gulf of Calif.

Arens ramonita Dall, 1918 Cape San Lucas

Arens lucasensis Strong, 1833 Cape San Lucas

Arens carinata Carpenter, 1857 Gulf of Calif.

Arens striatula Carpenter, 1857 Mazatlan

Arens hindiana Pillsbury & Lowe, 1932 Manzanillo

Arens winchesi Pillsbury & Lowe, 1932 Nicaragua

Arens olivacea Dall, 1918 Panama

var. iltheria Dall, 1918 Panama

Arens socorroensis Strong, 1933 Socorro Island

Arens scitula Dall, 1919 Galapagos Islands

Arens erica Strong & Hertlein Panama

Arens balboa Strong and Hertlein Taboga Island, Panama

Arens neimi Strong and Hertlein Taboga Island, Panama

Liotia (?) californica Dall, 1908 Cerros Island

Liotia (?) pacis Dall, 1908 Gulf of Calif.

Family Liotidae

"Shells small, turbonate, with a thickened, continuous outer lip and
open umbilicus. The operculum is corneous, multispiral, with an outer layer
of calcareous pearly grains." (Strong).

Two rather important references on this group follow:

#57 p 25
It is interesting to note that Thiele put Homalopoma (Leptothyra in his use) in the subfamily Liotiinae of the family Turbinidae.

Genus Liotia Gray, 1847. Data given above.
Liotia fenestrata Carpenter, 1864. Monterey, Calif. to San Martin Island, (L. cookiana Dall, 1918 in synonym). Type locality—on advice of Dr. Kean "Santa Barbara Island on holotype label.
Collecting data: Dredged off Redondo Beach in 25 fms. gravel—rather common; off Avalon, Catalina Island in 25 fms.; off Malaga Cove in 10 fms. (Burch).

Arcone acuticostata (Carpenter), 1864. Monterey, Calif. to Tres Marías Islands.
Type locality, Catalina Island, Calif.
Collecting data: Dredged off Redondo Beach in 25 fms. gravel; off Avalon, Catalina Island in 25 fms.; Dana Point, Orange Co.; La Jolla; Punta Banda. L.C. (Burch); No. Corona Island (Frank Stephens); La Jolla (Chaney Sweet, Bristol); Catalina Island (Hemphill) San Pedro (Lowo) (San Diego M.)

Arcone acuticostata bristolae (Baker), 1929. Nautilus 43:72, 1929 (now name for L. a. raditata Dall). San Diego to La Paz and Gulf of Calif.
Type locality, off South Coronado Island.
Collecting data: La Jolla (Chaney Sweet, Orcutt); San Pedro and Monterey (Lowo) (San Diego Museum).

Genus Molleria Jeffreys, 1855. Typo (by monotypy), Molleria costulata (Möller). Shell remarkably solid, with strong and partly dichotomous transverse ribs; peristome continuous. Opolcrum calcareae, multispiral. (Tryonand Pilsbry, Man. of Conch.)

Molleria drusiana Dall, 1919. Amchitka Island to Glacier Bay, Alaska.
Type locality, Constantine Harbor, Amchitka Island, Aleutians.

Molleria quadratae Dall, 1897. Amchitka Island, Aleutians to Queen Charlotte Islands, B.C. Type locality, Queen Charlotte Islands, B.C.
Collecting data: Izhut Bay, Afognak Island, 1922; Raspberry Strait, Raspberry Island 1945 under stones. (W. J. Eyordam).
Family Trochidae
The following keys and lists are from Mr. A.M. Strong's notebook.
Columella ending in a green callus surrounding the umbilicus. **Morrisia**
Columella twisted
- Columella with two folds .. Turcica
- Columella with from 1 to 3 denticles Tegula
Columella simple, not twisted
- Columella excavated and flattened Monodonta
- Columella not excavated
- Umbilicus closed or reduced to a chink
- Shell conical, base flattened Calliostoma
- Shell turbinate or globose conical Turcica
- Shell cylindrical in the adult Halistylus
- Umbilicus wide and open
- Inner lip raised or reflected
- Umbilicus marginated, funnel shaped Solariella
- Umbilicus not marginated Cidarina
- Inner lip indistinct
- Columella ending in a slight swelling Gibbula
- Columella curving evenly into the basal lip Margarites
- Base with a false umbilicus **Gibbula**

Genus Morrisia
Shell orbicular, thick, nearly smooth, chestnut brown
Diam. 40 mm. California to Cerros Island **Morrisia**
Genus Turcica
Shell conical, blackish, with tuberculate spiral ribs
Diam. 16 mm. Redondo to Cape San Lucas **Tecna**
Genus Tegula
Umbilicus closed
- Base flattened or concave
- Surface scultured
- Strong axial plications present
 Diam. 35 mm. Catalina to Magdalena Bay..................... **Tegula regina** Stearns
- Granular spiral cords present
 Diam. 40 mm. Gulf of Calif, to Panama **Tegula pelliserpentis** Wood
- Surface smooth except for lines of growth
- Shell uniformly yellowish brown
 Diam. 35 mm. Mendocino Co. to Monterey **Tegula brunnea** Philippi
- Shell uniformly lusterless black
- Shell large, 40 mm. or more in diameter
 Peru and Chile .. **Tegula atar** Lesson
 Peru and Chile .. **Tegula moesta** Jonas
- Base rounded, convex
- Sculpture present, fine
- A narrow puckered band below the sutures
 Diam. 35 mm. Vancouver to Cerros Island **Tegula funebrale** A. Adams
- Subsutural band present
 Diam. 35 mm. San Francisco to Gulf of Calif. **Tegula gallina** Forbes
- Sculpture absent
 Chile ... **Tegula gaudichaudi** Hupe
Umbilicus open
- Axial sculpture present
- Periphery strongly angulated
 Diam. 40 mm. Bolinas Bay to Santa Barbara **Tegula montereyi** Kimmer (cont.)
Periphery not strongly angulated

A spiral row of tubercles below the sutures

Diam. 25 mm.
Chile ... melaleuca Jonas

Sculpture not tuberculate

All whorls spirally sculptured

Diam. 21 mm. Gulf of Calif. rufotincta Carpenter

All whorls not spirally sculptured

Spiral sculpture obsolete on lower whorls

Diam. 35 mm. Santa Barbara to Magdalena Bay aureotincta Forbes

Spiral sculpture confined to the base

Diam. 27 mm. San Diego to Acapulco rugosa A. Adams

Umbilicus open

Axial sculpture absent

Distinct spiral keels present

Periphery, with a single spiral keel

Spiral keels nodulous

Spiral keels four

Diam. 25 mm. Peru and Chile quadricostata Wood

Spiral keels 1 or two on spire, 5 on base mariana Dall

Diam. 12 mm. Santa Barbara to Peru

Spiral keels not nodulous

Diam. 40 mm. Peru and Chile luctusa d'Orbigny

Periphery with 2 spiral keels

Diam. 20 mm. Gulf of Calif. to Chile rubroflammatula Koch

Spiral keels absent

Spiral sculpture of numerous chords

Cords distinctly granular

Columella with a basal and median dental

Columella and umbilicus white

Diam. 20 mm. Monterey to Acapulco ligulata Menke

Columella and edge of umbilicus green

Diam. 20 mm. San Pedro to Panama reticulata Wood

Columella with a basal dental only

Last whorl carinate at the periphery

Diam. 8 mm. Gulf of Calif. globula Carpenter

Last whorl rounded at the periphery

Diam. 15 mm. Peru and Chile patagonica d'Orbigny

Cords not distinctly granular

Cords distinct over entire surface

Columella with a median dental

Diam. 20 mm. Panama to Peru panamensis Philippi

Columella without a median dental

Spiral cords equal

Diam. 15 mm. San Diego to Tros Marias Islands . impressa Jøhnsen

Spiral cords unequal

Diam. 15 mm. Galapagos snodgrassi P. & V.

Cords distinct on base only

Diam. 25 mm. Peru smithii T. & G.

Spiral sculpture of fine striae or absent

Fino spiral striae present

Periphery strongly angulated

Diam. 30 mm. Sitka to Santa Barbara pulliglio Martyn

Periphery rounded, not angulated

Spiral striae numerous

Diam. 15 mm. Peru and Chile fusescens Philippi

(cont.)
Spiral striae few, delicate
Diam. 6 mm. Galapagos

Umbilicus open, continued
- Axial sculpture absent
- Spiral keels absent
- Spiral sculpture of fine stria or absent
- All sculpture absent
- Umbilicus wide, funnel shaped
Diam. 45 mm. Peru and Chile
- Umbilicus small, circular
Diam. 20 mm. Peru and Chile

The following are not placed: T. coronulata C.B. Adams, C. lugubris
and T. californica A. Adams.

Genus Monodonta
Lip black margined
Diam. 25 mm. Peru and Chile
Lip not black margined
Diam. 25 mm. Peru and Chile

Genus Turricula
Spire with 3 spiral series of nodes
Diam. 42 mm. Bering Sea to San Clemente Island
Spire with a single spiral series of nodes
Diam. 60 mm. Panama

Genus Halistius
Surface with close spiral striae
Length 9 mm. British Columbia to Panama

Genus Gibbula
Sculpture of about 6 smooth spiral cords
Diam. 6 mm. Monterey to San Diego
Genus Calliostoma

Umbilicus more or less open
- Shell depressed, apex rounded
Diam. 16.6 mm. Gulf of Calif.
-Umbilicus always closed
- Periphery angulated
- Sides of whorls flattened or slightly concave
- Body whorl with 5 or 6 major spiral cords
- Body whorl with numerous fine spirals
- Basal cords about 12
Diam. 20 mm. Panama
- Basal cords about 20
Diam. 22 mm. Panama

Sides of whorls flattened or concave
Sides of whorls angulated near the middle
- Body whorl with 3 to 5 spiral cords
- Spiral cords nearly equal
Diam. 10 mm. Peru and Chile
- Spiral cords distinctly unequal
Diam. 6 mm. Monterey to San Diego

Body whorl with 15 or more spiral cords
- Spiral cords smooth
Diam. 22 mm. Gulf of Calif.
#57 p 30, 1946

Spiral cords granular

Diam. 15 mm. Gulf of California palmeri Dall.

Sides of whorls rounded

Spiral cords equal in strength

Spiral cords fine and numerous

Diam. 22 mm. San Francisco to San Diego gloriosum Dall

Spiral cords few but strong

Body whorl with 5 spiral cords

Diam. 12.5 mm. Point Conception to San Diego .. turbinum Dall

Body whorl with 7 to 9 spiral cords

Diam. Forrester Island to San Diego annulatum Martyn

Spiral cords unequal in strength

Spiral cords in two sized

Body whorl with 2 or 3 major spiral cords

Entire surface tuberculate

Diam. 8 mm. Gulf of Calif. macandrae Carpenter

Entire surface granular

Diam. 8 mm. Panama lecanus Carpenter

Body whorl with 4 or 5 major spiral cords

Diam. 7.5 mm. San Pedro to San Diego supragranosum Carpenter

Spiral cords in 3 sizes

Diam. 25 mm. Gulf of Calif. to Panama lima Philippi

Periphery rounded or flattened

Sides of whorls flattened or slightly concave

Body whorl with 3 to 5 major spiral cords

Diam. 25 mm. Puget Sound to Cerros Island variegatum Carpenter

Body whorl with 8 spiral cords in 3 sizes

Diam. 23 mm. Santa Barbara to Panama antonii Koch

Sides of whorls not flattened or concave

Sides of whorls angulated near the middle

Body whorl with 3 to 5 major spiral cords

Diam. 12 mm. Santa Cruz to San Diego tricolor Gabb

Body whorl with 15 or more spiral cords

Diam. 23 mm. Catalina to Gulf of California .. oximum Reeve

Sides of whorls rounded, not angulated

Body whorl with a single spiral cord

Diam. 32 mm. Farallones to San Diego platinum Dall

Body whorl with more than one spiral cord

Spiral cords unequal in strength

Body whorl with 3 major spiral cords

Diam. 15 mm. San Pedro to Gulf of Calif. .. germulatum Carpenter

Body whorl with 6 major spiral cords

Diam. 12 mm. Gulf of Calif. germuloides Lowe

Spiral cords about equal in strength

Body whorl with 7 to 9 spiral cords

Diam. 18 mm. Sitka to San Diego costatum Martyn

Body whorl with about 13 spiral cords

Base with 20 spiral cords

Diam. 13.5 mm. Gulf of Calif. marshalli Lowe

Base with 16 spiral cords

Diam. 13 mm. Gulf of Calif angelenum Lowe
Genus Solariella
All sculpture obsolete
Diam. 19 mm. Monterey to Clarion Island nuda Dall
Sculpture distinct
• Spiral of fine threads
 • Axial sculpture of narrow, threadlike ribs
 Diam. 2 mm. Catalina Island rhyssa Dall
 • Axial sculpture of numerous, oblique ribs
 Diam. 6 mm. Arctic to San Diego varicosa M. & H.
• Spiral sculpture of prominent rows of keels
• Axial sculpture present, fine
 Diam. 8 mm. Forroster Island to San Diego pernabilis Carpenter
 • Axial sculpture absent
 • Spire with three strong spiral cords
 Diam. 7 mm. San Diego to Panama triplostephana Dall
 • Spire with six major spiral cords
 Diam. 15 mm. Galapagos galapagana Dall

Genus Cidarina
Spire with several major, equal spiral cords
Height 40 mm. Alaska to Cape San Quintin cidaria A. Adams
Spire with only two major spiral cords
• Spire with 2 minor cords in addition to the major
 Height 21 mm. San Diego to Ecuador equatorialis Dall
• Spire without minor spiral cords
 Height 28 mm. San Diego to the Gulf of Calif. ceratophora Dall

Genus Clanculus
Sculpture of 6 or 7 major and numerous minor spirals
Diam. 16 mm. Gulf of Panama rubidus Dall

Genus Margarites
Surface smooth or nearly so
• Shell depressed, surface bright and shining
 Diam. 8 mm. Bering Sea to Catalina holicina Phipps
• Shell globose conical, surface dull
 Diam. 3 mm. Puget Sound to San Diego lacunata Carpenter
Spire with 2 major and many minor spiral cords
• Base with 5 spiral threads
 Diam. 3.5 mm. Alaska to San Diego parcipicta Carpenter
• Base smooth or with fine spiral striae
 Diam. 5 mm. Alaska to San Diego lirulata Carpenter
Spire with 4 or 5 equal spiral cords
• Base with 5 spiral threads
 Diam. Santa Barbara to Coronado Islands optabilis Carpenter
• Base with 8 spiral threads
 Diam. 4.5 mm. Bodega Bay to Coronado Islands acuticostata Carpenter
• Base with 12 spiral threads
 Bering Sea to San Diego pupilla Dall
• Base with about 20 spiral threads
 Diam. 11 mm. Alaska to San Diego rhodina Dall
Spire with 7 low spiral threads
 Diam. 4 mm. Alaska to San Diego succineta Carpenter
<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family Trochidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genus Norrisia</td>
<td>Boyle, 1880</td>
<td></td>
</tr>
<tr>
<td>Norrisia norrisii</td>
<td>(Sowerby), 1838</td>
<td>Monterey to Cerro's Island</td>
</tr>
<tr>
<td>Genus Hallistylus</td>
<td>Dall, 1889</td>
<td></td>
</tr>
<tr>
<td>Hallistylus subpaeoides</td>
<td>(Tryon), 1887</td>
<td>British Columbia to Panama</td>
</tr>
<tr>
<td>Genus Tegula</td>
<td>Lesson, 1832</td>
<td></td>
</tr>
<tr>
<td>Tegula corona (C.B.)</td>
<td>Smith, 1852</td>
<td>Panama</td>
</tr>
<tr>
<td>Tegula seminuda (A. Adams), 1851</td>
<td></td>
<td>Galapagos</td>
</tr>
<tr>
<td>Tegula cooksoni (E.A. Smith), 1877</td>
<td></td>
<td>Galapagos</td>
</tr>
<tr>
<td>Tegula anodgrassi (Pilsbry & Vanatta), 1902</td>
<td>Galapagos</td>
<td></td>
</tr>
<tr>
<td>Tegula quadrirractatus</td>
<td>Gray, 1828</td>
<td>Peru and Chile</td>
</tr>
<tr>
<td>Tegula smithi (T. & C.), 1874</td>
<td></td>
<td>Peru</td>
</tr>
<tr>
<td>Tegula patagonica (d'Orbigny), 1840</td>
<td></td>
<td>Peru to Patagonia</td>
</tr>
<tr>
<td>Tegula olsen (J. & M.), 1838</td>
<td></td>
<td>Pleistocene, Magdalena Bay</td>
</tr>
<tr>
<td>Tegula tridentata (P. & M.), 1838</td>
<td></td>
<td>Peru and Chile</td>
</tr>
<tr>
<td>Tegula (Lessons), 1830</td>
<td></td>
<td>Peru and Chile</td>
</tr>
<tr>
<td>Tegula moesta (Jona), 1844</td>
<td></td>
<td>Peru and Chile</td>
</tr>
<tr>
<td>Tegula callophalas (Jona), 1844</td>
<td></td>
<td>Peru and Chile</td>
</tr>
<tr>
<td>Tegula luctuosa (d'Orbigny), 1841</td>
<td></td>
<td>Peru and Chile</td>
</tr>
<tr>
<td>Tegula fuscescens (Philippi), 1844</td>
<td></td>
<td>Peru and Chile</td>
</tr>
<tr>
<td>Tegula manila (Philippi), 1844</td>
<td></td>
<td>Chile</td>
</tr>
<tr>
<td>Tegula melaleuca (Jona), 1844</td>
<td></td>
<td>Chile</td>
</tr>
<tr>
<td>Genus Monodonta</td>
<td>Lamarck, 1939</td>
<td></td>
</tr>
<tr>
<td>Monodonta nigerrima (Gmelin), 1791</td>
<td></td>
<td>Peru and Chile</td>
</tr>
<tr>
<td>Monodonta crassulus (Pilsbry), 1869</td>
<td></td>
<td>Peru and Chile</td>
</tr>
<tr>
<td>Genus Calliostoma</td>
<td>Swainson, 1840</td>
<td></td>
</tr>
<tr>
<td>Calliostoma splendens (Carpenter), 1864</td>
<td>Monterey to San Diego</td>
<td></td>
</tr>
<tr>
<td>Calliostoma annulatum (Marty), 1784</td>
<td>Alaska to San Martin Island</td>
<td></td>
</tr>
<tr>
<td>Calliostoma costatum (Marty), 1784</td>
<td>Alaska to San Diego</td>
<td></td>
</tr>
<tr>
<td>Calliostoma canaliculatum (Marty), 1784</td>
<td>Alaska to San Diego</td>
<td></td>
</tr>
<tr>
<td>Calliostoma variegatum (Carpenter), 1865</td>
<td>Puget Sound to Cerro's Island</td>
<td></td>
</tr>
<tr>
<td>Calliostoma platinum (Dall), 1869</td>
<td>Farallones to San Diego</td>
<td></td>
</tr>
<tr>
<td>Calliostoma antonii Koch, 1843</td>
<td>Santa Barbara to Panama</td>
<td></td>
</tr>
<tr>
<td>Calliostoma gloriosum (Dall), 1871</td>
<td>San Francisco to San Diego</td>
<td></td>
</tr>
<tr>
<td>Calliostoma eximium (Reeve), 1842</td>
<td>Catalina to Gulf of California</td>
<td></td>
</tr>
<tr>
<td>Calliostoma formicarius (Carpenter), 1864</td>
<td>San Pedro to Gulf of California</td>
<td></td>
</tr>
<tr>
<td>Calliostoma tricolor (Cabr., 1865)</td>
<td>Santa Cruz to Cape San Lucas</td>
<td></td>
</tr>
<tr>
<td>Calliostoma supranigrum (Carpenter), 1864</td>
<td>Monterey to San Diego</td>
<td></td>
</tr>
<tr>
<td>Calliostoma turbinum (Dall), 1865</td>
<td>Pt. Conception to San Diego</td>
<td></td>
</tr>
</tbody>
</table>
Calliostoma palmeri Dall, 1871 Gulf of Calif
Calliostoma lecanus C.B. Adams, 1862 Gulf of Calif. to Panama
Calliostoma macandreae Carpenter, 1866 Gulf of Calif.
Calliostoma lima Philippi, 1850 Gulf of Calif. to Panama
Calliostoma marshalli Lowe, 1835 Gulf of Calif.
Calliostoma lunuloides Lowe, 1835 Gulf of Calif.
Calliostoma anguliferum Lowe, 1835 Gulf of Calif.
Calliostoma bonita B.H. & S., 1933 off Acapulco
Calliostoma rema E. H. & S., 1933 Tres Marias Islands to Acapulco
Calliostoma nephleoides Dall, 1913 West Mexico to Panama
Calliostoma iridium Dall, 1895 Panama
Calliostoma fonskii Philippi, 1860 Peru and Chile

Genus Turricula Dall, 1881

Turricula bairdii Dall, 1889 Boring Sea to Coronado Islands
Turricula macdonaldii Dall, 1889 Panama

Genus Turcica A. Adams, 1854

Turcica caffen Catt, 1866 San Pedro to Cape San Lucas

Genus Cidarina Dall, 1890

Cidarina cidaris A. Adams, 1864 Alaska to San Quintin
Cidarina ceratophora Dall, 1896 San Diego to Mazatlan
Cidarina equatorialis Dall, 1925 San Diego to Ecuador

Genus Gibbula Risso, 1826

Gibbula adriatica oanfieldi Dall, 1871 Monterey to San Diego

Genus Solariea Wood, 1842

Solariea peramabilis Carpenter, 1864 Forrester Island to Coronado Island
Solariea rhyssa Dall, 1899 Catalina
Solariea triplostephanus Dall, 1896 San Diego to Panama
Solariea nuda Dall, 1896 Monterey to Gulf of Calif.
Solariea elegansula Dall, 1925 La Paz
Solariea ceratophora Dall, 1896 Gulf of Calif.
Solariea equatorialis Dall, 1908 Panama to Ecuador
Solariea galapagana Dall, 1908 Galapagos

Genus Volutoria

Volutoria galapagana Dall, 1918 Galapagos

Genus Clanculus

Clanculus rubida Dall, 1908 Panama and Galapagos

Genus Margarites Leach, 1847

Margarites parvicauda Carpenter, 1864 Alaska to San Diego
Margarites pupilla Gould, 1849 Boring Sea to San Diego
Margarites rhodia Dall, 1820 Alaska to San Diego
Margarites simila Dall, 1813 Santa Barbara Island
Margarites succineta Carpenter, 1864 Alaska to San Diego
Margarites lacunata Carpenter, 1864 Neah Bay to San Diego
Margarites limulata Carpenter, 1864 Alaska to San Diego
Margarites acuticostata Carpenter, 1864 Bodega Bay to Guadalupe Island

The above list and keys are all from Mr. A.M. Strong's notebook.

Family Trochidae

Genus Norrisia Bayle, 1880. Type (by monotypy), Trochiscus norrisii (Sowerby).

* Shell thick, conoidal, orbicular, covered by an epidermis, smooth; widely umbilicated, umbilicus surrounded by the callous extension of the columella; outer lip not thickened or sculptured" (Arnold).
Horrisia norrisii (Sowerby), 1838, Monterey, Calif., to Corros Island, L.C.

This species has been spelled with one i. The correct spelling is as above with two i— norrisii.

Dr. Joshua L. Daily Jr., makes an interesting comment on this species: "Carpenter states that it has been reported that this species has a sinistral nucleus, and that if this should prove to be the case it should be removed from the Trochidae and placed in the Solariiidae, which also has a sinistral nucleus."

Collecting data: Our experience has been to find this a comparatively common species and usually associated with the heavy marine algae. The best way to collect all you want is to get out into a kelp bed in a rowboat and simply pull them aboard. Common off Rodondo Beach, San Pedro, Newport, and all points south as far as we worked on the coast of Lower Calif. We pick them up in the dredge but I think we were specimens simply knocked off of the kelp. (Burch) San Diego Bay at La Playa (Bristol); San Nicholas Island (Hemphill); San Pedro (Low); Hal Jolla (Bristol) (San Diego Museum).

Genus Halistylus Dall, 1869. Type (by original designation and monotypy), H. columna Dall.

Shell small, cylindrical, holostomate, polychromatic; operculum multispiral, coriaceous; dental formula 1/4 X plus 4.4 plus X; type H. columna Dall. This group differs from Leioptyga in its holostomate aperture and absence of spiral sculpture. Halistylus pupoides (Carpenter), 1864. (H. subpupoides (Tryon))

The consensus of opinion seems to be that Carpenter's name is valid and Tryon's name should be placed in the synonymy. This is following Grant and Gale and others.

Collecting data: This is a very common dredged shell. We have it from 10 to 40 fms. off Monterey; off Rodondo Beach 10 to 25 fms.; it seems to prefer sandy bottom. Have sets from 14 fms. off Coronado Islands and from 3 fms. off Ballast Point, San Diego dredged by the late Dr. Fred Baker. Not uncommon in the Pleistocene of Hilltop Quarry, San Pedro, Calif. (Burch) La Jolla (Chaney); San Diego Bay (Dr. Baker); Kino Bay (Low); Scammon's Lagoon (Hiney); San Pedro (Low) (San Diego Museum).

Dr. A. Myra Koen advises "I do not believe that pupoides is to be regarded as a hómonym of pupoides under the Rules. Hence, Carpenter's name will stand."

* Range—Forroster Island, Alaska to Panama. Type locality—Monterey.

Genus Tegula Lesson, 1835 Type (by monotypy, fide Pilsbry, 1889), Tegula elegans Lesson—Trochus pollis-scorpentis Wood.

Shell Trochoid or Turbinate, heavy, smaller than Trochus; columnella twisted and usually terminating below in one or more obtuse projections or denticles; callosity spreading over umbilical region; umbilicus open or closed."

There are no species of Tegula s.s. in the California fauna.

Subgenus Chlorostoma Swainson, 1840. Type (by subsequent designation, Herrmannsen, 1848), Trochus argyrostomus Gmelin.

Grant and Gale, 1931, p. 826 state of this subgenus "... differs from Tegula s.s. in the more ventricose whorls, which rapidly increase in size until the penultimate whorl is reached, the body whorl showing a less rapid increase in diameter. This feature of growth gives the penultimate whorl an appearance of disproportionate size and produces a dome-like spire. The..."
sculpture is variable, consisting of spiral ribs, or sometimes of numerous protractive riblets, irregular or granulose. The surface color is often dark, purple or gray. Beneath the surface the shell is poorly. The aperture is very oblique, the outer lip being smooth and pearly within, the columellar lip bearing one or more obtuse denticles. The umbilicus is open or closed, a callus wash covering the umbilical region.

Chlorostoma differs from Calliostoma in its much heavier shell, dome shaped spire, less uniform spiral sculpture, tooth or small projections on the columellar or basal lip, and the dark or somble and unattractive outer shell layer. Calliostoma s.s. has an imperforate axis.

Section Chlorostoma s.s.

With axial or spiral riblets or both, outer shell layer usually dark purple or black.

Omphalotis differs in its much reduced or entirely obsolete sculpture and its rather smooth, light-colored outer shell layer.

One reason for quoting Grant and Gale to such length is that many authors consider Chlorostoma of generic rather than subgeneric value. Woodring, 1928 and many others follow this practice and it is possible that we may ultimately adopt this practice.

Tegula funeraria (A. Adams), 1854. Vancouver Island, B.C. to Corros Island, B.C. Type locality, California.

Collecting data: One of the most abundant species on the coast in our experience from Crescent City, Calif. to Todos Santos Bay, L.C. Not uncommon in some of the Pleistocene deposits siusches Timm's Point, San Pedro. (Burch Cape Collett, L.C. (Low); San Nicholas Island, L.C. (Low); Duxbury Reef (Low); San Diego (Orcutt); Pt. Loma (Bristo); Piedras Blancas Light (Cass) (San Diego Museum).

Tegula funeraria subsaporta (Carpentor), 1864. Noah Bay, Wash. to San Diego. "with an umbilical pit."

Collecting data: One would think that these umbilicate varieties had no significance and perhaps they do not, but the collector is compelled to note that certain colonies seem to have this characteristic and others do not. I am disposed to think it should be considered a valid variety.

Tegula gallina (Forbes), 1850. San Francisco Bay to the Gulf of California. Type locality "probably from the Napatlan coast." (Forbes).

Collecting data: Our experience with this species has been of interest only in that it increases in size as the range goes south. Specimens from below Todos Santos Bay on the outer coast of Lower Calif. are rougher and larger until those from Boca de Playa are giants for the species. Several years ago P.M. Connelly made a trip to San Quintin Bay, L.C. and brought back specimens of almost unbelievable size. (Burch); many localities from Catalina Island down to many Lower Californian localities; exceptionally large from Guadalupe Island, L.C. (Miss Bristol, San Diego Museum).

Tomula gallina multifilosa Stearns, 1893. San Pedro, Calif. to Guadalupe Island, L.C. Type locality, Guadalupe Island.

Collecting data: This variety multifilosa would seem to have little significance other than that I can direct you to entire coves along the Palos Verdes Hills coast and elsewhere and wager that every single specimen (con.)
youcollect will be of this form. In fact it is the common form all the way from Malaga Cove to San Pedro (Burch); Todos Santos Bay and Guadalupe Island (Dr. F. Baker).

Tegula gallina tineta (Hemphill), 1893. Halfmoon Bay, Calif. to Socorro Island. Type locality not given.

Collecting data: Again this odd form seems to be found in colonies. The first I ever ran across was near La Jolla and it was possible to collect any number of them all showing the characters described including the yellow spot. What significance this has or what caused it I do not know. (Burch); Todos Santos Bay (Hucy); San Diego (Hemphill); Bird Rock (Kolsky) La Jolla (Bristol); San Pedro and Cape Colnett (Lowe) (San Diego Museum).

Tegula gallina umbilicata Dall, 1919. Santa Monica Bay (Burch) to San Quin-tin Bay, L.C. Type locality, San Quintin Bay.

Collecting data: Again this umbilicate form seems to congregate in colonies. There is a small cove just south of Redondo Beach where in my experience every single specimen is umbilicate. In the next cove you will not find a one.

However, there seems to be some kind of overlapping here because this colony of umbilicate specimens to which I referred above are also very definitely _multifilosa_ giving you your choice of whether you wish to call it umbilicata or _multifilosa_. Perhaps these varieties had all as well be placed in the synonymy since the varieties certainly overlap.

Tegula brunnea (Philippi), 1848. Crescent City, Calif. to the Santa Barbara Islands (Dall). Type locality, Calif.

Collecting data: Our experience has been to find this a central California species. It is very abundant from Monterey to Cayucos. It seems to like a little more water than _funcaulis_ being found nearer the low tide mark. (Burch); Cayucos and Duxbury Reef (Lowe); Piedras Blancas Light (Gass); Half Moon Bay (Button); Bolinas (Hemphill); Point Sur (Gifford) (San Diego Museum).

Tegula brunnea fluctuosa Dall, 1919. Crescent City to San Nicholas Island, Calif. Type locality, Monterey, Calif.

Dr. A. Hyra Koon writes an interesting comment here. Note that Dall described a _Tegula brunnea fluctuosa_ in _Amer. Jour. Conch._ vol. 7, 1872, p. 130. Type locality, Monterey. I do not have this reference. Is this perhaps the same thing?

Collecting data: This ribbed form in our experience may be expected to appear in the ratio of about 1 in 100 in all colonies. They are easily recognized and may have some significance. I think it doubtful. I thought that we found a larger percentage than usual of this form at San Simeon, Cal.

Tegula rugosa (A. Adams), 1851. San Diego, Calif. to Acapulco, Mex.

Type locality not given.

This is another of those very doubtful records. Did anyone ever hear of a specimen from San Diego? We have it from many localities from Lower California and it is possible that a specimen might stray into San Diego but certainly it would be a stray if not just an erroneous record. It is not of our fauna and should in my opinion be dropped from the list. It is of the Mexican fauna.
Tegula montereyi (Kieror), 1850. Bolinas Bay to the Santa Barbara Islands, California. Type locality, Monterey, Calif.

Dr. A. Myra Keen advises W. Winchworth shows (Proc. Mal. Soc., vol. 21, p. 234) that Tegula montereyi was published by Kieror in 1850. Collecting data: All of our specimens of this species came from Monterey Bay from the kelp. (Burch); Duxbury Reef (Lowe); Cayucos (Lowe); Monterey (Oldroyd) (San Diego Museum).

Tegula regina (Stearns), 1892. Catalina and San Clemente Islands south to Gulf of California. Type locality, on advice of Dr. A. M. Keen is "Guadalupe Island, holotype label, U.S.N.M."

Dr. Keen also advises Tegula regina was first described by Stearns in 1892. Nautilus, vol. 6, p. 85. Collecting data: This exceedingly rare shell has recently been taken in some numbers by Mr. H. Jacobs, by diving off Catalina Island. It is a beautiful and unique shell and found in very few collections.

This group is easily distinguished from the above by noting the umbilical area.

Tegula pulligo (Gmelin), 1790. Sitka, Alaska to Natividad, L.C. (Cooke).

Dr. A. M. Keen advises on this species Dall states (Proc. U.S.N.M. vol. 29, p. 423) that the King George's Sound of Martyn is actually Nootka Sound, southwest coast of Vancouver Island. Martyn said "New Zealand," but probably Dr. Dall was right. Tegula pulligo may date from Gmelin, 1790. Mrs. Oldroyd's taylori seems rather to be a topotype of pulligo than a subspecies.

Collecting data: There seems to be some variation in the shells we have so labelled from the north and those from Monterey and the south but they must all be the same species or something not described. We have fine specimens from Monterey Bay from the kelp; also, from Cayucos, Morro Rock, Oceano, San Luis Obispo Co.; and we were very much surprised to bring up specimens apparently of this species from nearly 50 fathoms off Redondo Beach (Burch); Forrester Island, Alaska (Willet); Farallon Islands (Lowe); Monterey and Long Beach, Calif. (Lowe); Point of Rocks (Bristol); Point Loma (Chaney) (San Diego Museum).

Tegula pulligo taylori L. Oldroyd, 1922. Marine shells of Puget Sound and Vicinity, Puget Sound Biological Station 4171. Type locality, Hope Island at the north end of Vancouver Island and known only from the type locality. The consensus of opinion seems to be that this variety is of no significance and should be placed in the synonymy of the typical.

Mr. W.O. Eyordam reports having taken typical pulligo from Clallam Bay, Stair of Fuca, Wash., 1925; Craig, Prince of Wales Island, Alaska, 1939 by Norberg.

Subgenus Amphalius Philippi, 1847. Type (by subsequent designation, Herrmannsen, 1847), Trochus rusticus Gmelin, Japan.

Shell medium sized, body whorl subangular or rounded at the periphery umbilicate. Aperture oblique, elliptical. Inner lip bearing a heavy tooth at the base, below which lies a more obscure tooth-like swelling. Callus spreading from parietal wall toward and partly over umbilicus. Sculpture consisting of spiral threads or of crude protractive axial ribs." (Woodring, 1928).
February 1946

Tegula aureotincta (Forbes), 1852. Santa Barbara Islands south to Santa
Margarita Island (Stearns). Type locality: Probably from the Mazatlan coast.
Collecting data: Malaga Cove; San Pedro; Point Vicente; San Onofre;
Punta Banda, L.C.; etc. This is not an uncommon medium tidal zone species.
(Burch); San Diego (Hemphill); Pt. Loma (Kelsey); Todos Santos Bay
(Dr. F. Baker); Magdalena Bay (Orcutt); Guaymas (Herrera). San Diego Mus.

Tegula impressa (Jonas), 1848. San Diego, Calif. to Tres Marias Islands.
Mazatlan and Manzanillo (Lowe) (no California records).
Tegula ligulata (Kenke), 1850. Monterey, Calif. Moss Beach, Calif. (Voorhees
to Acapulco, Mexico. Type locality, Mazatlan.

Dr. A. Myra Keen advises on this species as well as the following (Per.
Comm. Nov., 1945) * I do not have the papers by Kenke, Jonas, or Wood at hand
to consult. However, at the National Museum I made the following notes:
* Based on specimens in that collection. Tegula ligulata ranges south to
Real LIEjos. There seems to be no T. reticulata from north of Costa
Rica; those so labelled are ligulata. The T. mariana from Santa Barbara
looks to me like ligulata, the northernmost mariana in this collection
is from Cape San Lucas.

We are therefore dropping the following species from our faunal list:
Tegula reticulata (Wood), 1828. Range- south to Guayquil. Type locality
Gulf of Calif.

Tegula mariana (Dall), 1919. Range- south to Peru. Type locality, La Paz.
Collecting data for T. ligulata: Our experience has been to find this
perhaps the most numerous species of the genus from Santa Monica Bay, south
to Todos Santos Bay in all rocky rubble. It is common on the off shore islands
also. (Burch);

We will discuss the other genera of the family Trochidae in the next
issue.

* * * * * * * * * * * * * * * * * * *

The interesting little Bulletins of the Natural History Museum of
San Diego are at hand for the months of November and December. They are
expecting to have the Navy relinquish their building which has been being
used as a hospital, and in the near future resume all of their normal activ-
ities. They seem to be enjoying a steady flow of new acquisitions from
their members now scattered all over the earth. The mention of again receiving
scientific journals from Europe was of interest also.

Mollusca, Vol. 1, no. 7, Dec. 17, 1945 published by Paul H. Reed, Tavarez,
Florida- rate $2.50 for 12 issues. Mr. Reed has brought out a very fine ed-
* * * * * * * * * * * * * * * * * * *

Strombus jeffersonia Van Hyning is a new species well described and
well figured in this issue.

Mr. Harold Harry, Rt. 2, Box 222, Shreveport, Louisiana. The following
interesting note received with the very unusual Chinese Christmas card
* Greetings from Tsingtao, China, to the Burches and all my friends of the
Conchological Club of So. Calif. Expect to be in Seattle by late December
and for a month following; after which may greet you of Los Angeles in person.
After mid February please use home address. Have been getting the Minutes
very rarely because of poor mail service, but am very grateful that you rem-
(cons.)}
February 1946

Mr. Harry is in Seattle on a warship at present and has been over to see me. He brought about 70 species of shells that he collected at Tsingtao, Ise Jima and the Palau Islands. I identified all except three or four of them for him. Dr. Myer has just submitted the names of the critical species of shells that I sent her from this summer's vacation. Five of them are new to my collection of Alaskan shells. On Raspberry Island I collected 104 species of shells this year. I will submit the list pretty soon."

J.M. Grech, 57/59 Behind Ste.; Ubaldessa, Paula, Malta. In years past the editor has exchanged extensively with Mr. Grech and many fine shells now in the cabinets bear his labels. Mr. Grech writes that a large part of his shell collection was destroyed in the bombings of Malta and that he is now eager to replace them and to exchange again extensively. Inasmuch as it is out of the question for the editor to handle such exchanges at this time the matter is called to the attention of other members who may be interested.

"I saw your September issue of the Minutes of the C.C. of S. Calif. and on the front page was a letter written to you by my Captain, S.L. Kimball. Captain Kimball has interested me and shown me a lot of the tricks of shell collecting, and we have had many a long hour together here on the reefs and shores of Okinawa. I have only been collecting four months now and have well over two hundred different species of shells from Okinawa. I know nothing about shells at all and have to get all of my information from Captain Kimball, who is always willing to assist me within his power. I have collected a fine lot of shells for myself, and in the course of this collecting, have accumulated many duplicates. These I would like to sell, if it is possible. Captain Kimball suggested I write to you to see if you would help me out. All but very few of my shells were taken alive. Our system is to keep a dead shell until we find a live one, and then discard the dead one. I have among my shells 25 different species of Conus, with 15 more possibilities; 18 different Cypraea with five possibilities; 3 species of Haliotis, Turbo, Conchs, 3 different Eurex, Patella, Nerita, polias, undata, Cerithium nodulorum, several Arctica Engina mondicaria, Bulla, several Vasum, a number of Mitra, several Pterocera, and numerous other shells that we do not know the names of. All our knowledge of these shells is gathered from the Handbook for Shell Collectors by Walter Webb. If you can notify me by return air mail as to whether I could dispose of these shells, I would appreciate it very much. I am mailing out a small lot of them to you personally, for use by the club, rather than subscribe to the Minutes which are available to me through Captain Kimball. I sincerely hope to hear from you by return air mail as that is the quickest way."

Surely some of the club members will be interested in this deal.

Dr. Asela B. Franco, Cebu City, Cebu, Philippines. It was a great pleasure to receive a long letter from Dr. Franco from whom we have in the past received many beautiful and rare shells. "... It was the American Division who liberated my own place from the Japs. And the 77th Division came over for a rest after their bloody campaign in Okinawa. These men and the Navy filled Cebu with Americans for the time being. Later, most of them went over for the occupation of Japan. (con.)}
It was a miracle that my parents and myself came out alive in this war. The Japs are the most inhuman beings I have ever met with; they are just simply beasts. I have seen moving pictures before the war depicting the cruelties of the Germans and many of us here used to say that they were only propaganda. But now we know better from the Japs who were much worse. They have done atrocities created only from a devil's mind. My place, Cobu received the heaviest damage in comparison with the rest of the Philippines. Most of the houses were burned either by bombing or by demolition. Personally, we lost eight houses including that of my downtown clinic. Our residence was spared us with two other houses. I have been visited by many American shell collectors. Some of them are just beginners, others rather advanced, but most of them just shell souvenir hunters. To all of them I have given many of my available duplicates as my compliments for the sacrifices they made in this war. The bulk of my good duplicates were in my clinic. I had one big room for display and another room for deposits. You see, I occupied the whole building for my clinic and I converted two rooms for my shell hobby. The rest of the building was for my medical practice. All of this was burned including the bulk of my stamp duplicates. The minute I am free with my patients I go through my hobbies. Also I had a small warehouse where I deposited several thousands of Nautilus pomilius for American dealers and about fifty thousand Ovula ovum L. ready for export to New Guinea. Other bigger shells and the less delicate ones were kept in this place. This too was burned. My own personal collection I always keep in my own sleeping room. These I do not trust out of my sight or any other place. I was able to evacuate them to the mountains about sixty miles from the city. My best duplicates, which were at home, were mostly intact when we returned from evacuation. And these were the ones I gave to the Americans who came over to see me. During the Jap occupation nobody did any shell collecting. The souvenir hunters spoiled everything in prices—50% to $1.00 for a simple Cypraea tigris and $30.00 or $15.00 for a Nautilus with a design of a map of the Philippines. I am expecting the prices to drop down when most of the Americans leave the islands.

Rev. William Henry Fluck, Newfane, Vermont. "I thank you for sending me the Minutes of the Conchological Club of Southern California. I think it exceedingly helpful especially to one like myself isolated from other conchologists. It is a great help to me in keeping the nomenclature of my California shells up to date.

In the October number, there was some question made as to the proper spelling of Ianthina. It is a well known fact that the letter J was but slightly distinguished by the ancients from the letter I. In English, I and J were originally calligraphic variations of the same letter, and stood for both the vowel and the consonant sound, but gradually, after about 1630, I came to be used for the consonant sound of dz or j as we now use it. In one of my dictionaries I read that 'I and J were treated as the same letter in alphabetical arrangements as late as Todd's Johnson's Dictionary of 1818.'

The following persons are perhaps interested in purchasing:
Leona Lagowski, Burr Hall, Willimantic, Conn.
Walter Anderton, 19 Glen Iris Park, B'ham, Alabama
Caroline Cobb, 18 Chestnut St., Boston, Mass.
MINUTES OF THE CONCHOLICAL CLUB OF SOUTHERN CALIFORNIA

March 1946

These papers are published by a group of interested students for our own pleasure and financed by voluntary contributions of members and friends. It is not our intention to offer subscriptions and guarantee regular periodical publication. However, non-members of our club will be placed on our mailing list and receive all papers published for contributions to our fund of $2.50 per year or $1.25 each six months.

We are now meeting the first Tuesday of each month at 7:30 P.M. at the Los Angeles Museum, Exposition Park, Los Angeles, Calif.

Please mail all news to your editor,
John Q. Burch,
4206 Halladay Ave.,
Los Angeles 37, Calif.
Phone Ax 2-7965.

The program we have been carrying on in our Minutes should serve as a supplement to the four volumes by Ida Shepard Oldroyd "The Marine Shells of the West Coast of North America," a Stanford University publication selling for $10.00 bound in cloth. We will be pleased to handle the orders of any of our members or friends wishing this set. It has been our intention to republish the original descriptions of all species described or added to our fauna since the publication of Mrs. Oldroyd's work in 1927.

Genus Calliostoma Swainson, 1840. Type (by subsequent designation, Herrmannsen, 1848), Trochus conulus Linnaeus ("Calliostoma cohula Mart.")
"Imperfecte; spire elevated, acute; aperture broader than high, transversely ovate, hardly situated at the base, and slightly oblique; shells always smooth, and often polished." (Swainson).

Subgenus Zizyphinus Gray, 1843. Type (by subsequent designation, Rehder, 1937), Calliostoma canaliculatum (Martyn) = C. dolarius (Holten), 1803.

Dr. A. Hyra Keen advises us on this matter as follows (Perm Comm, Nov. 1945): "In a paper entitled "Notes on the nomenclature of the Trochidae," (Proc. Biol. Soc. Wash., vol. 50, pp. 115-116, 1937), Rehder shows that the name Zizyphinus Gray dates from 1843 (Gray in Diefenbach, Travels in New Zealand, vol. 2, p. 237). Rehder designates as type the West American species canaliculatus Martyn and comments that he does not know whether or not Zizyphinus is generically distinct from Calliostoma. Perhaps, since he has made a West American species the type, we might recognize Zizyphinus as a subgenus of Calliostoma for the time being. The first available specific name for canaliculatus is Trochus dolarius Holten, 1803 (see Proc. Malac. Soc. London, vol. 25, pt. 4, p. 149)."

Calliostoma dolarius (Holten), 1803. (Calliostoma canaliculatum (Martyn).
Izth Bay, Afognak Island, Alaska (Eyerdam) south to San Diego, Calif.

Several color forms of this species have been described. If any of the members think they have any significance please advise. I propose to abandon them to the synonymy. At one time I thought nebulosum might be good but it... (cont.)
runs right into the typical off San Diego, its type locality. I have a large
series of them.

*C. c. nebulosum Dall, 1919- Type locality, San Diego (parvum Williamson)
*C. c. transliratum Dall, 1919- Type locality, Biorka Island, Sitka, Alaska.

Collecting data: We have collected this species from Crescent City, Calif.; Monterey Bay dredged and picked from floating kelp; dredged off
Redondo Beach, Calif. in 25 fms.; off Coronado, San Diego, Calif. on floating
kelp; Imperial Beach, San Diego Co., on kelp (Burch); Puget Sound and the
record given above extending the known range northward from Sitka to Afognak
Island, Alaska (Eyerdam);

Calliostoma ligatus (Gould), 1849. (C. costatum (Martyn), 1784).

Prince William Sound and westward to Kodiak Island (Eyerdam) south to San
Diego, Calif. Dr. A. Myra Keen advises on this as follows (Proc. Comm. Nov.
1945) "The type locality of C. costatum Martyn is "King George's Sound,
New Zealand". However, the first available name for the species seems to be

Type locality Puget Sound. Original description: "Testa solidca, ovato-conica
imperforata, costulis rotundatis flavescentibus ubique cincta; intervalvis
incarnatis. concinnno clathratis, ad apicem violacea: spira antica 6 convexis:
apertura circularis; columna recta rotundata; labro crenulato; regio umbil-
calis vix indentata, Alt. 3/4, lat. 2/3 polls." This was figured in the
U.S. Exploring Expedition, Atlas, 1852, pl. 12, fig. 207 (reproduced by Tryon
and Filsbry, Manual Conchology, vol. II, pl. 16, fig. 6). The name filosus
Wood is not available, as I had previously thought, being homonymous."

Collecting data: Our experience has been to find this by far the most
common littoral species of the genus. We have collected it from Crescent
City, Calif. south to San Luis Obispo Co., but have never taken it in southern
California. We dredged it in numbers on the shalæ off Monterey down to perhaps
20 fms. (Burch); "I have found this species all along the coast up to the
Kodiak Islands. The largest specimens I have are from Izhut Bay and Raspberry
Strait, Afognak Island. Extended geographical range- northward to Prince
William Sound and westward to Kodiak Island" (W.J. Eyerdam); Sitka, Alaska
and San Juan Island, Puget Sound (Love); Bear Bay, Peril Straits (Kate
Stephens); *Note* there is a record in the San Diego museum from Acapulco,
Mexico by Orcutt. This sounds so improbable that obviously such a radical
southern extension of range should be carefully verified before publication."

The variety caeruleum Dall, 1919 is in the opinion of the majority
a mere color form and to be found in all colonies, of no significance and to
be abandoned to the synonymy along with another color form pictum Dall, 1919.

However, Mr. W.J. Eyerdam reports that in his opinion caeruleum is a
distinct color variety at least in Puget Sound and reports it from San Juan
Islands. Love also has a set from Fort Harford in the San Diego museum so
labelled.

Calliostoma variegatum Carpenter, 1864, Forrester Island, Alaska (Willett)
south to Cerros Island, L.C. Type locality, Puget Sound, Wash.

Collecting data: Dredged off Swallon, Catalina Island in 35 fms.; off
Monterey in 20 fms. (Burch); dredged in Puget Sound near San Juan Island
(T. Kincaid); San Juan Islands, Wash. (W.J. Eyerdam); Catalina Island,
Calif. in 50 fms. and San Juan Islands, P.S. in 80 fms. (Love) (San Diego

Calliostoma platinum Dall, 1889. Farallone Islands, Calif. to San Diego
Type locality, Santa Barbara Islands in 414 fms.
Collecting data: San Diego in 50 fms. (Gräpp); Monterey in 122 fms. (Oldroyd) (San Diego Museum); Mr. John Strobothn acquired some of these brought up on fishermen's lines off Santa Cruz, Calif.

Calliostoma gloriosum Dall, 1871. South of San Francisco to San Diego. Type locality, Sequel, north side of Monterey Bay.

Collecting data: Dredged off Monterey in 20 fms.; exceptionally huge and fine specimens dredged off Redondo Beach, Calif. in 25 fms. gravel (Burch); washed in on kelp at Imperial Beach, San Diego Co. (Mrs. A.A. Randall); Santa Cruz, Calif. littoral (Mrs. H.R. Turver); Coronado Beach (Galloway); Mission Beach in kelp roots (Chaney); La Jolla and San Pedro (Lowe); Monterey (Oldroyd) (San Diego Museum).

Calliostoma antonii (Koch in Philippi), 1843 Santa Barbara, Calif. to Panama. This is another representative of the southern fauna with a doubtful California record. Thre are sets in the San Diego Museum in the Lowe Collection from Montijo Bay, Panama and Panama City, but none from north of Panama. Type locality was not given for the species.

Calliostoma eximium Reeve, 1843 Catalina Island to Mazatlan, Mexico. Type locality, Payanam in 10 fms. Another species from the southern fauna and all records in local museums from south of the border.

Calliostoma tricolor Gabb, 1866. Moss Beach (Vokos) south to Cape San Lucas. Type locality, San Pedro, Calif. probably although Half Moon Bay and San Diego also mentioned.

Collecting data: Dredged off Monterey in 20 fms. to 40 fms.; common off Redondo Beach, Santa Monica, etc. in 25-35 fms.; off Catalina Island in 35 fms. (Burch); San Diego Bay in 8 fms. (Hemphil); San Diego and Long Beach (Lowe) (San Diego Museum). Cayucos, Calif. (Burch)

Calliostoma cumulatum Carpenter, 1864. San Pedro, Calif. to the Gulf of California. Type locality, San Diego-San Pedro area.

Collecting data: Our experience has been to find this species more or less common in littoral collecting although we have picked it up in dredgings as deep as 25 fms. off Redondo Beach. We have taken it littoral at Cayucos, bridge and wharf piles in Anaheim Bay; Balboa breakwater; Malaga Cove; and Ensenada, Mexico (Burch).

Calliostoma supragranosum Carpenter, 1864. Monterey south to Pequena Bay, L.A. (E.K. Jordan). Type locality on advice of Dr. A.M. Keen a San Diego according to the holotype label.

Collecting data: Malaga Cove, L.A. Co., littoral; San Pedro breakwater (Burch); Imperial Beach, San Diego Co. washed in on kelp (Mrs. A.A. Randall) San Pedro (Oldroyd and Baker); San Pedro breakwater (Lowe) (San Diego Mus.)

Calliostoma splendens Carpenter, 1864. Monterey south to Guadalupe Island (Strong and Hanna). Type locality on advice of Dr. A.M. Keen in Catalina Island according to the holotype label, U.S.N.M."

Collecting data: Dredged off Monterey, Calif. in 20-40 fms.; off Redondo Beach common in gravel 25 fms.; off Avalon, Catalina Island in 35 fms.; off Ensenada in Todos Santos Bay in 35 fms. (Burch); Mission Bay (Chaney); Catalina Island in 50 fms. (Lowe); San Pedro in 30 fms. (Lowe) (San Diego Museum.)
Calliostoma turbinum Dall, 1886. Point Conception to San Diego and the Islands. Type locality: among the Santa Barbara Islands.

Collecting data: Dredged off Redondo Beach, Calif. in 75 fms. and also in 50 fms. (Burch); San Diego in 35 fms. (Gripp).

Calliostoma annulatum (Humphrey), 1786. Dr. A. Hyra Keen advises on this name as follows (Per. Comm., Nov. 1945). According to Winckworth's Notes (Proc. Malac. Soc. London, vol. 25, pt. 4, p. 150, 1943), we may cite Calliostoma annulatum as of Humphrey, 1786. Presumably Humphrey cites Martyn's figures, so that the type locality would remain the same "New Zealand".

Range: Forrester Island, Alaska south to San Diego, Calif.

Collecting data: Dredged off Monterey in 15-20 fms.; off Morro Bay and Cayucos; off Redondo Beach, Calif. in 25 fms. mud and gravel; (Burch); Rocky Bay, San Juan Islands, Wash. Sh. and Mud in 45 fms. (Miss. R.E. Coats); fine colored specimens washed in on kelp at Imperial Beach, San Diego Co. (Mrs. J.A. Randall); Orcas Island, Wash. in 10 to 30 fms. (Dr. Baker); Monterey on kelp (Hemphill); Forrester Island (Willett); Coronado Beach, San Diego Co. (Jerebeck and Todd) (San Diego Museum).

Genus Turciolina Dall, 1881. Type (by monotypy), Margaretta (Turcio-

ula) imperialis Dall.

Shell globosely conical, white, thin; umbilicus reduced to a chink under the thin callus of the upper part of the pillar lip; mouth rounded rectangular, margins all thin; columella concave; outer surface with tuberculate ridges." (Tryon and Pillsbury, Man. of Conch.)

Turciolina bairdii Dall, 1889. Boring Sea south to Coronado Island.

Type locality: off San Clemente Island, in 414 fms.

Collecting data: Drier Bay, Knight Island, Prince William Sound, Alaska - dredged (Eyerdam); Off Point Loma, San Diego Co. in 200 fms. (Love).

Genus Turcica A. Adams, 1854. Type (by monotypy), Turcica monilifera

A. Adams.

Shell co-oidal, thin, subdiaphanous, imperforate; whorls with trans-
verse series of granules, the last rounded at the periphery; columella solid, spirally twisted at the upper part, ending below or anteriorly in an obtuse prominent point; outer lip thin, simple, acute." (Adams).

Turcica caffea (Gmel.), 1865/ Monterey to Cape San Lucas,

Type locality, Monterey in 20 fms. Grant and Calkins state "This shell looks something like a Calliostoma, but has two twisted fold-like protuberances on the columella and a conspicuously channelled or depressed suture.

Collecting data: Dredged off Monterey in 20 fms.; common off Redondo Beach in gravel at 15 to 25 fms.; not uncommon in the Pleistocene of Timm's Point, San Pedro (Burch); from kelp washed in after storm at Imperial Beach, San Diego Co. (Mrs. J.A. Randall); San Pedro bivalvator (E.P. Chance); Coronado in kelp roots (Bristol); La Jolla and San Pedro. (Love) San Diego.

Genus: Cidarina Dall, 1909. Type (by original designation), Margaretta
cidarisis A. Adams.

Shell large, whitish, unicolor, with strong spiral sculpture, sharply nodose, the umbilicus closed by a reflexed layer of callus, the suture channelled." (Dall, 1909.)
Grant and Gale comment on this genus as follows, p 638. This genus was originally differentiated as a section of *Margarites* Leach, in Gray, 1847. It is distinguished from *Solarriella* by its closed umbilicus.

Cidarina cidaris (Carpenter), 1864. Izut Bay, Afognak Island, Alaska, 1922 dredged (Eyerdam) south to Cape San Quentin, L.C. Type locality, Noel Bay, Wash.

Collecting data: Dredged off Redondo Beach in 50 fms; off Bluff Cove in 50 fms; also in 75 fms; Pleistocene of Timm's Point, San Pedro (Burch); Mr. Eyerdam's record stated above is a northward extension of range from Kasaan Bay; Forrester Island, Alaska in 40 fms. (Willott); Puget Sound (Randolph-dredged); N. of Gabriola Id., B.C. (Oldroyd); Redondo Beach in deep water (Lowe).

Subgenus *Calliotropsis* Seguenza, 1903. Type (by original designation) *Trochus otooi* Philippi.

Dr. A. Kyra Keena advises on this group as follows (Proc. Comm., Nov. 1945):

There is no Solaricida Dall, 1902. It should be *Calliotropsis* Seguenza, 1903 (Biol. Soc. Geol. Ital., vol. 21, p. 462). Type (orig. descr.), *Trochus otooi* Philippi. Description (freely translated): "Form related to *Amphilochothus* Monterosato, differing by having whorls with two conspicuously projecting carinae above the suture, otherwise smoothly and evenly convex."

Cidarina carlotta Dall, 1902. Queen Charlotte Islands, B.C. in 1588 fms.

Cidarina ceratophora Dall, 1895. San Diego, Calif. to Mazatlan, Mexico in deep water. Type locality, La Paz, Gulf of Calif. in 1,421 fms.

Cidarina equatorialis Dall, 1908. San Diego, Calif. to Ecuador in deep water. Type locality, off the Ecuador coast in 1,132 fathoms.

Genus *Solarriella* Wood, 1842. Type (by monotypy), *S. maculata* S. Wood.

Shell small, spire low, inner layer nacreous, umbilicus very wide and deep. Aperture subcircular, almost parallel to the vertical axis of the shell, peristome attached to parietal wall along only small part of its circumference. Outer lip, as viewed from above, slightly convex forward between suture and peripheral of body whorl. Basal lip virtually straight. Sculpture consisting of spiral threads modified by fine axial threads.

(Woodring)

Solarriella peramabilis Carpenter, 1864. Forrester Island, Alaska to San Diego and the Coronado Islands. Also Japan. (Dall). Type locality, Catalina Island in 30 to 120 fathoms.

Collecting data: Dredged off Redondo Beach in 50 and 75 fms.; off Avalon Catalina Island in 55 fms.; not uncommon in the Pleistocene of Timm's Point, San Pedro (Burch); Forrester Island, Alaska in 20-50 fms. (G. Willett); dredged in Puget Sound near the San Juan Islands (T. Kincaid); San Juan Island (Eyerdam); Catalina Island in 55 fms. (Lowe).

Solarriella triplostophanus Dall, 1910. Off San Diego, Calif. and south to Panama. In deep water. Type locality, off La Paz, L.C. in 12 fms. sand.

Coll. Data: Magdalena Bay in 10 fms. (Lowe); Manzanillo in 20 fms. and San Benito Island in 10 fms. (Lowe) (San Diego Museum).
Solariella rhyssa Dall, 1919. Catalina Channel, Calif.

Solariella nuda Dall, 1895. Monterey, Calif. to Clarion Island.
Type locality, off Lower Calif., in 298 to 455 fathoms.
Collecting data: San Diego in 50 fms. (Gripp) (San Diego Museum).

Solariella varicosa (Mighels and Adams), 1841. Arctic Ocean to San Diego.
Also Atlantic. Type locality, Bay Chaleur in stomach of a codfish.
Collecting data: Hinchinbrook Island, Pr. Wm. Sound, Alaska (dredged (Norberg); Illinluk Bay, Unalaska Island, Aleutians, 1932; Izhut Bay, Afognak Island, Alaska, 1922; Vadso, Norway, ex Tromso Museum (W.J. Eyerdam).

Solariella obscura (Couthouy), 1838. Arctic Ocean to Straits of Juan de Fuca. Circumboreal. Type locality, Massachusetts Bay.
Collecting data: Illinluk Bay, Unalaska Island, Aleutians, 1932 (Eyerdam). Mr. Eyerdam sent in a record for a subspecies with which we are not familiar. Any additional data will be appreciated. It is S. obscura bella Verkruzand and reported from Unalaska Island, Aleutian Islands in 1932.

Solariella paupercula (Dall), 1919. Arctic Ocean to the Aleutians.
Type locality, Arctic Ocean north of Bering Straits.

Genus Margarites Leach in Gray, 1847. Type (by monotypy), Helix margarita Montagu = Trochus helicinus Fabricius, 1780
"Shell umbilicate, orbicular, conoid or depressed, thin; not variegated; whorls rounded, smooth or spirally lirate; aperture subcircular, peristome simple, acute, the margins approaching; columella arcuate, simple, thin." (Pilsbry).

Subgenus Pupillaria Dall, 1909. Type (by original designation), Trochus pupillus Gould.
"Shell dull, trochiform, unicolor, strongly spirally striated, sometimes radiately ribbed, and with more numerous whorls. Châferly temperate seas." (Dall)
Grant and Galé comment "There is less difference between Pupillaria and Lirularia than between either of the two and Margarites s.s. "Lirul-aria" is smaller than Pupillaria."

Margarites pupillus Gould, 1849. Nunivak Island, Bering Sea to San Pedro, Calif.; to San Diego in deep water. Type locality, New Zealand but no doubt this is an error.
Collecting data: Dredged off Redondo Beach in 50 fms.; littoral from Crescent City; De Poo Bay, Oregon; a common littoral shell in the northern part of the range, but taken only by dredging in southern California. Not uncommon in the Flossecome of Timm's Point, San Pedro (Burch); Puget Sound, Drier Bay, Knight Island, Alaska; Izhut Bay, Afognak Island (Eyerdam).

Margarites sordidus Hancock, 1846. Arctic Coast, Bering Strait and the Okhotsk Sea. ? North Japan. Circumboreal.
Margarites cinerascens (Couthouy), 1838. Bering Strait to Port Etchells, Alaska. Circumboreal. Type locality Massachusetts Bay.

Collecting data: Drier Bay, Knight Island, Alaska, 1923 (Eyerdam); also 6239' N 177 W in 55 fms, clay, Vega Expd. 5/8/1879 (Eyerdam); Frenchman's Bay, Maine (San Diego Museum).

Margarites vorticiforus Dall, 1873. Bering Strait and Sea, south and east to Unalaska, Alaska. Type locality, Iliuliuk Harbor, Captain's Bay, Unalaska, Alaska. Collected from type locality by W. J. Eyerdam.

Margarites vorticiforus sharpii Hillsbr, 1889. Unalaska to Port Althorp, Alaska. Type locality, Dutch Harbor, Unalaska.

Collecting data: Collected from the type locality by W. J. Eyerdam.

Margarites vorticiforus escarinas Dall, 1919. Southwest of Point Barrow, Arctic Ocean and south and east to the Aleutians.

Type locality: Sta. 22, N. Lat. 69 35' and W. Long. 163 27', in 11-12 fms, to San Pedro, (Love).

Margarites salmonicus Carpenter, 1864. Puget Sound to Cayucos, Calif. San Luis Obispo Co., Calif. (Burch). Type locality, Monterey and Santa Barbara Islands, Calif.

Collecting data: Dredged off Monterey in 15 fms.; Cayucos, Calif. littoral (Burch); near Arroya Grande, Calif. (Tremper); San Pedro (Love) (San Diego Museum).

Margarites rhodia Dall, 1921. Port Althorp, Alaska to San Diego, Calif.

Type locality, Puget Sound, Vancouver Island and Noah Bay.

Collecting data: Crescent City, Calif. (E.P. Chace).

Margarites rudis Dall, 1919. Bering Sea to Cook's Inlet, Alaska; also Kamchatka. Type locality, Coal Harbor, Shamagins, Alaska in 8 fms.

Margarites healyi Dall, 1919. Arctic Ocean north of Bering Strait.

Type locality, north of Bering Strait, Sta. 10 of U.S.S. "Corwin".

Margarites simbla Dall, 1913. Off Santa Barbara Islands, Calif.

Type locality, deep water off Santa Barbara Channel, Calif.

Subgenus Lirularia Dall, 1909. Type (by original designation), Margarita lirulata Carpenter.

Shell small, dull-surfaced, with variable color patterns, strong spiral sculpture, and delicate axial sculpture. Tropical and warm temperate seas. (Dall)

In our Minutes #16, p. 3, October 1942, Mr. George Willett discussed this group. Excerpts from Mr. Willett's paper follow:

In the process of naming the Margarites of the subgenus Lirularia, which are so abundant in the Lower Pleistocene deposits of San Pedro, I found it necessary to study the characters of all the Pacific coast representatives in our collections. As this group has puzzled many west coast conchologists (myself included), it may be worth while to report the conclusions arrived at in this study for what they are worth.

It appears to me that there are only three rather variable species of Lirularia commonly represented in west American collections, these being Margarites succintus Carpenter, M. lirulatus Carpenter, and M. optabilis Carpenter.
March, 1946

These three, by the way, are all grouped by Tryon under the oldest name, *Margarites lirulatus*. Although Dall gives the range of *succinctus* "south to San Diego" all my specimens are from Alaska. This is the smallest member of the group, with smooth, rounded whorls, grayish in color, with black spirals which usually show plainly within the aperture.

Carpenter's description of *Margarites lirulatus* calls for a shell with 2 cords on the spire and about 8 on the base. The type locality is Puget Sound. Oldroyd's figure (reproduced from Dall) does not show such a shell; neither have I seen it in any collection, but I have examined few specimens from Puget Sound. The portion of the description of *lirulatus* quoted by Oldroyd from Tryon applies to a composite of the three species, only the first portion apparently referring to the shell Carpenter had when he described *lirulatus*. Specimens with 7 to 9 spiral cords are abundant in some Pleistocene deposits at San Pedro; also, I have them from 20 fathoms off South Coronado Island and off San Pedro, and from 30 fathoms off Catalina. These, however, nearly always have 3 spirals, which in many specimens are acute, and probably should be called *M. lirulatus caucicosatus* Carpenter. Shore specimens from Cayucos, Paint Vicente and Todos Santos Bay and a small series from 10 fathoms off Santa Cruz Island, have about 5 basal cords, thus resembling the figures of Dall and Oldroyd. This is probably the shell Carpenter described as *parcipictus*, which seems also to be a race of *lirulatus*. A few of my 20 specimens show a lesser number than 5 basal cords, thus indicating intergradation between *parcipictus* and *lirulatus*. Shore specimens from Ketchikan, Alaska are higher than typical, uncolored, with 2 cords on the spire, but only 5 on the base. These therefore, have the spire as described for typical *lirulatus*, but the base of *parcipictus*. They may be Carpenter's *M. lirulatus concisus*. A small series from Point Reyes California given me by Dr. Gregg, are quite smooth, with an irregular number of spirals, and seem referable to *M. lirulatus obsolatus* Carpenter.

Margarites optabilis Carpenter is figured by Oldroyd (copied from Dall). But, for some reason, the species is not included in her text. It is a pointed, grayish colored shell, occasionally longitudinally maculated with white, and more frequently with alternating white and dark spots on the peripheral keel. In my experience, this is an uncommon species, living, the only typical lot I have coming from 50 to 75 fathoms off Catalina Island. However, the large form, called *M. optabilis knoehi* by Arnold, is very abundant in the lower Pleistocene of San Pedro. Although this form has previously been reported as a fossil, and both Dall and Keon place the northern limit of the species *optabilis* in the vicinity of Santa Barbara, I have four specimens of *M. optabilis knoehi* that were dredged off Forrester Island.

In the light of the above discussion there seems little question but that lumping will ultimately be done with this group. However, at this time, we will simply list the described species.

Margarites succintus (Carpenter), 1864. Sitka, Alaska (Dall) to Lower California (Keon). Type locality not given. / to San Martin Id., L.C.

Collecting data: Monterey on algae (Burch); Grant Island, Alaska (G. Willott); Rodondo Beach, Skagit Co., Wash. (Evereand); San Martin Island, L.C. (Dr. F. Baker); So. Coronado Island (Baker); Monterey (Hopshill); Ketchikan, Alaska (Willott) (San Diego Museum).

Margarites funiculatus (Carpenter), 1864. Neha Bay, Wash.
Margarites optabilis (Carpenter), 1864. Santa Barbara, Calif. south to Coronado Islands (Kelsey). Type locality: San Diego-San Pedro area.

Original description: "Wider (than M. parcipicta); decussated between ribs; 2 spiral lines inside umbilicus."

Collecting data: Catalina Island in 30 fms. (Lowe); San Pedro and Monterey (Lowe); So. Coronado Island in 3 fms. Identified by Dall. Dr. F. Baker (San Diego Museum).

Margarites optabilis knoxti Arnold, 1903. Forrester Island, Alaska (Willott) and Pleistocene of San Pedro, Calif. Type locality, Pleistocene of San Pedro.

Margarites lacunatus (Carpenter), 1864. Neah Bay, Wash to San Diego, Calif. Type locality, Neah Bay.

Margarites parcipictus (Carpenter), 1864. Sitka, Alaska to San Martin Island (Baker) and to Guadalupe Island (Strong and Hanna). Type locality, Neah Bay, Wash.

Collecting data: In our experience this is an extremely common, small dredged shell. We have it dredged off Monterey in 10-40 fms.; off Redondo Beach in 20-60 fms.; off Avalon, Catalina Island in 35 fms. (Burch); off South Coronado Island and off San Martin Island (Dr. F. Baker); Puget Sound and San Juan Islands (T. Kincaid); San Pedro and Monterey (Lowe); San Geriono Island (Lowe).

The subspecies M. F. pedroanus Arnold, 1903 seems to be a fossil species so far not reported. Living and should therefore probably better be dropped from our faunal list.

Margarites inflatus Dall, 1921. Puget Sound and Vancouver Island.

New name for Margarita inflatula Carpenter.

Margarites limulatus (Carpenter), 1864. Port Etches, Alaska to San Diego. Type locality, Puget Sound and Vancouver Island.

Collecting data: Fauntleroy, Wash., Puget Sound, littoral; Monterey Bay in 10 fms. (Burch); Izhut-Bay, Afognak Island, Alaska, 1922 (Eyerdam); Catalina Island in 30 fms. (Lowe); Orcas Island (Dr. Baker); So. Coronado Island (Dr. F. Baker) (San Diego Museum).

Dr. A. Myra Koen advises on this species as follows (Pur. Comm.)

"In 1864 Carpenter says: M. limulata, n.s. Small; operculum smooth; 2 sharp principal riblets on spire; outline variable. Var. subelevata, raised; var. obsolata, sculpture evanescent; var. conica, very tall with intercalary ribs, like G. parcipicta. All of these are listed as 'Puget Sound and Vancouver Island.' In 1865, Proc. ANSP, p. 61, he repeats this in Latin, with a few added words, as given by Mrs. Oldroyd. For conica he says: "t. valde olveta; limulius acutus, allis interdum intercalantis; umbilico parvo. Longe, 83, longe spir. 2, lat. 25, div. 56. Puget Sound"

Margarites limulatus conicus (Carpenter), 1864. Grant Island, Alaska (Willott) to Puget Sound. Type locality, Puget Sound.

See discussion under limulatus. Ketchikan, Alaska (Willott)

Margarites limulatus obsolete (Carpenter), 1864. Puget Sound to San Diego.

See discussion under limulatus. Midspit, San Diego Bay (Dr. F. Baker) (con.)
Margarites subelevatus (Carpenter), 1864. Noah Bay, Wash. to San Pedro (Longo).

Margarites acuticostatus (Carpenter), 1864. Bodega Bay to Guadalupe Island (Strong and Hanna). Type locality, Santa Barbara, Calif.

Collecting data: San Martin Island, L.C. (Dr. Baker); San Simeon, Calif. littoral.

Subgenus Margarites s.s.

Margarites helicinus (Degener), all coasts of Bering Sea, to Catalina Island, Calif. Type locality, north side of Spitzbergen.

Collecting data: Grant Island, Alaska (G. Willett); Ketchikan, Forrest-er Island, San Lorenzo (Willett); Vancouver Island (Button); Hoona, Alaska (Kate Stephens); Frenchman's Bay, Maine (Blaney) (San Diego Museum); Drier Bay, Knight Island, 1923; Izhut Bay, Afognak Island, 1922; Raspberry Strait, Raspberry Island, Alaska, 1945; also Kobbebay, N. Spitzbergen, type locality, in 55 fms, clay coll. Odhner (W. J. Eyerdam).

Margarites beringensis (Smith), 1899. Arctic Ocean, Plover Bay, Commander Islands, and Petrel Bank, Bering Sea. Type locality, Commander Islands.

Margarites albolineatus (E.A. Smith), 1899. All coasts of Bering Sea. Type Locality, Commander Islands.

Margarites olivaceus (Brown), 1897. St. Lawrence Island; Atka Island, Aleutians. Also Atlantic. Type locality, Greenock, Great Britain.

Collecting data: Dutch Harbor, Aleutians (Lowe).

Margarites pribilofensis Dall, 1919. Arctic Ocean to off Pribiloff Islands, Bering Sea. Type locality, near Pribiloff Islands in 54 fathoms.

Margarites frigidus Dall, 1919. Arctic Ocean and south to Nunivak Island, Bering Sea. and Windfall Harbor, Admiralty Islands, Alaska. Type locality, Arctic Ocean north of Bering Strait.

Margarites marginatus Dall, 1919. Arctic Ocean and Bering Sea, south to Oregon; also Atlantic. Type locality, Adak Island, Aleutians.

Collecting data: Male Harbor, Alaska (Kate Stephens); Afognak Island, Alaska (Baker); Knight Island (Baker) (San Diego Museum); on kelp fronds and rocks; Italiul Harbor, Unalaska Island, 1932; Izhut Bay, Afognak Island, 1922; Raspberry Strait, Raspberry Island, 1945 (Eyerdam).

Margarites hypolispus Dall, 1919. Arctic Ocean north of Bering Strait.
Margarites tenuisculptus (Carpenter), 1864. Puget Sound and Vancouver Island, to South Coronado Island (Dr. F. Baker).

Margarites umbilicatus (Broderip and Sowerby), 1829. Arctic. Coast. Circumboral. Type locality, Oceano borealis.

Margaritopsis frieloi (Krause), 1885. Boring Strait region. Type locality, St. Lorenzo, one example (Krause).

Genus Gibbula Risso, 1826. Type (by subsequent designation, Herrmannson, 1847), G. magus (Linnaeus) = Trochus magus Linnaeus.

Shell conoidal, umbilicated; umbilicus cylindrical or infundibuliform; whorls frequently tuberculated above and with channelled suture; columella sometimes terminating in a tubercular tooth. (Tryon).

Gibbula adriatica canfieldi Dall, 1871. Monterey to San Diego, Calif. Pleistocene. We have no recent records of this species.

Family Cyclostomatiidae (Vitrinellidae)

There has been some discussion of the proper family name to use. Dr. A. Hyra Keen advises (For. Comm.) "Since, according to Opinion 141 the oldest named genus in a family need not be taken as the type genus, Vitrinellidae can probably stand. However, I have not made an exhaustive search to see which family name was proposed the earliest.

Genus Vitrinella C.B. Adams, 1850. Type (by subsequent designation, Bush, 1897), Vitrinella helicoides C.B. Adams.

Shell small, thin, with a Helix-like low spire and a very wide umbilicus; sculpture absent except for growth lines; aperture ovate, with margin projecting forward between the suture and the periphery of the body whorl; callus deposit on peristomatal wall.

Grant and Gale comment "It is probable that Vitrinella should be considered a subgenus of Cyclostomus."

Vitrinella williamsoni Dall, 1892. San Pedro, Calif. to San Diego.

Collecting data: Laguna, Calif. (Lowe); Pt. Loma (Dr. Baker); Pleistocene of Baldwin Hills, Del Rey deposit (Burch).

Vitrinella oldroydi Bartsch, 1907. Monterey to Pt. Abreojos, L.A. San Martin Island, L.C. Type locality, Point Loma, Calif.

Collecting data: Dredged off Monterey in 15 fms.; littoral at Cayucos, San Luis Obispo Co. on algae; also at San Simeon; La Jolla; dredged off Avalon, Catalina Island in 25 fms. (Burch); San Martin Island (Baker).

Can be taken in fair quantity living on and around the tail valve of Ischnochiton conspicuus where the Ischnochitons are living in old Pholad holes or crevices in the ledges." (E.P. Chase).

Note Discussion continued bottom of Page 19.
Family Vitrinellidae

The following keys and lists are from Mr. A.M. Strong’s notebook.

With a callus or pad restricting or covering the umbilicus «Toinostoma
Without callus pad, openy umbilicated
• Outer lip sinuated or waved Scioliabra
• Outer lip not sinuated or waved
• Shell naticoid, spire elevated Ganesa
• Shell flattened, spire low or sunken
• Umbilicus with axial ridges or folds Decomphala
• Umbilical walls smooth
• Spiral sculpture absent or confined to the umbilical region
• Spiral sculpture present
• Entire surface with equal spiral threads of incised lines
• Body whorl with one to six spiral keels
• Axial sculpture absent Cyclostramna
• Axial sculpture present Circulus

Dall uses the genus Ganesa for several minute shells from the west coast. These seem to be quite different from the east coast shells usually placed in the genus.

Decomphala was suggested by Bartsch as a subgenus under Vitrinella for species having axial sculpture on the umbilical walls. As we have a species with similar umbilical sculpture but with strong spiral sculpture instead of the smooth surface of Vitrinella, it seems best to use it as a genus.

Delphinoidea seems to be a valid generic name and is used to take the place of Cyclostramna used by Dall and Bartsch. The northern species placed by Dall in the genus leptogyra do not seem to differ in any material way.

Bartsch has said somewhere that the material used by Carpenter in describing many species which belong in the family was so poor that it would be better to call them indeterminate. However, the descriptions in most cases are full enough to arrange them in genera and pick out specific characters. Where redescribed shells from Mazatlan are said to be the same as C.B. Adams shells from Panama it may be questionable. Dall and Bartsch have used different names for genera in most cases.

Genus Ganesa

Umbilicus emarginated
• Umbilicus bordered by a keel
 Dia.m. 1.2 mm . Mazatlan naticoides Carpenter
• Umbilicus bordered by 12-15 spiral striae
 Dia.m. 4.5 mm . Panama panamensis Dall

Umbilicus not emarginated
• Entire surface with subgranular vermiculations
 Dia.m. 2 mm . Galapagos piona Dall
• Entire surface with thread-like axial folds
 Dia.m. 2.5 mm . Galapagos filosa Dall

See Dall in Proc. U.S.N.M., vol. 56, p. 368 for notes. I have not seen the paper by Miss Bush mentioned by him. None of these species have been figured and we have not placed any of them. Dall’s species are from very deep water.
Genus Cyclolastrea

Interapaces between cords or keels, sculptured

- Spiral cords or keels, more than 2
- Spiral cords, 3
 - Umbilicus wide, open to the apex
 Diam. 4.5 mm, San Pedro to Gulf of Calif. baldridgei Bartsch
 - Umbilicus narrow, deep
 Diam. 1.5 mm, Gulf of Calif. to Panama exigua C.B. Adams
- Spiral cords or angulations, 5-6
 - Major cords, smooth
 Diam. 4.0 mm, Gulf of Calif. spiceri B.H. & S.
 - All spiral sculpture, nodulous or beaded
 Diam. 2.38 mm, Tres Marias Islands marinae B.H. & S.

Interspaces between cords, without spiral sculpture
- Axial sculpture, of fine threads
- Spire, showing 1 spiral cord or angulation
 - Base, with 3 spiral cords or angulations
 Diam. 1.4 mm, Cape San Lucas xanthis Bartsch
 - Base, with 2 spiral cords or angulations
 Diam. 2.1 mm, San Pedro miranda Bartsch
 - Base, with more than 2 spiral cords or angulations
 Diam. 1.5 mm, Panama perparva C.B. Adams
 - Periphery, sharply keeled
 Diam. 1.0 mm, Panama janus C.B. Adams
 - Spire, showing more than 1 spiral cord or angulation
 Diam. 2.1 mm, San Pedro miranda Bartsch
 - Base, with more than 2 spiral cords or angulations
 Diam. 0.9 mm, Panama concinna C.B. Adams
- Spire, moderately elevated
 - Diam. 1.1 mm, Bahia Honda, Panama macullochaes S. & H.
- Axial sculpture, consisting of distinct ribs
- Spiral cords or angulation, 6
 - Diam. 1.3 mm, Panama adamsi Bartsch
 - Spiral cords or angulations, 2 to 3
 - Diam. 1.0 mm, Bahia Honda, Panama bartschi S. & H.
 - Spiral cords or angulations, 2 to 3
 - Diam. 0.8 mm, Mazatlan to Panama nodosa Carpenter
 - Periphery, angulated with a cord, on the angle
 - Shell, flatly depressed
 Diam. 1.0 mm, San Diego diagnos Bartsch
 - Shell, moderately elevated
 Diam. 1.3 mm, Panama adamsi Bartsch

Genus Circulus

Shell, with one spiral cord on the angulated periphery
- Umbilicus, broad, edge rounded
 - Diam. 2.2 mm, Panama diomadicae Bartsch
- Umbilicus, sharply angled at the edge
 - Diam. 3.1 mm, Taboga Island, Panama nicholsoni S. & H.

Shell, with more than one spiral cord
- Spire, without spiral cords
- Periphery, with a rounded spiral cord
 - Diam. 1.2 mm, Mazatlan annulatus Carpenter
Periphery flattened, a spiral cord on each side
Diam. 0.85 mm. Mazatlan cinctus Carpenter.

Spire with one or more spiral cords

Spiral cords confined to the peripheral region
Diam. 1.6 mm. La Paz lirops Bartsch.

Spiral cords not confined to the peripheral region

Spiral cords 2 or 3

Interspaces between cords with strong spiral threads
Diam. 1.5 mm. Tres Marías Islands madreensis B.H. & S.

Interspaces between spiral cords smooth or with fine striae

Periphery rounded
Diam. 1.5 mm. Panama modestus C.B. Adams.

Spire moderately elevated
Diam. 1.8 mm. Panama tricarinata C.B. Adams

Spire depressed or sunken

Umbilicus bordered with a spiral cord
Diam. 2.5 mm. Panama valvatoides C.B. Adams

Umbilicus bordered with an angle only
Diam. 1.0 mm. Mazatlan planospiratus Carpenter

Spiral cords more than 3

Base with spiral cords

Periphery angulated, with a cord on the angle

Umbilicus bordered by a spiral cord
Diam. 2.5 mm. Panama diomadae Bartsch

Umbilicus not bordered by a cord
Diam. 1.0 mm. San Diego connus Bartsch

Periphery not angulated

Periphery rounded
Diam. 0.75 mm. Mazatlan carinulatus Carpenter

Periphery flattened, with a cord on each side

Base with decussated sculpture
Diam. 1.3 mm. Mazatlan bifrontis Carpenter

Genus Delphinoidea
Umbilicus restricted by the body whorl in the adult

Shell subglobose Diam. 1.6 Tres Marías Is. stephensae B.H. & S.

Shell depressed, turbonate

Spire but slightly elevated
Diam. 3.2 mm. Taboga Island, Panama hambachi S. & H.

Spire moderately elevated
Diam. 1.8 mm. Taboga Island, Panama hannai S. & H.

Umbilicus not restricted

Umbilicus small, cylindrical

Shell depressed, discoidal

Base with spiral threads, spire smooth
Diam. 1.5 mm. Panama seminuda C.B. Adams

Entire surface with thin spiral ridges
Diam. 2.0 mm. Panama porceliana de Folin

Shell turbonate

Spiral threads numerous, equal close spaced
Diam. 2.0 mm. San Diego rossellina Dall

Spiral threads subequal, unequally spaced
Diam. 5.0 mm. Cape San Lucas grati B.H. & S. (com.)
Genus Scissalabra
Axial sculpture present
- Sculpture finely decussated
 - Spire moderate elevated
 - Diam. 1.4 mm. Mazatlan monile Carpenter
 - Spire flattened
 - Diam. 1.0 mm. Mazatlan monilifera Carpenter
- Sculpture not finely decussated
 - Body whorl with 1 spiral keel
 - Diam. 0.95 mm. Mazatlan carinata Carpenter
 - Body whorl with more than 1 spiral keel
 - Diam. 1.25 mm. Mazatlan to Panama parva C.B. Adams
 - Body whorl with 4 spiral keels
 - Diam. 1.6 mm. Mazatlan to Panama panamensis C.B. Adams
Axial sculpture absent
- Whorls angulated
 - With a sharp angle at the periphery
 - Diam. 1.0 mm. Monterey to Gulf of Calif. dalli Bartsch
 - Broadly angulated below the periphery
 - Diam. 1.0 mm. Mazatlan subquadrata Carpenter
- Whorls not angulated
 - Spiral sculpture present
 - Spiral cords at the suture and periphery
 - Diam. 1.4 mm. Mazatlan bifiilata Carpenter
 - Several spiral threads at the periphery
 - Diam. 0.8 mm. Mazatlan orbis Carpenter

Genus Vitrinella
Surface with irregular impressed lines
- Diam. 2.1 mm. Cayucos to Pt. Shcrojos oldroydi Bartsch
Surface smooth or with fine lines of growth
- Umbilicus narrow, columellar walls straight
 - Umbilicus open to the apex
 - Diam. 1.9 mm. Gulf of California tiburonensis Durham
 - Umbilicus not open to the apex
 - Diam. 2.3 mm. San Pedro eschmuri Bartsch
- Umbilicus wide, columellar walls rounded
 - Shell flattened, spire scarcely elevated
 - Diam. 5.5 mm. San Pedro williamsoni Dall
- Shell turbonate, spire moderately elevated
 - Ratio of height to diameter 1 to 2.
 - Diam. 1.2 mm. San Pedro smithi Bartsch
 - Ratio of diameter to height 1 to 1.6
 - Diam. 1.6 Gulf of California guymasensis Durham

Genus Decomphala
Early whorls with axial sculpture
- Spiral sculpture present
 - Diam. 2.42 mm. Cape San Lucas lowei B, H. & S.
- Spiral sculpture absent
 - Diam. 3.8 mm. Monterey to Newport stearnsi Bartsch
Early whorls without axial sculpture
- A single spiral keel on the base
 - Diam. 2.2 mm. Monterey to San Diego beryli Bartsch
- Three spiral keels on the periphery—Bahia Honda.... beryli S. & H.
March, 1946

Genus Teinostoma

Shell angulated
- Umbilicus broad, open to the apex
- Spire moderately elevated
 Diam. 1.2 mm. Gulf of Calif. spiritualis P.H. & S.
- Spire depressed
- Apex lower than the last whorl
 Diam. 2.3 mm. Monterey to San Diego californica Bartsch
- Apex projecting slightly above the last whorl
 Diam. 1.5 mm. Cape San Lucas lucasana P.H. & S.
- A smooth base between suture and first spiral
 Diam. 1.3 mm. Gulf of Calif. dalli Bartsch
- Entire surface spirally threaded

Spiral threads wavy, irregular
 Diam. 2.0 mm. Olga, Wash. concordia Bartsch
- Entire surface spirally threaded
 Diam. 1.3 mm. Gulf of Calif. supravallata Carp.

Shell not angulated
- Whorls finely sculptured
- Incised axial lines present
- Spiritualis absent
 Diam. 1.0 mm. Panama minuta C.B. Adams
- Spiral sculpure absent
- Incised axial lines present
- Last whorl 2+3+3. not produced.
 Diam. 1.2 mm. Mazatlan pyricallosa Carpenter
- Incised axial lines absent
- Spiral striae near the suture only
 Diam. 1.4 mm. Mazatlan substriata Carpenter
- Spiral striae over entire surface
 Diam. 1.0 mm. Mazatlan lirulfata Carpenter
- Shell subglobose, with a flattened spire
- Spiral striae subrugose
 Diam. 1.1 mm. Mazatlan pallidula Carpenter
- Spiral striae very fine
 Diam. 0.95 mm. Mazatlan tumens Carpenter
- Whorls smooth, without sculpture
- Spirals depressed, with flatterly impressed sutures
- Body whorl greatly produced
- Maximum diameter less than 3 mm.
 Diam. 1.75 mm. Gulf of Calif. amplectans Carpenter
- Maximum diameter more than 3 mm.
 Diam. 3.5 mm. Magdalena Bay coccinella Dall
- Body whorl not greatly produced
- Umbilical area with a small lingiform pad only
 Diam. 2.0 mm. San Diego bibbiana Dall (con.)
**** Umbilical area with more than linguiform pad

***** Callus leaving a slight umbilical chinck

Diam. 2.0 mm. San Pedro..........................sapiella Dall

***** Spire moderately elevated

***** An impressed line just below the suture

Diam. 1.75 mm. Panama................................. regularis C.B. Adams

***** Without an impressed line below the suture

***** With a minute umbilical dimple

Diam. 1.8 mm. Coronado Islands............... salvania Dall

***** With a distinct umbilical chinck

Diam. 1.1 mm. Bahia Honda, Panama........ hemphilli S. & H.

Genus Vitrinella C.B. Adams, 1859

Vitrinella oldroydi Bartsch, 1907 Cayucos to Pt. Abreojos

Vitrinella eschnauri Bartsch, 1907 San Pedro

Vitrinella williamsoni Dall, 1892 San Pedro

Vitrinella amithi Bartsch San Pedro

Vitrinella guaymasensis Durham Gulf of Calif.

Vitrinella iiburonensis Durham Gulf of Calif.

Genus Decomphala

Decomphala berryl (Bartsch) 1907 Monterey to San Diego

Decomphala stearnsi (Bartsch) 1907 Monterey to Reef Pt.

Decomphala lovei (Baker, Hanna and Strong) Cape San Lucas

Decomphala bakeri Strong and Hortlein Bahia Honda, Panama

Genus Delphinoidea Brown, 1927

Delphinoidea californiae (Bartsch), 1907 Monterey to San Diego

Delphinoidea rossellina (Dall) 1919 San Diego

Delphinoidea dalli (Bartsch), 1911 Gulf of California

Delphinoidea lurulata (Carpenter), 1856 Mazatlan

Delphinoidea decussata (Carpenter), 1856 Mazatlan

Delphinoidea granti E.H. & S., 1856 Cape San Lucas

Delphinoidea lucasana E.H. & S., 1856 Cape San Lucas

Delphinoidea spiritualis E.H. & S., 1856 Gulf of Calif.

Delphinoidea strophoae E.H. & S., 1856 Tres Marías Islands

Delphinoidea seminuda (C.B. Adams), 1852 Panama

Delphinoidea porcellana (de Polin) Panama

Delphinoidea hannai Strong & Hortlein Panama

Delphinoidea hambachi Strong & Hortlein Panama

Genus Cyclostrema Marryatt, 1818

Cyclostrema baldridgei Bartsch, 1911 San Pedro to Gulf of Calif.

Cyclostrema miranda Bartsch, 1911 San Pedro

Cyclostrema diegensis Bartsch, 1907 San Diego

Cyclostrema exigua (C.B. Adams), 1852 Mazatlan to Panama

Cyclostrema nodosa (Carpenter), 1856 Mazatlan

Cyclostrema coronata (Carpenter), 1856 Mazatlan

Cyclostrema xantusi Bartsch, 1907 Cape San Lucas to Panama

Cyclostrema ornata (Carpenter), 1865 Mazatlan

Cyclostrema tenueisculpta (Carpenter), 1865 Mazatlan

Cyclostrema lowni E.H. & S., 1853 Cape San Lucas - Decomphala

Cyclostrema mariae E.H. & S., 1856 Tres Marías Islands

Cyclostrema spiceri E.H. & S., 1856 Gulf of California

Cyclostrema preparva (C.B. Adams), 1852 Panama

Cyclostrema janus (C.B. Adams), 1852 Panama

Cyclostrema concinna (C.B. Adams), 1852 Panama

Cyclostrema adamsi Bartsch, 1911 Panama

(con.)
Cyclostroma bartschi Strong & Hertlein Panama
Cyclostroma mouloughi Strong & Hertlein Panama

Genus Circulus Jeffreys, 1865
Circulus coenia Bartsch, 1907 ? Catalina, Ecuador
Circulus cerrosensis Bartsch, 1907 Cerros Island to Gulf of California
Circulus annulata (Carpenter), 1856 Mazatlan
Circulus planospira (Carpenter), 1856 Mazatlan
Circulus cineta (Carpenter), 1856 Mazatlan
Circulus carinulata (Carpenter), 1856 Mazatlan
Circulus bifrontia (Carpenter) Mazatlan
Circulus vorreuxii (Fischer), 1857 Gulf of Calif.
Circulus liriipe Bartsch, 1911 La Paz
Circulus modesta (C. B. Adams), 1852 Panama
Circulus valvuloides (C. B. Adams), 1852 Panama
Circulus tricarinata (C. B. Adams), 1852 Panama
Circulus diomediae Bartsch, 1911 Panama
Circulus bakeri Strong and Hertlein Bahia Honda, Panama — Docomphalae
Circulus nicholsoni Strong & Hertlein Taboga Island, Panama

Genus Scissilabra Bartsch, 1907
Scissilabra dalii Bartsch, 1907 Monterey to Gulf of Calif.
Scissilabra parva C. B. Adams, 1852 Mazatlan to Panama
Scissilabra panamensis V. S. Adams, 1852 Mazatlan to Panama
Scissilabra subquadrata Carpenter Mazatlan
Scissilabra bifilata Carpenter Mazatlan
Scissilabra orbis Carpenter Mazatlan
Scissilabra monilo (Carpenter), 1857 Mazatlan
Scissilabra monilifera Carpenter Mazatlan

Genus Canesa
Canesa naicaolidae Carpenter Mazatlan
Canesa panamensis Dall, 1902 Panama
Canesa pionica Dall Galapagos
Canesa filosa Dall Galapagos

Genus Teinostoma A. Adams, 1854
Teinostoma invallata (Carpenter), 1864 Monterey to Gulf of Calif.
Teinostoma sobravallata (Carpenter), 1864 Monterey to Gulf of Calif.
Teinostoma sacipella Dall, 1919 San Pedro to San Diego
Teinostoma bibiana Dall, 1919 San Diego
Teinostoma salvania Dall, 1919 Coronado Islands
Teinostoma cacinella Dall, 1919 Magdalena Bay
Teinostoma gallegosi Jordan Magdalena Bay, Pleistocene
Teinostoma amplioptans (Carpenter), 1856 Gulf of Calif.
Teinostoma substriata Carpenter, 1856 Mazatlan
Teinostoma pyriculos (Carpenter), 1856 Mazatlan
Teinostoma lirulata (Carpenter), 1856 Mazatlan
Teinostoma tumens (Carpenter), 1856 Mazatlan
Teinostoma pallida (Carpenter), 1856 Mazatlan
Teinostoma carinata (Carpenter), 1856 Mazatlan
Teinostoma regularis C. B. Adams, 1852 Panama
Teinostoma minutus C. B. Adams, 1852 Panama
Teinostoma neophilii Strong & Hertlein Taboga Island, Panama
Teinostoma oshnori Strong and Hanna Bahia Honda, Panama
The following genera are not represented in the California fauna, but are listed and discussed in Mr. A.M. Strong's notebook for the southern fauna.

Genus Discopsis
Discopsis panamensis Bartsch, 1918 Panama
Discopsis argentea Bartsch, 1918 Panama
Discopsis奶奶 Watson, 1879

Genus Gaza
Gaza rathbuni Dall, 1889 Galapagos

Genus Coronado
Coronado simonsae Bartsch Coronado Islands

Genus Allcorus
Allcorus deprellus Strong Gulf of California

Family Neritidae

Genus Nerita
Nerita acabicosata Lamarck, 1822 Lower Calif. to Peru
Nerita bernhardi Recluz, 1850 Lower Calif. to Peru
Nerita ornata Sowerby, 1824 Nicaragua to Panama
Nerita ceroostoma Troschel, 1852 Peru

Genus Neritina
Neritina pista Sowerby, 1832 usurpatrix Cross & Fischer Magdalena Bay-Panama
Neritina cassinula Sowerby Gulf of Calif.
Neritina californica Reeve Gulf of Calif.
Neritina latissima Eroderip, 1832 Costa Rica to Peru
Neritina sobrina Recluz, 1849 Peru
Neritina owenii Rave Costa Rica and Peru

Genus Phenacolepas
Phenacolepas magadalensis Dall, 1918 Magdalena Bay
Phenacolepas osculans C.E. Adams, 1852 Gulf of Calif. to Panama
Phenacolepas malocoi Vanatta, 1912 Santa Rosalia

Discussion of Vitrinella continued from bottom of Page 11.

Vitrinella eshnauri Bartsch, 1907. Monterey to San Diego to Scammells Lagoon. Type locality, San Pedro.
Collecting data: Dredged off Avalon, Catalina Is. in 35 fms. (Burch); San Pedro (Lowe); Pt. Loma (Dr. Baker); Reef Point, 10 fms. (Strong); Scammells Lagoon (Baker).

Vitrinella alaskensis Bartsch, 1907. Unalaska, Alaska.

Genus Docomphala
Bartsch, 1907. Type (by original designation).

Vitrinella stearnsii.

Vitrinella stearnsii (Bartsch) 1907. Monterey, Calif. to South Coronado Island. (Baker). Type locality, Monterey.
Collecting data: Dredged off Redondo Beach in 25 fms. gravel (Burch); off South Coronado Island in 18 fms. (Dr. F. Baker); Not uncommon in the Pleistocene of Timm's Point, San Pedro, Calif. (Burch)

Vitrinella berryi (Bartsch) 1907. Monterey to So. Coronado Island. Type locality, off Del Monte, Monterey.
Collecting data: Dredged off Malaga Cove, L.A. Co. in 20 fms. (Burch); So. Coronado Island in 18 fms. (Baker); Bird Rock (Baker).
Departure Day, British Columbia.

Vitriabella smithi Bartsch, 1927. White's Point, Los Angeles Co., Calif. to South Coronado Island (Dr. F. Baker). Type locality, White's Point, San Pedro.

Genus Cyclostephroma Marryatt, 1818. Type (by monotypy), C. cancellata Marryatt. Shell orbicular, depressed, widely umbilicated; spire short; whorls transversely striated or cancellate; aperture round, not nacreous; peristome continuous, simple (Tryon).

Cyclostephroma diogenes Bartsch, 1907. San Diego, Calif.

Cyclostephroma mathrin Bartsch, 1921. San Pedro, Calif. to Point Loma (Baker). Type locality, San Pedro.

Cyclostephroma baldrigae Bartsch, 1911. San Pedro to Gulf of Calif. Type locality, Gulf of Calif.

Collecting data: Dredged near Fort Rosycrans, Pt. Loma (Dr. F. Baker).

Genus Circulus Jeffrey, 1865 Type (by monotypy), Delphinula duminyi Requien, 1849 = Circulus striatus (Philippi), 1836.

Circulus rossellinus Dall, 1919. San Diego to Guadalupe Island (Strong and Hamn). Type locality, off South Coronado Island in 3 fathoms.

Circulus cosmos Bartsch, 1907. Catalina Island, Calif. to Ecuador. Type locality, near Atacamos, Ecuador.

Genus Skenea Fleming, 1825. Type (by subsequent designation, Gray, 1847), Helix serpuloides. (Delphinoida Brown, 1827). Dr. A. Myra Keen advises on this genus as follows (Per. Comm.):

"Delphinoida Brown, 1827, seems to be an exact synonym of Skenea Fleming, 1825, having the same type by subsequent designation (Gray, 1847): Helix serpuloides Montagu. For discussion see Iredale, Proc. Malac. Soc. vol. 11, 1915, p. 292."

Skenea californica (Bartsch), 1907. Monterey to Point Abreojos (Jordan). Type locality, Long Beach, Calif. Collecting data: Point Loma, San Diego Co. (Baker).

Genus Scissilabra Bartsch, 1907. Type (by original designation), Scissilabra dalli Bartsch.
March, 1946

Scissilabra - "Vitrinella-like shells with the middle of the outer lip deeply and broadly notched, the center of the notch coinciding with the periphery of the shell" (Bartsch).

Dr. Joshua L. Daily Jr. comments on this (Per. Comm.) "Genus Scissilabra I do not know this genus. The name means split lip, which suggests that it would be more appropriately placed in the Scissurellidae. I have collected both species of Teinostoma, and believe that the channel parallel to the suture of one of them indicates close relationship to the Scissurellidae, but not close enough to be transferred to that family. These species were formerly included in the genus Ethalia. I am not familiar with the types of these genera, but am inclined to believe that if Teinostoma has such a channel and Ethalia does not, or vice versa, these two species should be placed in separate genera. If you can find out what the type of Ethalia is, I would suggest that this genus should be included in the faunal list, even though it may not be represented in the faunal area which you are covering."

Scissilabra dalli Bartsch, 1907. Monterey, Calif., to the Gulf of California

Type locality: San Diego, Calif.

Dr. A. Myra Keen writes on this species (Per. Comm.) "In Mrs. Oldroyd's "Marine Shells", vol. 2, pt. 3, pl. 104, figs. 10-12 are not of Scissilabra dalli but of *Cyclostrema dalli* Bartsch, from the Gulf of California."

Genus *Leptomyra* Bush, 1897. Type (by original designation), *L. verrilli* Bush.

Mr. Strong placed this under *Skenea*, or rather *Delphinidea*, in his usage.

The complete and rather detailed generic description is given by Oldroyd vol. 3, p. 225.

Leptomyra alaskana Bartsch, 1910. Port Graham, Cook's Inlet, Alaska

Type locality: Port Graham, Alaska.

H &

Genus *Teinostoma* A. Adams, 1854. Type (by subsequent designation, Cossman n) 1888). *T. politum* A. Adams.

Shell orbicular, depressed, subspherical, polished or spirally striated, last whorl rounded, or angulated at the periphery; umbilical region covered with a large, flat callosity; aperture transverse; inner lip smooth, callous; outer lip thin, simple, not margined or reflected." (Tryon).

Dr. A. Myra Keen advises on this genus as follows (Per. Comm.) "As Teinostoma is a neuter noun, all adjective endings should be in -um, as *supravallatum*, *invallatum* and *bivalvium*. The names *sapiella* and *salviana* may be nouns in opposition, though Dall's intention is not clear. The original description of *T. supravallatum* Carpenter, 1864 is: "Minute, with keel and furrow near suture."

Teinostoma supravallatum (Carpenter) 1864. Monterey to Gulf of Calif.

Type locality: an advice of Dr. Keen "San Diego according to the holotype label in the U.S.N.M."

Collecting data: Dredged off Avalon, Catalina Island in 35 fms.; Malaga Cove littoral; Punta Banda, L.C.; Dana Point, Orange Co. (Burch); San Diego (Remphill and Baker); La Jolla and Bird Rock (Bristol); S. Coronado Id. (Baker)
Teinostoma invallatum (Carpenter), 1864. Monterey to the Gulf of Calif.

Type locality: San Diego.
Collecting data: Malaga Cove, L.A. Co., littoral; (Burch); Point Loma, San Diego Co. (W.K. Emerson); San Diego (Hemphill and Baker); Laguna Beach (Lowe); So. Coronado Island (Baker) (San Diego Museum).

Genus Pseudorotella Fischer, 1857. Type (by monotypy), Rotella semi- striata d'Orbigny. (s肋 Woodring, 1928, p. 445)

Shell small, moderately thin or thick, circular, spire low. Outer lip, as viewed from above, arched backward between the suture and periphery. Basal lip, as viewed from below, arched backward. Umbilicus covered with moderately thick subcircular callus that covers only small part of base and fails to reach suture. Parietal callus overlapping only small part of umbilical callus, thickened and slightly channeled where it meets outer lip, extending down on part of basal lip as very narrow border causing it to appear everted. Sculpture (of type species) consisting of very fine spiral threads on spire and on upper part of body whorl. (Woodring, 1928, p. 445).

Pseudorotella sapiella (Dall), 1919. San Pedro to San Diego, Calif.
Type locality: San Pedro, Calif.
Collecting data: Laguna Beach, Calif. (Brown).

Pseudorotella bibbiana (Dall), 1919. San Diego, Calif.

Pseudorotella salvania (Dall), 1919. Off Coronado Islands.

Genus Solariorbis Conrad, 1865. Type (by subsequent designation Dall, 1892), Delphimula dopressa Loc.
This entire genus and the species under it from San Pedro seems to have been omitted from Mrs. Oldroyd's work. We will therefore run the complete descriptions.

Shell large, lenticular, semitranslucent, bluish white. Nuclear whorls 1,2, well rounded, smooth. Postnuclear whorls moderately rounded, almost appressed at the summit, the first marked by six interrupted lines of pits and two slender spiral striations near the summit. As the whorls progress the pits became more or less fused into incised spiral lines, of which 7 occur upon the second and 24 upon the last whorl. In addition to the spiral sculpture, the whorls are marked by slender, somewhat irregular retroactively slanting axial threads. Periphery of the last whorl slightly obtusely angulated. A rather broad band immediately below the periphery is devoid of spiral sculpture. Base broadly openly umbilicated; the posterior half marked by incised spiral lines which leave the elements between them as moderately broad, flattened cords and numerous lines of growth. The latter (cont.)
are a little rougher at the umbilical angle than on the flattened base. The
umbilicus shows all the turns within it. Aperture decidedly oblique, oval;
posterior angle with a slender sinus; outer lip thin, showing the external
sculpture by transmitted light; inner lip heavy, thickened, curved; parietal
wall covered with a rather thick callus that renders the peristome complete.
The type, Cat. No. 365784, U.S.N.M., was collected by Dolos Arnold at
San Pedro, California. It has three and one half whorls and measures, length
4 mm; height, 1.8 mm; greater diameter, 4.3 mm."

Family Scissurellidae
Genus Scissurella Orbigny, 1824 Type (fide Winckworth, 1932), S.
...costata Orbigny."
"Shell minute, thin, not pearly; body whorl large; spire small; sur-
face striated; aperture rounded, with a slit in the margin of the outer
lip; operculate. The young have no slit." (Tryon).

Scissurella kelseyi Dall, 1905. Queen Charlotte Islands, B.C. to South
Coronado Island, Type locality, off San Diego.

Scissurella chiri-cova Dall, 1919. Southeast of Chirikoff Island, Alaska
in 690 fathoms.

Genus Schismope Jeffreys, 1856. Type (by monotypy), Schismope stri-
atula (Philippi).
Schismope is a Scissurella in which the anal slit becomes closed
in the adult, and transformed into an oblong perforation like one of the
holes of a Helix. It bears much the same relation to Scissurella that
Trochotoma does to Pleurotomaria. The species inhabits deep water; there
are a number of fossil forms described." (Tryon and Pilsbry, Man. Conch.)

In the discussion of the species of Schismope Dr. A. Myra Keen writes
on one as follows (Per, Comm.) " In the " Emendations to Bull. 112",
1923, Dall cites Schismope californica Bartsch as a substitute for S.
coronata Watson, 1896, as used in Bull. 112. However, as Watson's shell
referred to in Bull. 112 was from Tahiti and there is no word of diagnosis
or description nor figure of the California Schismope, it seems to me that
S. californica Bartsch in Dall, 1923 must be regarded as a nomen nudum."

Schismope rimaloidos (Carpenter), 1864. South Coronado Island to Mazatlan,
Mexico. Type locality: Mazatlan.

Genus Tornus Turton in Carrington, 1830. Type (by monotypy), Helix
subcarinata Montagu.
"Dr. A. Myra Keen advises on this species as follows (Per, Comm.)
According to Dall in the " Emendations to Bull. 112", Schismope caliana
should be allocated to Adeorbis S. Wood, 1842. Adeorbis S. Wood, 1842 seems
to be a synonym of Tornus Turton in Carrington, 1830. (Tui-smith, Davilish
and Torquay Guild, sign. G-2, fife Sherborn). Type (by monotypy), Helix
subcarinata Montagu. Turton's original description, as quoted by Irodale, 1915
(Proc. Hal. Soc. vol. 11, 1915, p. 173) is: "Shell orbicular, depressed;
aperture oval or rounded, pillar none. Operculum horny"

Tornus calianus (Dall), 1919. San Diego, California.
Family Fissurellidae

Shell with a marginal sinus at the end of the rib.................Hemitoma
Shell with a small perforation midway on the endRimula
Shell with an apical perforation or orifice

- Perforation bounded internally with a raised edge........Puncturella
- Perforation bounded by a smooth callus ridge
- Perforation large, 1/4 to 1/3 the length of the shell
 (Animal larger than the shell)
- Adult shell large, 75 to 100 mm, in length..................Megathura
- Adult shell small, less than 25 mm, in length
- Sculptured with unequal, scaly radial ribs...........Lucapinella
- Radial ribs equal, nearly smoothMegatebennus
- Perforation small, less than 1/3 the length of the shell
 (Animal contained in the shell)
- Internal callus truncated posteriorlyDiadora
- Internal callus not truncated..........................Fissurella

Genus Hemitoma
Radial ribs strong, imbricated by lines of growth
 Length 50 mm, Forrester Island to Catalinayatesii
Shell smaller, sculpture finer
 Length 14 mm, Santa Cruz to San Pedrobella

Genus Rimula
Outer surface delicately cancellated
 Length 3 mm, San Martin Island to Gulf of Calif.........mazatlanica

Genus Puncturella
With wide spaced radial ribs and close concentric threads
- Intercalary radial riblets present
- Major radial ribs about 20
 Diam, 15 mm, Alaska to La Pazcucullata
- Major radial ribs about 30
 Diam, 27 mm, Alaska to San Diegomultistriata
- Intercalary radial riblets absent
 Chile to Patagoniafalklandica
Tryon vol.12, p.231, pl.63, fig.23

With many nearly equal radial threads
- Shell high, conic
- Internal laminae supported by a transverse rib
 Diam, 10 mm, Alaska to San Pedrogaleata
- Internal laminae without props
 Diam, 7.5 mm, Alaska to San Pedrocooperi
- Shell subcylindrical, minute, radial threads strong
 San Diego ..carophylla
- Shell low, expanded
 Diam, 32 mm, Panama to Galapagosexpansa
Bull. Mus. Comp. Zool. 43: 353, pl.4, figs 5-10-11

Genus Megathura
Radial and concentric ridges fine, close, equal
 Length 100 mm, Monterey to Cerros Islandcrenulata

Genus Lucapinella
Radial ribs imbricated by strong lines of growth
 Length 20 mm, Bodega Bay to Perucallomarginata

(con.)
Surface decussated by radial and concentric ridges

Central America ... aequalis

Tryon 12:197, pl. 31, fig. 24; Reeve, fig. 55

Genus Megatebomus
Sculptured with rounded radial ribs

Length 20 mm. Forrester Island to Cape San Lucas bimaculatus

Sculptured with sharp radial grooves

Length 27.5 mm. Peru ... cokeri

Genus Diadona

Anterior and posterior slopes nearly straight
- Radial ribs unequal, concentric ridges forming scales
 Length 45 mm. Alaska to Magdalena Bay aspera
- Radial ribs subequal, nodulous
 Monterey to San Quentin Bay densiclastrata
 Reeve pl. fig. 64

Posterior slope humped behind the perforation
- Radiating ribs and concentric ridges equally strong
 Perforation sub-central
 Santa Barbara to Ecuador inaequalis
- Perforation at about the 1.3 point
 Length 10 mm. Gulf of Calif. to Panama saturnalis
- Radiating ribs strong, concentric ridges delicate
 Peru ... asperior
 Reeve pl. fig. 50; Tryon, 12:214, pl. 30, fig. 6

Anterior and posterior slopes nearly equally convex
- Surface between strong radial ribs finely cancellated
 Length 10 mm. Gulf of Calif. to Peru panamensis
 Reeve pl. 12, fig. 87; Tryon 12:216, pl. 32, fig. 33
- Surface decussated by unequal radial and concentric ridges
 Length 20 mm. Peru ... fontaniana
 Tryon 12:207, pl. 82; figs 28-29-30

Genus Fissurellia

Margin of shell crenulated
- Inner margin dark bordered
- Outer surface with radial and concentric sculpture
 Chile ... philippiana
- Outer surface with delicate radial sculpture only
 Length 20 mm. Mazatlan nigricincta
- Inner margin not black bordered
- Outer surface with major and minor radial ribs
 Major radial ribs few, prominent
 Margin scalloped between 6 major ribs
 Length 30 mm. Gulf of Calif. to Peru rugosa
 Margin regularly ovate
 Length 30 mm. Gulf of Calif. to Peru obscura
 Major radial threads small, numerous
 Length 55 mm. Gulf of Calif. to Peru virescens
- Outer surface with subequal radial riblets or striae
- Riblets subrugose, obscurely nodulous
 Panama ... ostrina (cont.)
Striae numerous, surface roughened with raised dots

- Peru .. asperella

Margin of shell not crenulated, inside dark bordered

- Interior of shell deeply wrinkled

Outer surface with radial and concentric undulations

- Length 85 mm. Panama to Peru crassa

Interior of shell not deeply wrinkled

- Outer surface with radial and concentric sculpture.

Shell conical, elevated

- Length 82 mm. Ecuador to Chile picta

Shell more or less depressed

- Radiating ribs nodose, with intermediate striae

Central America crenifera

Radiating ribs close, equal

- Chile ... obovata

Radiating grooves close-set, concentric striae fine

- Length 40 mm. Panama to Magellan Straits mexicana

Sculpture fine, more or less obsolete

- Chile ... fulvescens

Outer surface with radiating ribs or striae only

- Shell conical, elevated

Ribs rude, here and there larger

- Crescent City to Panama volcano

Every 3rd to 7th riblet larger

- Length 35 mm. Mazatlan to Peru peruviana

Fine radiating striae, coarser near the margin

- Length 90 mm. Chile punctatissima

Striae fine, nearly obsolete

- Length 100 mm. South America nigra

Shell more or less depressed

- Shell oval or circular

Ribs distant, prickly nodose

- Ecuador ... clypeus

Ribs variable, uneven or nodulose

- 8 mm. Gulf of Calif. alba

Ribblets strong, rough, subequal

- Length 74 mm. Panama to Chile costata

Shell ovate to elliptical

- Ribs rather weak, uneven or tuberculate

- Length 100 mm. Peru and Chile maxima

Fine radial striae over entire surface

- Length 68 mm. Chile latimarginata

Outer surface without radial sculpture

Surface with evident lines of growth, shell conical

- Shell 77 mm. Chile limbata

Surface with fine concentric striae, shell depressed

- Length 54 mm. Chile pulchra

Surface with a spongy texture, shell elongated

- Length 17.5 mm. Gulf of Calif. spongosa

Genus Fissurella Bruguier, 1791

- Fissurella volcano Reeve, 1849 - Crescent City to Panama
- Fissurella obscura Sowerby, 1834 - Lower Calif. to Peru
- Fissurella viridescens Sowerby, 1835 - Gulf of Calif. to Peru
- Fissurella rugosa Sowerby, 1835 - Gulf of Calif. to Panama

(c)
Fissurella nigrocinata Carpenter, 1855 Mazatlan
Fissurella alba Carpenter, 1857 Mazatlan
Fissurella spongiosa Carpenter, 1857 Mazatlan
Fissurella peruviana Lamarck, 1822 Gulf of Calif. to Peru
Fissurella mexicana Sowerby, 1850 Mexico to Magellan Straits
Fissurella crassa Lamarck, 1822 Panama to Peru
Fissurella nigra Lessen, 1830 Peru to Magellan Straits
Fissurella philippiana Reeve, 1849 Chile
Fissurella ostrina Reeve, 1849 Panama
Fissurella cronifora Sowerby, 1834 Central America
Fissurella latimarginata Sowerby, 1834 Peru and Chile
Fissurella picta Gmelin, 1791 Ecuador and Chile
Fissurella olivacea Sowerby, 1834 Ecuador
Fissurella maxima Sowerby, 1834 Peru and Chile
Fissurella asporella Sowerby, 1835 Peru
Fissurella costata Lessen, 1830 Peru and Chile
Fissurella fulvescens Sowerby, 1834 Chile
Fissurella limbata Sowerby, 1834 Chile
Fissurella obovalis Lessen, 1830 Chile
Fissurella pulchra Sowerby, 1834 Chile
Fissurella punctatissima Pilsbry, 1890 Chile
Fissurella concinna Philippi Talara, Peru

Genus Megathura Pilsbry, 1891

Megathura crenulata (Sowerby) 1825
Genus Megatebennus Pilsbry, 1890
Megatebennus bimaculatus Dall, 1871 Forrester Island to Tres Marias Islands
Megatebennus cokeri Dall, 1909 Peru
Genus Lucapinella Pilsbry, 1890
Lucapinella callowmarginata (Dall), 1871 Bodega Bay to Peru
Lucapinella acqualis (Sowerby), 1834 Central America to Ecuador
Genus Diadona Gray, 1821
Diadona aspera Eschscholtz, 1833 Cooks Inlet to Lower Calif.
Diadona densiclavata Reeve, 1850 Monterey to San Quentin Bay
Diadona maxima Dall, 1855 Crescent City to Magdalena Bay
Diadona alta (C.B. Adams), 1852 Panama
Diadona panamensis Sowerby Gulf of Calif. to Peru
Diadona fontainiana (d'Orbigny), 1841 Peru
Diadona asperior (Dall), 1909 Peru
Genus Puncturella Lowe, 1857
Puncturella cucullata Gould, 1846 Alaska to La Paz
Puncturella galacta Gould, 1846 Alaska to San Pedro
Puncturella cooperi Carpenter, 1856 Alaska to San Pedro
Puncturella multistrata Dall, 1914 Alaska to Cortez Bank
Puncturella carophylla Dall, 1914 San Diego
Puncturella (Ocranopsis) expansa Dall, 1896 Galapagos
Puncturella (Cemoria) falklandica (A. Adams), 1862 Chile to Patagonia
Genus Rimula
Rimula maizatlanica Carpenter, 1857 San Martin Island to Mazatlan
Genus Hemitoma Swainson, 1840
Hemitoma welesi Dall, 1901 Forrester Island to Panama
Hemitoma bella Gabb, 1865 Santa Cruz to San Pedro
Hemitoma golischa Dall, 1916 San Nicholas Island
Hemitoma normosa Mawo Gulf of Calif.

* Note: Discussion of Haliotidae and Fissurellidae will appear in our next issue.
Note to the members from the editor— My business is going to compel me to be away in the northern part of the state a good part of this spring, so if the delivery of the Minutes is a bit irregular you will know why.

A word to our many exchange correspondents should be in order also. Aside from the daily struggle to earn a living I seem to be devoting all of my spare time to getting out those Minutes and have had little or no time for either collecting or working with my duplicates. However, I am still very much interested in building up my collection as well as my library. All contributions sent me will be gratefully received and at present about the only return I am able to make is in my efforts with these papers. Many of my correspondents have been remembering me with boxes of shells and I wish to thank them.

Mr. H.J. Koch, P.O. Dynamite Factory, Somerset West, South Africa,

"I must thank you for your prompt attention and for a copy of the Minutes. I found them most instructive and would be glad of back issues. I would like to contribute to your club if you are agreeable.

I am afraid that I did rather get the impression that yours was a business and not a scientific club as it really is. I am willing to help within the limits of the time at my disposal and will do my best to arrange exchanges with some of your members, two of whom have already written.

I look forward to receiving the books. We are very badly off for literature in this country and any suggestions you may be able to make with regard to good books to get I should be grateful for.

I will close with thanks and express my pleasure at having made contact with your organization. My wife who is also working on molluscs (we both do it as a hobby) joins with me in expressing these sentiments."
These papers are published by a group of interested students for our own pleasure and financed by voluntary contributions of members and friends. It is not our intention to offer subscriptions and guarantee regular periodical publication; however, non-members of our club will be placed on our mailing list and receive all papers published for contributions to our fund of $2.50 per year or $1.25 each six months.

We are now meeting the first Tuesday of each month at 7:30 P.M. at the Los Angeles Museum, Exposition Park, Los Angeles, Calif.

Please mail all news to your editor,

John Q. Burch,
4206 Halldale Ave.,
Los Angeles 37, Calif.
Phone Ax 2-7965

NOTES ON LIVING CALIFORNIA CREPIDULAS
by Allyn G. Smith

The white Crepidulas of the subgenus Icacinus Marsh, 1852, of the West Coast of North America have been a problem for conchologists at least since Broderip's time, judging by the number of names given to them. They are found in all sorts of locations, giving rise to many situs forms. The existing problem is first to consider what names are available, and then apply these to the appropriate species under the rules of nomenclature. Probably no two conchologists today would agree on a settlement of these two problems, so it is with some hesitation that the following discussion and opinions are offered in the hope that they may lead to a consensus on what the answers should be.

Crepidula nummilia Gould, 1846.

This is a fine, large, distinct species, easily identified by the thick, golden-brown periostracum, which normally covers the shell although in some specimens it may have been worn off to some extent. The type locality is the Strait of Juan de Fuca and it has been found fairly commonly on the coasts of San Luis Obispo, Sonoma, and Mendocino counties. It has not been reported from Monterey, apparently skipping that region. There are lots in the collection of the California Academy, which are apparently this species from Topopca Bay, Lower California; from Freshwater Bay, Tiburon Island in the Gulf; and from Magdalena Bay. Whether the range extends as far south as Mazatlan appears open to question and needs confirmation, as the species seems to flourish in colder waters. Under favorable conditions on the California coast nummilia grows a circular shell, as refigured by Oldroyd in her plate 31, figures 14, 14a, and 14b. This shape is not the usual one, however, as subtriangular and subquadrate shapes are more often found, especially in older and larger specimens. Nummilia grows a thick heavy shell and is by all odds the largest of the northern California Crepidulas. Because of its periostracum its outer surface is usually fairly clean, without the incrustations of worm-tubes, barnacles, and bryozoans generally occurring on another species of Crepidula occasionally collected from the under side of the same rock inhabited by a colony of nummilia.

NOTE- This issue will serve for May and June - next issue July
The three lots from lower California and the Gulf do not have quite as heavy a periostracum, which tends to be lighter in color than on shells from California. In addition, the southern shells have a groundwork sculpt-
ture of rather irregular, somewhat wavy, fine striations, which are absent on the California specimens. Whether these differences constitute specific or subspecific, or lesser factors cannot be told for certain from the few lots now available and a final determination of this must await the collect-
tion of more material.

Johnson and Snook, in discussion nummaria (page 538) appear to refer to another species. Their figure 601 (page 537) looks like a form of C.nivea C.B. Adams, but side and back views would be needed to identify this shell with certainty.

There has been considerable confusion between nummaria, and Adam's nivea and other white species but the presence of the heavy and sometimes 2-shaggy golden-brown periostracum of the former would appear to be an ample distinguishing feature.

Crepidula nivea C.B. Adams, 1852.

The type locality is Panama; Oldroyd gives the range from Puget Sound to Panama. The species is omitted from Dall's Bull. 112 and Dr. Myra Keen's Check List places it in the synonymy of nummaria, which the writer believes is incorrect in view of the evidence now on hand. Mrs. Oldroyd gives two fairly good figures of what she identified as nivea (plate 93, figures 7,9), the latter one of a shell partially suffused with brown that she cites as a "color form". These illustrations do not appear to be the true nivea, as the writer understands it, but of another white species, C.perforans Val. to be discussed later.

Examination of a number of lots of C.nivea, or forms of it, in the California Academy's collection leads to the conclusion that it is a recogn-
izable species that varies in size and shape to a considerable degree. The form considered to be true nivea differs from the other white Crep-
dulae from northern California in the following respects: (1.) It has an extremely thin, papery, colorless or very light yellow periostracum, which, in old and worn specimens, may show only in traces, and then only at the margins. This is a feature not mentioned by Adams in his original descrip-
tion, which may be accounted for by Carpenter's observation (1872-37) that Adam's' "type specimens are small, poor, and rough, of the var. stri-
lata , passing into lessonii." (2.) The notch, or sinus, at the left-hand margin of the deck is deep and V-shaped, although in some specimens from San Pedro that are referred to this species, this notch is more nearly U-
shaped and not as deep. (3.) Specimens are frequently rather large, broad flat, and omeate with the narrower end toward the apex. This is thought to be the normal form in which the shell has had an unrestricted growth.

Like many Crepidulae, however, the shape of the shell varies with the situ-

Among the Academy's lots of Crepidula from the southern fauna there are a few shells of the general form of nivea, but which differ in having a series of well-incised, interrupted striations radiating from apex to margin. In some others these striae are weak or hardly noticeable. These are thought to be the form striolata Menke, mentioned above by Carpenter. This particular form is not found in California, so far as known.

There seems to be good evidence that C.nivea does extend into Calif-
ornia. The situs form glottidarium Dall, 1905, in the writer's opinion was properly allocated to nivea by Mrs. Oldroyd. It has the thin, papery periostracum of a totally different nature from that of nummaria, to which
May, 1916

it does not appear to be at all closely related, as Dall indicated it in Bull. 112. Specimens of the broad and cuneate, flat form of nivaca with traces of periostracum are in both the writer's, the Gordon, and the California Academy's collection from San Pedro. How much farther north it is to be found is not known, nor can further information be given on any extension of the southern end of the range below Panama.

Before leaving nivaca, it seems necessary to observe that the shells from San Pedro mentioned above are hardly to be distinguished from shells of C. plana Say collected on the Atlantic coast. While there are minor differences between the shells of both coasts, these are of such small consequence that they seem hardly worth mentioning. This poses a real problem, for the true C. plana has been introduced with seed oysters from the east coast to Willapa Bay, Washington, where it has become established and seems to flourish. Whether the warm water C. nivaca and the colder water C. plana are conspecific will be known only from a comparison of their radulae and soft parts. Until this has been done, it might be best to consider them separate even though the shells cannot be told apart, at least in some instances.

Crepdula perforans Valenciennes, 1846.

No type locality or description of this species was given in the original publication but the published figures (Voy. Venus, 1846; pi. 24, figs. 9, 9a, 9b) show an elongate, somewhat frilled, white shell similar to the form commonly found in pholad holes in the shale bed off Monterey and at other points along the California and Lower California coast. This is the oldest name attributed to a white species without periostracum similar to those which come from California. Carpenter (1856:261; 1872:152) first shows it as a synonym of C. exuviaatenutall, along with C. exuviatagould. Later 1864:654; 1872:140) he considered it a "variety of C. navicelloides nuttall, stating it is "elongated in crypts scooped out by crab or bivalve- explanata gla.- exuviaatenutt. - perforans val. C. explamanae Gould, 1853.

The type of this species was given by Gould as Monterey. The most recent published figures (Oldroyd, plate 85, figs. 7, 8, as C. exuviaatenuttall), as in perforans, indicate that this is a typical pholad-hole form of white Crepidula with the same frilled aspect.

Crepidula explamanae Gould, 1859.

The name exuviaatenut was first published as a nomen nudum in 1839 in Jay's Catalogue, where the species is attributed to nuttall. Apparently it was not validated until 1859 when Reeve published a description and figure in the Conchologica Iconica. The type locality is given as Monterey and Reeve's figure shows it to be a typical pholad-hole form. Thus one can hardly escape the conclusion, based on the descriptions and figures of both species, that C. exuviaatenutall in Jay, 1839) Reeve, 1859, is an exact synonym of C. plana Gould, 1853. In addition, the type localities of both are the same.

Crepidula tiniornata Reeve, 1859.

This is a laminar-frilled, flat shell, of roundish shape, "stained with a livid brown ray on one side." The type locality is Vancouver Strait. Tiniornata appears to be merely another form of white Crepidula, which is common along the coast. Carpenter (1864:655; 1872:51) thought it was an accidentally frilled variety of navicelloides, and later (1864:654; 1872: 140) apparently still thought so. Although Reeve's figure (Crepidula pi. 2 figs. 110, 116), of the specimen may be somewhat exaggerated, its laminar aspect shows it to be closely related or identical with the form found in.
pholad holes. The major difference seems to be that in this case the shell
grow on a mere or less unrestricted situs, such as a flat rock or shell.
The brown ray mentioned by Reeve is not a distinctive feature as brownish
blotches occur on an occasional specimen of the common white Crepidula
from any site where it is found. The "color form" Mrs. Oldroyd figured
as C. nivea is one of these (see her plate 93, fig. 9).
Crepidula navicelloides Sowerby, 1863.

This is another of Huttall's nomina nuda published first in Jay.
Apparently it was not validated until 1863 by Sowerby, who published a des-
cription and figure in his Thesaurus Conchyliorum. The type locality is
"California." Sowerby's description is too vague to indicate just what
of the white forms he had, but his colored figure in plate 453 (Calyptrae-
dae, pl. 9), fig. 143, shows an inside view of a shell that might easily be
C. nummaria Gould. This supposition is strengthened further by the slightly
yellowish tone around the edge of the figure, as if to indicate the presence
of the golden-brown peristracum of nummaria. Furthermore, in the expla-
nation to this plate, Sowerby mentions "oculars C. 3. Adams; nummaria e
explanata Clad." as if he considered them as synonyms of navicelloides.

Whatever one believes to be the proper allocation of navicelloides,
it seems quite obvious that this species name cannot stand as it is preceded
by too many others. On the basis of the slim evidence given above, the
inclination is to place C. navicelloides (Huttall in Jay, 1839) Sowerby
1863 in synonymy under C. nummaria Gould, 1846, rather than in the synonymy
of any of the other species mentioned. If this view be accepted, then the
figure used by Keep for C. navicelloides in all his editions of West Coast
Shells since the earliest in 1881 is not the correct one. It looks more
nearly like the common white Crepidula found under rocks along the shores
of Monterey Bay and the Monterey Peninsula. It may well be that Professor
Keep figured actually the shell that came from this vicinity as he did
much of his collecting there.
Crepidula lessonii Broderip, 1834.

While this species apparently does not extend into the Californian
fauna it is mentioned because conchologists have assumed that it has a
close relationship to some of the other species discussed above—nivea and
striolata, for example. In commenting on the species, Broderip states that
"it will remind the observer of the upper valves of some of the Chepidae",
giving it quite a different aspect from the other species found in
the southern fauna. His colored figures, of which there are four, are inside
and outside views of two shells—one a dark phase and the other light. Both
have narrow, brown, radiating stripes, and 5 to 7 prominent, rather widely
spaced, concentric frills. The brown striping plus the fact that the type
locality is the Bay of Guayaquil, Ecuador, quite probably indicate a well
marked species, although material is not at hand that answers the descrip-
tion of the species. While other specimens of a flat, white Crepidula
from the southern fauna have concentric sculpture with a tendency toward
a frilled aspect, it is not believed that these are true lessonii.
Crepidula ungiformis Lamarck, 1818.

This tongue-shaped white species originally described from North Africa,
is reported by Adams and others as having been collected at Panama, Mazatlan,
and La Paz. There are no authentic records from California, so far as known,
although the suggestion has been made that specimens of this same shape
commonly found growing in the apertures of large univalves, such as Natica,
may be this species. Figures of ungiformis published by Broderip in the
Transactions of the Zoological Society of London, and by Tryon in the Manual
of Conchology, do not suggest a shell that necessarily grew in a gastropod aperture. Moreover, both figures definitely indicate the presence of a periostracum, which the shells growing in such a situs in California do not have, at least to the writer's experience. Until comparison of the radulas and soft parts of those Cropidulas from both coasts have been carefully compared, the writer prefers to leave the determination of unguiformis as a West Coast species to later consideration and to limit the present consideration to species named from the West Coast.

Cropidula squama Broderip, 1834.

According to Broderip, this is a very flat species, the apex of which is "lost in the margin." The type locality is Panama, under stones. The fact that Adams' niva was also based on specimens collected at Panama is likely the reason for considering the two conspecific as both are flat, white species. Broderip's colored figure of the dorsal aspect to squama however, shows a series of narrow, brown, radiating stripes extending from the apex not quite half way down the back and then becoming obsolete. The rest of the shell is whitish. The figure of the interior indicates a well marked ridge about the center of the septum, running longitudinally. The left sinus of the septum edge is U-shaped, like that in nummaria though not as prominent.

As there are young specimens in the Academy's collection that show these characters fairly well, the conclusion is that squama is a good species, different from niva as this latter species is now understood.

Thus, in allocating our California species of white Cropidula to their proper taxonomic position, we have the following names to deal with:

1. nummaria Gould, 1846
2. perforans Valenciennes, 1846
3. niva C.B. Adams, 1852
4. explanata Gould, 1853
5. ovumata Reeve, 1859
6. fimbriata Reeve, 1859
7. navicelloides Sowerby, 1883.

Collecting experience and examination of the material available has brought the writer to the conclusion that there are but three distinct species of common white Cropidula native in California. These are:

1. The large, heavy shell with a golden-brown periostracum.
2. A thinner, flat shell with a thin, papery, light-yellow or almost colorless periostracum.
3. A third species, without periostracum but usually with inclusions, with a fairly coarse and rough shell, extremely variable in size and shape, of which the following three situs forms are common:
 a. The pholad-hole form, generally tongue-shaped, which is frequently frilled at the sides and the apical end.
 b. The smooth, tongue-shaped shell (when adult), found in the apertures of medium or large, dead, gastropods.
 c. A free-growing form, usually rough and heavy with the back incrusted, though sometimes rather thin, smooth and clean. Found on the undersides of large rocks.

Matching these to the list of names leads to the following conclusions on the species of white Cropidulas from California, which are offered here for purposes of further discussion:

 Type locality: Classet, San Juan Strait, B.C. Present known range: San Juan Strait, B.C. to Magdalena Bay, Lower Calif. Synonym: C. navicelloides Sowerby, 1883. This is the species No. 1 of the preceding list.

 Type locality: Panama. Present known range: San Pedro, Calif. to Panama. Synonyms: none assigned, at least from the names applied to white Cropidulas reported from California. This is the species
May, 1946

No. 2 of the preceding list.

2a. Crepidula nivea glottidiarum Dall, 1905.
Type locality: San Pedro Bay on the brachiopod Glottidia albida
Hinds. Present known range: Santa Monica Bay to San Pedro Bay,
California. A situus form of questionable taxonomic standing.

3. Crepidula perforans Valenciennes, 1846.
Type locality: unknown but probably West Mexico or Central America.
Present known range: Northern Alaska at least to Lower California.
Synonyms: C. explanata Gould, 1863; C. exuviata Reeve, 1859 (=
explanata); and C. fimbriata Reeve, 1859.

Being the oldest name, perforans has precedence in the allocation
of the proper one to cover species No. 3 of the preceding list. In the Manual
of Conchology (v. 3, p. 115), Tryon rejected the name as a "designation
representing an untruth" on the basis that Valenciennes thought the animal
actually bored the hole in which it lived. However, even though no descrip-
tion was given originally, the name perforans was properly "designated"
under the Rules of Nomenclature, as interpreted now, can be applied with
reasonable certainty to a well-known form common in collections, and is
therefore a valid one. While unfortunate that the name perforans originally
was intended for the pholad hole form, there appears to be too much evidence
of the extreme variability of this species to warrant the use of more than
one name for these shells.

Crepidula adunca Sowerby, 1825.
This well-known, distinctive species, with deep-set deck, hooked apex,
and brownish color hardly calls for any comment except that a southern
California species generally found on Norrisia was thought by some early
collectors to be closely related, which is probably true. C. rostriformis
Gould, 1846, is a synonym of adunca. Its type locality is the Strait of
San Juan de Fuca.

Crepidula arenata Broderip, 1834.
In the Ashmun Collection, along with a large series of fine specimens
of C. norrisiarum Williamson, there is another species of Crepidula that
could be immediately separated. Comparison with a large number of arenata
in the California Academy and also with specimens in the Stanford Collection
proved without doubt that these shells are C. arenata. This adds a new Crep-
idula to the California list and extends the range of the species to San
Pedro (Not La Jolla, as in Minutes, No. 56, p. 14). The entire lot of
shells was taken from Norrisia norrisii, and, it might be added, included
a few juvenile specimens of C. onyx Sowerby, thus making three species
of Crepidula to be found on Norrisia.

In discussing C. norrisiarum (Nautilus, 19:50), Mrs. Williamson
mentions a "white porcelainous specimen, shaped like some Crepidula rugosa," and of finding later two live specimens "macerated with chestnut spots.
It is therefore possible she had specimens of C. arenata also, a fact that
could be checked by someone with access to the Williamson collection.
Specimens of arenata from San Pedro are thinner in shell texture than those
of norrisiarum, are macerated with brown spots or streaks, and have a rather
large, often prominently swollen apex generally depressed to the level of
the periphery of the shell. The deck is deep-scooped and the apex is excavated
internally. Broderip discusses arenata as follows: "This approaches Crep-
idula porcellana Lam. The septum is somewhat distant from the margin;
and the apex, which is also somewhat distant from it, is obtuse, and obliquely
turned to the right side. The original specimens were collected in sandy mud, in 6-8 fathoms.

The original figure of arenata is of a much smaller shell than excavata, with a much smaller apex. The dorsal view has two light-colored stripes radiating from the apex, with narrow, interrupted, brown pencillings over the rest of the shell. The inside view shows short, brown stripes at close and fairly regular intervals all around the periphery, with some additional brown streaks in the central area.

Crepidula excavata Broderip, 1834.

Examination of the original figures and those given in Reeve's *Conchologia Iconica*, and in Tryon's *Manual* raises the question why this name has been associated with a Californian species. The figure is of a large shell with the appearance of a heavy ridge along the back and suggests a species much more nearly related to *C. arenata* Broderip. The type locality is given as Nicaragua but Dall gives a range north to Monterey. J.C. Cooper apparently was the first to credit this species to California by citing *Crepidula excavata* var. jun. *Santa Barbara Island* (Cpr. Ropt. 1877:93). Johnson and Snook, p. 536, Fig. 597 refer to excavata as a thin shell with almost parallel sides, whitish, and mottled with brown except for a white deck. This is certainly not the excavata figured by Broderip and Reeve.

Dead shells, similar to the one figured by Johnson and Snook, were picked up on shore at Terminal Island by the writer in 1910 when San Pedro Harbor was being deepened by dredging. Subsequently, similar shells were found in the Ashmun Collection collected at San Pedro, evidently alive, and in the Gordon collection also from San Pedro. One of Ashmun's specimens was in situ on a small round stick of a type not commonly dredged. From this one is led to conclude that these shells and the one figured in Johnson and Snook are a deep water situs form of *C. arenata* Broderip. Such a conclusion would be an extremely doubtful one were it not for the Ashmun and Gordon material, but under the circumstances there seems to be no other suitable identification.

The California Academy has no specimens that conform exactly to the figure of *C. excavata* and all records indicate it to be in the Panamanian fauna, nothing like it has been found at Monterey, so far as known, and consequently Dall's record from there is thought to be based on a misidentiﬁcation.

It would not be at all surprising to find, when more material comes to hand, that excavata and arenata are conspeciﬁc. Specimens of the latter species in the California Academy’s collection from Central America suggest an approach to Broderip’s ﬁgure of excavata. In commenting on excavata, Broderip said: "This species is remarkable for the depth of the internal margin before it reaches the septum formed by the plate. In *Crepidula* adunca* Sowerby, this depth is even greater than it is in *Crepidula* excavata. The apex is close to the margin, obliquely turned toward the right side." The dorsal view of the shell shows at least three series of dark spots radiating from the apex on the very early part of the shell only. These end abruptly and the rest of the shell is fawn-colored, without maculations of darker color.

If arenata and excavata are finally determined to be conspeciﬁc, as is strongly suspected, the name excavata would undoubtedly take precedence, with arenata as a synonym. Broderip described both species on the same page but excavata was treated ﬁrst, being species No. 29, while arenata is species No. 30.

Crepidula norrisiaria Williamson, 1905.

Early collectors confused this species with *C. adunca* Sowerby, perhaps with good reason as the two seem closely related. It has also been linked with *C. excavata*. This *Crepidula* is a familiar one to southern Cali-
Mav, 1946

In Gordon’s collection there are two specimens of Crepitella dordata, which was described as white parcellanous shell with brown spots, that leads to the suspicion that C. arenata might be the proper identification unless, on investigation, the type specimen at the Los Angeles Museum turns out to be C. norrisiarum. Specimens labelled naticarum collected by the Burches at Ensenada, in the Estero (Gordon Collection), seem definitely assignable to arenata and not to norrisiarum. It would be interesting to know whether the species has been found living in any other situs than on shells.

Crepidula excavata naticarum Williamson, 1805.

Mrs. Williamson described this as a white parcellanous shell with brown spots, which leads to the suspicion that C. arenata might be the proper identification, unless, on investigation, the type specimen at the Los Angeles Museum turns out to be C. norrisiarum. Specimens labelled naticarum collected by the Burches at Ensenada, in the Estero (Gordon Collection), seem definitely assignable to arenata and not to norrisiarum. In either event the form naticarum would have little taxonomic standing.

Crepidula onyx Sowerby, 1825.

C. rugosa Nuttall appears to have been generally accepted as a synonym. The northern end of the range placed at Monterey by Dall, seems doubtful. So far as is known there are no authentic records for this species from this far north.

Crepidula orbiculata Dall, 1919.

This is a rare deep water species dredged in 50 fathoms or more. There appears to be little doubt that it is a Crepipatella.

Crepidula glauca Say, 1822.

With the decline of the oyster beds in San Francisco Bay, this species does not appear to be flourishing there. Hemphill collected both dark and light phases at Alameda. More recently, Dr. G.D. Hanna has collected the light phase only living at Rodeo in San Pablo Bay. Crepipatella convexa is a situs form according to C.W. Johnson.

Crepidula incurva Broderip, 1834.

The San Pablo record seems extremely doubtful. Material in the California Academy collection range from Magdalena Bay to Panama.

Crepidula aculeata Melelin, 1792.

Crepidula lingulata Gould, 1830.

No comment on this common California species is necessary. C. dordata with which it was earlier confused belongs in a more southern fauna and does not come into California. Dordata appears to be a good species and is not a synonym of lingulata. Specimens in the Academy collection range in locality from Mazatlan to Panama.

In conclusion, the writer wishes to acknowledge the help and advice of Dr. Leo G. Hortlein, of the California Academy, in the process of preparing these notes.
Mr. A.C. Smith, author of the above paper on Cryptidula, in his personal letter to the editor makes a few interesting comments that do not appear in the paper. We are taking the liberty of running a few excerpts from this letter. "You will find that I have changed my mind on some points, principal among which is that C. nivea should be limited to a specific shell that I have not seen north of San Pedro and that C. perfrans is another species going clear to Alaska in the north and overlapping the range of nivea by extending south along the Gulf and the coast of Lower California. Lee doesn't altogether agree with me on this as he thinks that the characters I have used to separate nivea from perfrans may not be enough to make identification certain. He has a real point, I think, but at the same time is unwilling to admit that any of our West American species can actually have a range extending all the way from Alaska to Panama and perhaps further south. One piece of evidence that I do not have and that I would like to verify is whether the tongue-shaped form found in the apertures of gastropods of Lower California and the Gulf ever have a periostracum. If they do, they are nivea; if not, they are perfrans according to my present view. None of my California specimens of this form have it so far as I can see. Then there is the further question whether the hermit crabs might not wear off the extremely thin, papery, colorless periostracum that I now believe is characteristic of nivea. I realize my idea of nivea is not based on too strong evidence, because it has been arrived at by the process of eliminating other possible species names—a sort of reduction ad absurdum.

Having seen your C. naticarum from Ensenada Estero strengthens my supposition that this subspecies is really separate. I hope you or some one will be able to check the Williamson collection on this point.

On the subject of C. convexa glauca, I note that Johnson in his "Fauna of New England" reverses the names, as Packard did, but speaking of the subspecies convexa he says: "A form due to growing on the shells of Alcockia obsoleta and other very convex surfaces." Gould (Invertibrata of Massachusetts, 1941, p. 160) says that Say described convexa from dead shells and "had not seen its true colors." My own opinion would be to throw convexa into the synonymy of glauca, which has page priority in Say's original paper, on the basis that it is merely a special situs color-form of little real taxonomic value.

Additions and Corrections

In connection with our discussion of the genus Cryptidula, attention should be called to the extensive and beautifully figured work done in recent years by Dr. Wesley R. Coe, Professor of Biology, Emeritus, Yale University but now associated with the Scripps Institution of Oceanography at La Jolla.

The careful student of this group should certainly study the following publications by Dr. Coe:

(Con.)
Incidentally, it should be mentioned that Dr. Coe has made many very interesting comparisons between the species of both this coast and the Atlantic coast.

The following interesting personal communication is from Dr. W.R. Coe:

If you will refer to Plate 2 of the paper on influence of environment on shape of shell in *Crepidula*, you will note that the largest size of the species *nummaria* (nivena) at the aperture of the shell of *Tegeta* is only 10-16 mm., while the same species in the shell of *Polinices* may become more than 30 mm. long and 20 mm. wide or even larger. The same large size is reached under stones and on the sides of piles etc. Associated with these large females or attached to them are one to many small males. You will recall that the young of all species of this and closely related genera are exclusively male, the male changing to the female phase on reaching a certain age, commonly about 4 to 6 months in this region. This species closely resembles *C. plana* of the Atlantic coast which has corresponding responses to substrate. The shell becomes wrinkled, instead of smooth, if the animal is frequently disturbed. The yellowish epidermis is usually rubbed off wholly or partially if within a shell occupied by a hermit crab leaving most of the surface pure white.

I think your notes on this genus are substantially correct.

Attention should be called to the fact that in several of the papers mentioned above Dr. Coe has some beautiful figures of the anatomy or soft parts of a number of the species of *Crepidula*. These papers should be considered in connection with the previous paper.

Dr. Joshua L. Baily Jr., San Diego, Calif. In your last bunch of notes you have quoted a letter from me in which I made a mistake. I said that in my opinion *Crepidula norrisiaria* looked like a good species, but that Dr. Coe at La Jolla had raised them and disagreed with me. Dr. Coe has written me that he has raised several species of this genus— but that *C. norrisiaria* is not one of them. Consequently he should not be quoted as expressing an opinion. I depended on my memory when I wrote you, and made a mistake.

Dr. Fritz Haas, Curator of Lower Invertebrates, Chicago Natural History Museum, Roosevelt Road and Field Drive, Chicago 5, Illinois. In my last letter to you I alluded to the living base on which the Catalina Island specimens of *Pedicularia californica* were found as a *Hydrocorallina* belonging to the genus *Allopora*. Now I find out that, though this animal in question is a *Hydrocorallina*, its exact name is *Allopora californica* Verrill.

Dr. E.P. Chace, 24205 Eshelman Ave., Lomita, Calif. Mr. Chace has given us some further discussion of the *Ammaeidae*.

Some comments on Dr. Test's grouping. Placing *instabilis* and *incaea* in different groups and same for *depicta* and *palacea*, looked odd to most of the club. However, we may be converted when Dr. Test's paper is published and we all have a chance to study it. A. fenestra fenestrae - O.K., but personally why give the northern form a separate varietal name because it is always eroded. When we get north next summer I hope to find some fenestra that are not eroded and also to get a growth series or two.
Acmaea paleacea—some of the club say "Not always on the open coast."

Acmaea tussulata—Club somewhat at sea on this section. My idea is that the shells that George Willett collected at Grant Island, Alaska may well be the same as the Atlantic species, but that is the same as the thing from California that we have been calling A. patina or A. scutum is open to question.

Acmaea ochracea Dall— I agree with Mrs. Test's remarks on this species. However, I sent some shells from Topango coast (north of Santa Monica) and she returned one marked A. ochracea. My own idea of this shell is a young light colored A. polta. Shape, sculpture and aperture all say polta to me. Another specimen of the species I know as polta but a dark colored one was returned marked A. amsi. I would like to see the shells collected from Prince William Sound by Eyerdam stated to be ochracea.

Acmaea triangularis— I believe the Alaska record is probably based on the thing that George Willett collected and called this species but later decided was Dall's parallola. Also ??? did Dr. Test have the living A. triangularis from Monterey or was her work based on the Alaskan shells?

Acmaea limatula—Believe that the northern records of this are based on misidentifications. We could not find it at Crescent City nor in Dyeet Bay collecting. Did you? (Answer: No.)

Acmaea strata—Dr. Gregg's specimens are definitely A. conus Test. The Piedras Blancas record is therefore based on a misidentification.

Lottia gigantea— I question the Crescent City record. Northern limits verification. Will see what I find next summer.

Mr. Chace sends another correction: The Littorina novocombiana that we had at the club meeting some time back were from the original lot and not of our collecting as you stated in the Minutes. We hunted for them but did not find them.

Pleurobranchus chacei Burch, 1944. This species was described and figured in the Minutes but no type specimen was selected because it was thought that the species would prove to be conspecific with Pleurobranchus californicus Dall, 1900. However, Mr. and Mrs. E.P. Chace recently discovered some alcoholic specimens in their collection and now the validity of the species can be definitely determined.

Therefore a holotype has been selected and placed in the California Academy of Sciences. A note from Dr. L. C. Hertlein is self explanatory. I think that you are absolutely correct that each species described should be represented by a type specimen even though the name may be completely abandoned. It often happens that the name may be used by later workers and it then becomes very important to have a definite type for comparison. We are happy to add the specimen to our type collection....

A. Byron Leonard, Department of Zoology, University of Kansas, Lawrence, Kansas. Here is a puzzle for Dr. W.C. Gregg to answer. * For example, since I have encountered many fossil shells of slugs in my study on fossil gastropods, I was very much interested in Dr. Gregg's notes on the Land Slugs of Southern California, with particular reference to the question of whether Doroceras gracile is a native American species or an immigrant from Europe. The problem is certainly a puzzling one because fossil shell plates of the size of the native Doroceras apparently do not occur in this region. This leads us to a dilemma, if Doroceras is not a native genus, then it seems necessary to discard the hypothesis that the shell plates I find as fossils represent an ancestral form of the living population of Doroceras.*
Professor Ralph W. Dexter, Kent State University, Kent, Ohio. I believe the name Littorina rudis Donovan 1800 which appears on pages 11 and 37 of issue No. 33 (Dec. 1945) of the Minutes of the Conchological Club of So. Calif. should read Littorina saxatilis Olivi 1792.

David Nicol, Box 2466, Stanford University, Calif. I have been trying for the past year to get some specimens of Glycymeris with the soft parts preserved. I have asked the U.S. National Museum for specimens, but Dr. Heath has used all of them. Do you or any of the Conchological Club members have any of this material? Even a cursory examination of the soft parts to ascertain the correct orientation of the shell would be of tremendous value. I will send you reprints of two preliminary papers on the Glycymeridae as soon as I receive them.

Minutes of the January Meeting of the Conchological Club of So. Calif.
The Conchological Club of Southern California met at 7:30 P.M. Jan. 8, 1946, a week late, due to the fact that New Year’s day fell on the regular meeting date. There were 14 members present, and three visitors, all of whom expressed a desire to become members. They were Jim Bailey, 725 W. 115 St.; Arthur D. Howard, 2307 W. 20th St. and Marshall Sohl Jr., 1433 W. 154th St., all of Los Angeles.

Minutes of the previous meeting approved as printed.

Under communications were a greeting from Mrs. Ora Willott of Kent, Washington, and a letter from Mrs. J.M. Lane, 1475 S. Roosevelt Ave., Pasadena telling of the passing of J.M. Lane on Jan. 1, 1945 and of her continued illness from which she has only partially recovered and of which the members of the club are sorry to learn. She also spoke of the continued ill health of Mr. Crowhurst and of the robbery of his store at 238 S. Spring St., Los Angeles. While not a member of the club Mr. Crowhurst was always a booster in its behalf, and the secretary is but one of many he has induced to attend the meetings.

Mr. and Mrs. Harry Turver recently spent some time collecting at Quaymas, Mexico and brought for distribution a very interesting box of duplicates. That they very rapidly disappeared is a forgone conclusion.

The prepared lesson was then taken up, the subject being Acanthina, a tough assignment for most of us, and there was considerable discussion, lasting well beyond the hour for closing. The meeting was then adjourned.

Effie M. Clark, Secretary.

Mr. F.H. Bayer, 1234 Country Club Prado, Coral Gables, Florida. Noto Ted’s new address. When I wrote you before my plans were poorly formed. I have come to Gainesville only long enough to resign my position here. I am returning to the University of Miami, and am continuing my schoolings accompanied by my companion in collecting over some 10,000 miles of sea and jungles. I will have some interesting news of mollusks when I get a chance to work over our material from the Pacific. We will be very happy if Ted will write a paper on his shell collecting experiences for publication in our minutes.

Mr. Walter J. Eyerdam, 7551 19th Ave., N.E., Seattle 5, Wash. Mr. H. Harry was over from the navy several times during the holidays and brought out an assortment of marine and land shells which he collected at Tsingtao, N. China, Okinawa, Ilo Jim and Palau Islands. There were about 75 species. I classified all except about three of them.

Several weeks ago I received from the University of Uppsala, Sweden, Dougt Hubendick’s monograph on the genus Siphonaria in German. It deals very thoroughly with all characteristics of anatomy, evolution and distribution of the species of this family. Very few families of mollusks (con.)
have been dealt with so thoroughly. There is a long summary in English of all salient points in the work. This book should be in the possession of all advanced students working on the anatomy of mollusks.*
* Notes: It would be interesting to know the price of this work and all other foreign publications and the name and exact address of the proper person or department to send the order or request.

Mr. Eyedon also enclosed a few collecting records that arrived too late for publication with the general discussion. They follow:

Hippomix barbata, Sweby– Mazatlan, Mexico, 1938.
Calyptraea mammillaris Broderip– Corinto, Nicaragua.
Calyptraea radians Lamarck– Corinto, Nicaragua.
Crepidula nummaria Gould– Corinto, Nicaragua and Gulf of Fonseca, Honduras.
Crepidula onyx Broderip– Corinto, Nicaragua.
Pollinica uber Valenciennes– Corinto, Nicaragua and Acajutla, Salvador and Gulf of Fonseca, Honduras.
Trivia solandri Gray, 1837– Corinto, Nicaragua.

We feel honored that we have a request for a complete file of our Minutes from the Library of Congress, Washington, D.C. We sent them two copies of our bound work on the Pelapididae but were not aware that they would care to file all of our papers monthly.

Hon. R. Winckworth, 71 Whitworth Road, London SE 25, England. We are pleased to have a nice letter, and flattered by the commendation of so eminent a conchologist. We are sorry to learn that Mr. Winckworth has been ill. * I have very much appreciated the interest and excellence of the Minutes of the Conchological Club of Southern California, and would like to be a contributor. I have sent you separately a copy of my list of the types of the Bolivian genera, which you kindly noticed in the minutes. I will gladly send you copies of any other papers of mine you would like, but few of them have any bearing on California shells. I am chiefly interested in the mollusks of the Indian Ocean, shells and nudibranchs. I had at one time a large collection of British shells, which went to Liverpool Public Museums before the war and was destroyed when Liverpool was bombed in May, 1941. Although my house has twice been badly damaged by neighboring bombs, neither my library nor collections have suffered here (apart from some broken Nautilus– which did not matter, as I had already studied them).

I have now retired from the Royal Society though I often go in (when well) as 'Consulting Editor' usually three days a week, but my home address is best.

Minutes of the Long Beach Shell Club– December, 1945

The Long Beach Shell Club had the Christmas meeting with the Ulrichs in Wilmington, and it was a grand time. Twenty four were there, three of them new members and Dr. Wentworth was back with us after a long absence. Mr. Baker called the meeting to order and asked the chairman of the nominating committee to report. The following names for 1946 officers were presented and voted: President, Mr. Baker; Vice-president, Mrs. Libby; Secretary, Miss Eaton.

Reports of collecting trips were to the effect that sea life has changed greatly as to locale during the war, and many old collecting grounds are devoid of material. The complete cause is still not explained.

Next meeting will be held the second Sunday in January, 2:30 P.M., in the library basement. It is about decided to make no change of time or place for the future if the library can still let us use the basement.
as in war time.

Mr. Ulrich then entertained the group with his sleight of hand performances, to the delight and mystification of all especially by Ralph Bormann Jr. who was back with us.

After an enjoyable lunch planned by Mrs. Ulrich and her assistant Mrs. Libby, Santa distributed the shell packages and the Ohs and Ahs showed the pleasure of all. A grand host and hostess are Mr. and Mrs. Ulrich and we are happy to have been there.

Next meeting topic will be "Experiences of the December low tides."

Ruth E. Eaton, Secretary.

Mrs. Wm. B. Smith, P.O. Box 373, Arlington, Texas is interested in purchasing shells.

Dr. R.P. Burke, Bell Bldg., Montgomery, Alabama is interested in buying shells.

Mr. and Mrs. E.W. Boerstler, P.O. Box 494, Corona del Mar, Calif. Most of us will envy the Boerstlers their collecting excursion to Mexico. But they exchange and if you have anything good in the line of duplicated perhaps you can still get some of that Mexican material.

Miss Norma Thompson, 1800 Dixon, Des Moines, Iowa inquires about buying shells.

Mr. George W. Bemart, 1144 Whitney Ave., Hamden, Conn. Mr. Bemart has a collection of shells but none from the west coast and asks about either an exchange or a purchase of a series of west coast shells.

W.C. Parris, Boom, Tenn. We have many fine sets of land and freshwater shells from Mr. Parris. He writes that he has had little time for his exchanging during the past year but I hope to have time to exchange shells with any one who desires specimens of my shells. Mr. Parris' son Tom is living at 765 Lafayette Ave., Brooklyn, N.Y.

Mr. and Mrs. H.R. Turner, 8640 Evergreen Ave., South Gate, Calif. Another lucky couple making a collecting trip to Mexico. In the past they have brought back several new species and many fine things. No doubt this trip will be as good. They exchange and have rare things to offer.

L.M. Wright, CEM, U.S. Navy, Enterprise, Florida. You are doing wonderfully well and I herewith tender $2.50 for the 1946 issues which you will grind out in the magic micromag. Also when possible I will keep my promise to send the shell club members a box of Florida marines.

Mr. Charles D. Nelson, R/#5 Lake Michigan Drive, Grand Rapids, Mich. You will find enclosed my check for $2.50 to continue my name on the mailing list to receive your C.C.S.C. Minutes which still sets the pace for any similar publication. Thank you.

Mrs. F.K. Hedley, 14 Vincent St., Box 33, West Newton 65, Mass. All shell collectors should by all means write Mrs. Hedley and ask to be placed on her mailing list. She is a dealer in fine correctly classified specimens. Her new bulletin will be issued immediately. Thinking you might be interested in seeing what I am doing in the shell line, I am sending you a copy of my new Bulletin which should be out some time next week. It is about ready to go to the micromagographers. I am enjoying the shell business greatly and remember with pleasure our contacts with the Furchos, when we were first getting started. It is my intention to get out Bulletins frequently as it stimulates interest in shells.

Mary Mount, 9 Queens Parade, Davenport, Auckland, New Zealand. I thank you very much for the notes of your club. You go to a tremendous lot of work to get such details. I am posting a box of shells unnamed to our N.Z. shells for your club. I know so many have these that there would be
PAGE 15 TO 16 MISSING
Family Haliotidae

Genus Haliotis Linnaeus, 1758. Type (by subsequent designation, Montfort, 1810), Haliotis asinina (Linnaeus).

The only recent contribution to the literature of this genus in our library is Bartsch, Paul, Proc. U.S. N.M., vol. 89, no. 3094, 1940 "The West American Haliotis".

There have been a number of subgenera described but presumably all of our species belong under Haliotis s.s.

Haliotis cracherodii Leach, 1814. Coos Bay, Oregon to Santa Rosalia, L.C.
Type locality: California.

Our common black abalone is easily recognized by its nearly smooth shell. It could only be confused with H. californiensis Swainson. Grant and Gale state "It seems to favor rocks not thickly covered with algae and is supposed to subsist on diatoms."

A number of subspecies have been described. H. cracherodii splendida Williamson, 1832 (Proc. U.S.N.M., vol. 15, p. 193) is a color form from Point Vicente stated to have brilliant blotches of color in the interior. Dr. Bartsch places this in the synonymy with approval of the majority.

The imperforate shells have been given several names, the best known perhaps being H. cracherodii holzeri Hemphill, 1907, which seems to be without much doubt the same thing as H. cracherodii imperforata Dall, 1919. We have collected these shells on numerous occasions and in our opinion they are simply abnormal individuals and the names have no significance. But if they do, why the same abnormality in other species has not been named I do not know. Imperforate specimens of Haliotis fulgens are perhaps even less rare. The last perfect specimen of an Imperforate H. fulgens coming into our hands was from Malaga Cove, L.A. Co. It is now in the collection of Mrs. Hattie Cernell of San Jose, Calif. We attach no significance to the form. Therefore the article by Dr. G. Dallas Hanna in Nautilus 41:35 in which he discusses Haliotis cracherodii lusus Finlay (Trans. New Zealand Institute, vol. 57, 1926, p. 492) (now name for H. c. imperforata Dall—prococcupied) is of little interest in my opinion other than perhaps adjusting the synonymy.

Collecting data: The most abundant littoral species collected in any numbers desired from Monterey, Cayucos, Morro, Malaga Cove, Point Vicente, Point Fermin, Laguna, Punta Banda, L.C. (Burch): P.M. Connolly brought back specimens from San Quintin Bay, L.C., Mexico; Half Moon Bay, Calif. (Emery); Magdalena Bay, L.C. (Hemphill); Santa Rosa Island (Fleming); San Clementeand San Nicholas Islands (Lowe); Coronados Islands (Stephens).

Haliotis cracherodii californiensis Swainson, 1822. On the islands; the Farallones to Guadalupe Island. Type locality: California.

This species resembles H. cracherodii Leach in every respect other than that it has from 12 to 15 small perforations usually almost flush with the surface of the shell. Most of us have been disposed to consider this a distinct species, but Dr. Bartsch in the paper cited above reduces it to a subspecies stating "for the organisms on Corros and San Bonita Islands form perfect intergrades between the typical H. cracherodii and H. californiensis ..."

A subspecies of this form was described by Orcutt, Haliotis californiensis bonita Orcutt, 1900. This is another abnormality in that some
individuals have a supplementary shell deposit in the interior. The same
thing occurs occasionally in other species and the general opinion is
that it is of no significance. Dr. Bartsch discusses it on p. 57.

Collecting data: The only specimens in our collection came from
Guadalupe Island collected by the late Dr. Fred Baker (Burch); there
are specimens in the Lowe collection in the San Diego Museum so labelled
from Todos Santos Bay and also San Pedro. Both the Lowe and Baker col-
lections have specimens also labelled with the name bonita mentioned above.

Haliothis rufescens Swainson, 1822. Point St. George (Thompson) and
Crescent City, Calif. (Chace) south to La Paz, L.C. and the Galapagos
Islands. Type locality: Galapagos and California.

Dr. Bartsch gives the range Mendocino County south to Catalina
Island. However, I have personally collected it from the coast south of
Todos Santos Bay, L.C.

Our most common commercial species is well known by its brick red
color, large size, light spiral sculpture and radiating waves. Grant and
Gale make an interesting note " Bertner determined that California speci-
mens six inches in diameter were 9 years old, those 8 inches in diameter
13 years old."

Collecting data: The common food species brought into Monterey and
Morro Bay canneries and packing plants. It is probable that a good
many questionable localities have been placed on the record from speci-
mens collected from the backs of these shells. I forget who it was that
collected over 50 specimens from the back of one large H. rufescens, I do
not doubt it. Small species of almost every group seem to come up on
these, sponge-covered with Cerithiopsis, Tylodina etc., and the alga
attached to them offers a nesting spot for countless others. However,
these shells are collected by the commercial divers far up and down the
coast and brought back into Monterey fromes far south as Santa Barbara.
Therefore, the exact locality from which they came is subject to a varia-
tion of several hundred miles.

We have collected them from Punta Banda, L.C. and the coast around
the point. P.M. Connolly brought back specimens of the species from far
down the coast on his trip to San Quintin Bay. The exact southern end of
the range is a question (Burch); Mr. E.P. Chace reports " variable in all
directions. Have 3 dimention measurements of 30 specimens "; Fort Bragg
Calif. (Hemphill) south to San Quintin Bay (Starnberg); Point Loma
west side (Crescent); San Miguel Island, kitchen middens (Hemphill);
San Nicholas Island, kitchen middens (Lowe) (San Diego Museum).

Haliothis rufescens walallonsis Stearns, 1900. De Poe Bay, Oregon (Burch)
south to Mendocino Co., Calif. Type locality: Guadalupe, Mendocino Co., Cal.

It has been the general opinion that this is a good distinct species.
However, Dr. Bartsch considers it a northern race of rufescens. " Its
narrower shape, less rugose surface, and smaller size differentiate it
from the typical race."

Anchor Bay, Mendocino Co. (Chace). Mr. E.P. Chace comments on
this species " I believe that this is a good species. If not I would
place it as a variety of fulgens. The edges of the animal are not smooth
and blacker in rufescens but blotched in 2 shades of olive and with a
pustulose surface."
Haliotis rufescens hattori, Bartsch, 1940. Santa Barbara to Todos Santos Bay (Burch). Type locality: near Santa Barbara.

Collecting data: We collected specimens that seem to fit Dr. Bartsch's description in Lower California. This subspecies must be very close to the typical.

"Shell small, oval, rather flat, spire depressed, with a slight auricle where the outer lip joins the preceding whorl at the summit. The color of the first half of the shell is blue, slightly variegated with red. The last half is banded with zones of red and bluish white. The sculpture consists of irregular lines of growth and indications of axial waving. The spiral sculpture consists of low, flattened threads, which are not quite so wide as the spaces that separate them. Those, in combination with the incremental lines, give the surface a somewhat clothlike texture. The siphonal angle bears moderately elevated craters, the last four of which are open. Between the siphonal line and the edge of the aperture the shell is rounded and marked like the surface posterior to the siphonal line. The entire outer surface has a waxy appearance. The interior is pearl-gray with iridescent tints, the outer edge of the outer lip being pale reddish. The right edge of the aperture is slightly crenulated; the left edge is rather broadly expanded and flattened, sloping outward, the shelf being about the same width on the parietal wall. Muscle scar poorly differentiated.

The type, U.S.N.M. No. 535761, was collected by Mr. Hattori, an abalone diver, near Santa Barbara, for which I take pleasure in naming the form. When placed on the aperture it yields the following measurements: Height, 18 mm; greater diameter, 100 mm; lesser diameter, 75 mm.

This subspecies can be differentiated easily from typical Haliotis rufescens. Stainson by its very flat shape, the very poorly elevated spiral threads, the wavy surface, and by lacking the elevated tumid area between the siphonal line and the edge of the aperture. From H. rufescens walailonensis it is easily distinguished by its much broader shape and feebler sculpture."

This name has been very generally placed in the synonymy of Haliotis rufescens on the theory that the description seems to call for an exceptionally large specimen of rufescens. However, Dr. Bartsch seems to have examined the type located at Amherst College and considers it a good species. But both the locality from which it came and the possible range is unknown.

Dr. Bartsch in the paper cited above redescribed the species as follows: "Shell large, very heavy, strongly inflated, spire well elevated. The exterior is brownish red, rough, and somewhat worn. It shows irregularly developed and distributed, weakly irregularly nodulose axial ridges and very rough incremental lines, as well as indications of spiral cords. Anterior to the line of siphonal craters, the last four of which are open, the shell is moderately elevated and strongly rounded. On the early part of the last turn it has a broad, feebly developed, median tumid ridge. The dextral and parietal walls of the aperture are broadly expanded, sloping slightly inward, but not excavated."
May, 1946

Interior iridescent with pearly gray tint prevailing. Muscle scar large, rugose and granulous.

The type, deposited at Amherst College, yields the following measurements: Greater length, 215 mm.; greater diameter, 167 mm.; height 80 mm.; weight, 945 grams.

The shell appears related to Haliotis rufescens, from which the ponderous shell, well-elevated spire, and pale interior (H. rufescens has the lively iridescent-green color scheme) readily differentiate it.

It is to be regretted that Professor Adams was unable to give any information about the habitat of this abalone. I believe that it should be looked for in southern California on extremely exposed and surf beaten ledges.

Haliotis fulgens Philippi, 1846. (H. splendens Reeve, H. planilirata Reeve) Parallones Island to the Gulf of Calif. Type locality: Not given.

Grant and Gale state "distinguished by its spiral sculpture, moderate convexity, angle at the row of holes, and keel." This is our common "blue" or "green" abalone.

Dr. Bartsch described a subspecies of fulgens from Magdalena Bay, Lower Calif.— H. fulgens turveri Bartsch, 1942 (Nautilus, Oct. 1942).

Collecting data: Our experience has been to find this a southern species from Santa Monica, Calif. becoming increasingly common in Lower California until it is seen in great numbers below Todos Santos Bay (Burch). Piedras Blancas Light House (Orcutt); Magdalena Bay (Cass); Cedros, Ascencion, San Roque Islands (Huey); Coronado Islands (Stephens) (San Diego Museum).

Haliotis corrugata Gray, 1828. Monterey, Calif. south to San Quintin Bay, L.C. Type locality: California.

Grant and Gale state "easily distinguished by its outline and convexity, its rough surface, and tubular perforations." This is the common named "pink" abalone.

A variety of H. corrugata probably of doubtful validity, was described by Orcutt, Nautilus, vol. 33, p. 62, 1912— H. c. diegoensis, differing from the typical form by lacking corrugations. Type locality, La Jolla.

Mr. E. F. Chao calls attention to the fact that young specimens are very flat.

Collecting data: Our experience has been to find this a southern species very common along the Palos Verdes Hills and abundant around Todos Santos Bay, P.M. Connally brought back specimens from San Quintin Bay, L.C. No doubt the southern end of the range is still farther south. (Burch); San Pedro (Lowe) to San Quintin, L.C. (Stornberg) (San Diego M.

Haliotis kamtschatkana Jonas, 1845. Kamchatka Sea (Middle), Sitka, Alaska to Rodondo Beach, Calif. and Japan. Dr. A. Myra Keen advises "The type locality is near Unalaska, Kamchatka Sea.".

Collecting data: Ketchikan, Alaska and Metlakatla, Alaska (G. Willett); from divers 10 miles off Yankee Point, 10 miles south of Pacific Grove (A. Serensen); Monterey, Calif. (Lowe); Kii, Japan (coll. by S. Kino-shita); Whale Bay, Baranoff Island, Ketchikan and Craig, Fr. of Wales Island, S.E. Alaska (W. J. Eyrdam).
Halocith sulaeana Bartsch, 1940. Proc. U.S.N.M. vol. 89, no. 3094, p. 53, pi. 8, figs. 3-5. Type locality: 8 to 10 fms. off Cayucos, Calif.

RANGE: Monterey, Calif. south to Port San Luis Obispo.

It is probable that some of the Monterey and other southern records for H. kamtschakana are of this species. The resemblance is close.

The original description follows: "Shell of medium size and rather low, spire slightly elevated. The color scheme of the exterior is a mixture of green and red, more or less disposed in interrupted spiral zones, producing a tapestry-like effect. Interior pearl-gray, edge of peristome variegated chiefly with green. The exterior is marked by numerous flattened spiral cords, which vary materially in size, usually finer ones separating the broad elements. In addition there are obliquely protractively, radiating nodulous ridges, the nodules being depressed. The surface likewise has numerous incremental threads, which render the finer cords minutely nodulous and the rest lirate. The siphonal angle bears numerous cratérlike projections, the last six of which are open. Anterior to the siphonal angle there is a rather strong spiral cord midway between this ridge and the basal edge of the shell. This part of the shell is also marked by spiral cords, a little finer than those on the spire, and by the continuation of the incremental elements. The aperture is broadly oval, the outer edge of the peristome is acute, while the posterior portion of the inner lip slopes materially inward. The surface of the inside is wavy and its color pearl-gray."

The type, U.S.N.M. No. 535848, was collected by A. Sorensen in 6 to 10 fms. off Cayucos, Calif. It measures: Height, 34 mm.; greater diameter, 110 mm.; lesser diameter, 55 mm.

U.S.N.M. No. 535849 contains four additional specimens, which range from a length of 33 mm. to almost the size of the type. These came from 10 to 15 fms. off the southern part of Monterey County, Calif. Two others, U.S.N.M. No. 535850, came from off Port San Luis Obispo.

This species suggests slightly Halocith smithsoni Bartsch, but is much broader than that. It reminds one also of H. assimilis, but its coarse sculpture at once removes it from that association.

The original description follows: "Shell large, with a strongly mammillated spire, whose whorls are separated by a rather deeply impressed suture. From the summit to the row of siphonal apertures the whorls are almost straight, a little convex on the last portion of the last turn. The siphonal openings are craterlike, the last three or four being open. The sculpture between the summit of the whorl and the siphonal line consists of coarse incremental lines that develop into inconspicuous, low, rounded ridges, which are almost regular in distribution; these ridges bear obsolete, ill-defined nodules. In addition there are slender spiral threads, which are of varying width and differ slightly in spacing. Between the siphonal line and the edge of the aperture there is a low, raised keel a little posterior to the median line. The space between this rounded keel and the siphonal line is slightly concave and marked by incremental lines and spiral threads. Anterior to this submedian line the shell is slightly rounded and marked by the continuation of the rugose radial threads referred to for the spire and spiral threads. The aperture
is oval and is sharp on the dextral margin, while the left margin is moderately broad and slopingly excavated. This slope extends over the parietal wall; where it is a little broader. The muscle scar is rather pronounced. The color scheme of the interior is pearly gray with iridescent prismatic, scattered flashes. The type, U.S.N.M. No. 60425, comes from Catalina Island. Placed flat on the aperture it measures: Height, 57 mm.; greater diameter 140 mm.; lesser diameter, 107 mm. There are two additional specimens in our collection, one of which, a little smaller than the type, USNM No. 98329, collected by Dr. Cooper at Santa Cruz Island, measures: Height, 50 mm.; greater diameter 119 mm.; lesser diameter, 94 mm. The other, USNM No. 11366, a very large specimen, bears the locality label San Diego, which I somewhat question. This measures: Height, 77 mm.; greater diameter, 193 mm.; lesser diameter, 128 mm. This species suggests Haliotis kamtschatcand. Its gigantic size and comparatively feeble sculpture will readily distinguish it from that. I take pleasure in naming it for the founder of the Smithsonian Institution, James Smithson:"

Haliotis assimilis Dall, 1878. Farallones Islands to San Diego, Calif. in deep water. Type locality: California.

A strongly inflated oval species.

Collecting data: We have dredged numbers of specimens of what we identify as this species from off Redondo Beach usually in 25 fathoms or slightly deeper. The same thing from off El Segundo in 35 fms. We brought up one lot from about 50 fms., on the north side of the submarine canyon off Redondo. There is some question in my mind thought whether or not these are identical with the large shells we have identified as this species from off Monterey: (Burch); by diver from 10 fms. off Yankee Point, 10 miles south of Pacific Grove (A. Sorensen); Pt. Conception, Calif. (Love); Redondo from 50 fms. (Love); San Diego (Gripp); Coronado (Orcutt) (San Diego Museum).

Haliotis sorensei Bartsch, 1940. Proc. U.S.N.M. vol. 89, no. 3094, p. 53, Pl. 8, Figs. 1-3. Type locality, south of Point Conception, Calif. in 10 fathoms.

Range: Point Conception, Calif. south to West Mexico.

Collecting data: Many of us had this large species in our collections labeled H. assimilis before Dr. Bartsch described it. It is my opinion that it is a good species but in outward appearance it is very close to H. assimilis. The late Dr. Fred Baker had numbers of fine specimens from lower California. We brought up one fine specimen from about 6 fathoms off Malaga Cove, L.A., Co. Mr. H. Ralph, since deceased was the diver. One amusing thing occurred with this species. After the description of H. sorensei there was quite a demand for it by the local collectors and members of the club. Mr. Taylor of San Diego who imported abalone shell for commercial purposes had several burlapped bales of this species imported from Mexico along with large numbers of fulgens, but finding the shells of sorensei too thin to polish for souvenirs he sold the lot to a mill to grind them up into gravel for chicken feed. We could have done much better selling the shells had he known what he had. (Burch); San Martin Island (Olsen); Cedros Island (Haylor).

The original description follows: "Shell large, thin, the exterior brownish red, decidedly inflated, spire well elevated, between the line of strongly elevated orator-like siphonal perforations, of which the last four or five are open, and the edge of the shell the upper three-fourths is
May, 1946

Gently rounded, while the outer quarter flares to a considerable expansion, which produces a decided, concavo line at the inner edge of the outer fourth of this part of the shell. The outer surface is marked by more or less regular, broad, low, axial ridges, which bear irregularly developed, not strongly pronounced, nodules. The outside is further provided with numerous closely placed, slender, spiral cords that vary materially in strength and with numerous closely spaced, incremental lines that almost equal the spiral cords in strength. In addition to this sculpture, broad, low, elevated, axial areas, which are feebly nodulose, alternate with depressed zones. The interior of the shell is iridescent with a pinkish pearly hue prevailing, and bright rosy tints mark the outer half, while within, scattered greenish areas of irregular size and distribution are present. The muscle scar, usually strongly marked in Haliotis, is here but feebly impressed, in which character it resembles the other California deep-water species, Haliotis assimilis. It resembles that form also in the excavated inward sloping of the expanded dextral margin of the aperture and the scaling-wax colored edging of the peristome, but differs materially in size and in the color of the interior.

The type, USNM No. 55658, resting upon the aperture, yields the following measurements: Greater length, 218 mm.; greater diameter, 168 mm.; height, 81 mm. It weighs 448 grams.

Two paratypes in Mr. Soronson's collection yield the following measurements, respectively: Greater length, 300, 210 mm.; greater diameter 149, 172 mm.; greater height, 79, 65 mm.; weight, 370, 465 grams. Of these specimens Mr. Soronson writes: "They were found slightly south of Point Conception, Calif. by a commercial abalone diver, in 10 fathoms depth. After one was found diligent search for two weeks succeeded in finding only three more. No other diver found any; the time was about September, 1939." A subsequent letter states: "The animal was colored yellowish with dark specks, and the meat was quite tender."

Family Fissurelliidae

We have no references to papers on this family from the West Coast but, the Atlantic species have been very thoroughly worked by Isabel Perez Farfante in Johnsonia #10, August, 1943 and continued in Johnsonia #18, 1945.

Genus Fissurella Lamarck, 1799. Type (by monotypy), Fissurella nimbosa Linne, 1758.

"Shell conical, elevated, depressed and even flattened, variable in size, with the apex subcentral. Orifice at the summit or anterior to it, variable in shape. Surface in a few species smooth, in others with shallow grooves, but generally with numerous radiating ribs which frequently possess small or large nodules or erect scales. Concentric growthlines are always more or less visible. Margin simple, crenulated or notched. Muscle impression continuous but formed as two parts, the larger horseshoe-shaped with the extremities enlarged and connected by a smaller and narrower band or scar. The orifice is bounded inside by a callus which is not truncated or excavated. Shell wholly external, capable of containing the soft parts."

Johnsonia #10, pp. 1-2.

Subgenus Balboina Perez Farfante, 1943. Type (by original designation) Fissurella picta Gmelin.

"Shell generally large, certain species reaching a length of 100 mm. (con.)
heavv and broadly conical. Orifice a little in front of the middle. Cuneiform surface smooth, with numerous radiating striae or ribs more or less nodose. Margin of the shell entirely in one plane, simple not crenulated and with a dark and generally broad, interior border. Internal callus of the orifice usually broad."

Johnsonia #10, p. 2, 1943.

Mr. A.M. Strong advises that there is a good record of this species from San Pedro by Dr. Tremper.

Dr. A. Myra Koen sends a copy of the original description which follows:

"Fissurella testa ovata, cloyatuscula, radiatim costata et striata; intus vireoscenta, margine pallidior, undulato et crenulato; extus pallide vireoscenti. Fuscolo-virescenti obscure radiata, margine costellis crenato; aper- tura dorsali oblonga, extus utrinque costata: long. 1.6, lat. 1.4 poll. Hob. as Panam. Found in exposed situations at low water."

Collecting data: Tros Marinas Islands, Mexico (Lowe); Galapagos Islands (Calif. Acad. Sci.); Magatlan (Forre) (Lowe); San Juan del Sur, Nicaragua (Lowe).

Fissurella volcano Reeve, 1849. Crescent City, Calif. to Panama.

Type Locality: Santa Barbara, Calif.

Collecting data: One of our common species to be found on almost any rocky rubble the length of the California coast and on down the coast to the south. There are some odd races of this species and it is a wonder more of them have not been named. There is a large colony on the San Pedro breakwater distinguished by what seems to be corrosion on the inside of the shells. Specimens from Cayucos, San Luis Obispo Co. seem to be both of exceptional size and oddly shaped.

A subspecies Fissurella volcano crucifera Balf., 1908 is a color form with radial white bands. The general opinion is that this is of no significance whatever. Color patterns in this species could be given a list of names too long to find names for them.

Genus Megathura Pilsby, 1890 Type (by monotypy), Megathura californica Nuttall MS * Megathura crumulata (Sowerby).

Our species of this genus has been placed under the following generic names: Lucapina Gray, 1857. by Tryon, Arnold and early Keep; Macrochasma Dall, 1915. It is strange that rant and Gale did not even mention or discuss Dr. Dall's lengthy discussion in his paper in 1915 "On some Generic Names mentioned in the "Conchological Illustrations". But it is also odd that Dr. Dall made no mention of Pilsby's Megathura 1890 when he proposed the name Macrochasma Dall, 1915.

Megathura crumulata (Sowerby), 1825. Monterey Bay, Calif. to Cedros Island, L.C. Type Locality: not given.

Collecting data: This large species with the shell almost internal and far too small for the animal is amazingly common at seasons. It has been called Chinese abalone but I wonder how they could eat them. We tried it once and found them somewhat tougher than shoe leather. Certain localities seem to abound with this species. The Santa Monica breakwater usually will produce as many as you care to toss in your rowboat but this is perhaps because this breakwater is only reached by water and therefore protected from the host of beach collectors. Also common at San Pedro, San Onofre, Balboa etc. (Burch), San Geronimo Island, L.C. (Lowe).
Genus Lucapinella Pilsbry, 1890. Type (by original designation), Clypidella callomarginata Carpenter.

Shell depressed conical, rather small, with the apex subcentral and completely occupied by the large orifice. The shell is sculptured with irregular radial ribs, crossed by laminae which form small scales. Margin thickened, so much so that in adult specimens the crenulations are blunted. In general it rests on a plane but sometimes its posterior end is slightly raised. Internal callus of the orifice narrow, its posterior extremity roundly truncated, muscle impression of a uniformly narrow width." Johnsonia 10:18-19.

Lucapinella callomarginata (Dall) 1871. Bodega Bay, Calif. south to San Juan del Sur, Nicaragua (Lowe). Type locality: not given.

Collecting data: The animal is far too large to be contained in the shell which is almost internal. Our experience has been to find this species comparatively rare with localities from Monterey, Cayucos, Morro, Newport Bay, Bird Rock, Mission Bay, Punta Banda, Arbolitos, etc. (Burch); Anaheim Bay in the old oyster bed (Chace); Alamitos Bay (Lowe); Anaheim Bay (Lowe); San Diego, Calif. (Hemphill); Mission Bay (Lowe); San Juan del Sur, Nicaragua (Lowe).

Genus Megatebennus Pilsbry, 1890. Type (by original designation), Fissurellidea bimaculata Dall

"Edges of shell elevated at each end, blunt at the sides, in adults not crenulated." (Pilsbry). Grant and Gale state "Lucapina Gray differs in that the edges of the shell are nearly in a plane, are finely crenulated and are not elevated at the ends."

Megatebennus bimaculatus (Dall), 1871. Forrester Island, Alaska to Tres Marías Islands, Mexico (Strong and Hanna). Type locality: Dr. A.M. Keen advises "not selected; by implication, Monterey, Calif.

Collecting data: One of the interesting things about this species is the variation in the color of the animals. We took them in large numbers at Cayucos, San Luis Obispo Co. and found that we had three entirely different colored animals; deep red, deep yellow and white. Study of the animals at the university showed absolutely no difference other than the color, and of course, the shells were identical. This experience has caused me to place a little less emphasis on the color of the animals of some of the species. This is a littoral or shallow water species. It is common under stones the length of the coast, but our deepest dredging records show 15 fms. off both Monterey and Redondo Beach, Calif. (Burch); Crescent City, Calif. (Chace) to La Jolla (Bristol) (San Diego Museum).

Genus Diodora Gray, 1821. Type (by monotypy), Patella apertura Montagu = (Biodora gracca Linne).

This generic name is frequently incorrectly spelled Diodora instead of Diodora.

Shell conical, elevated or depressed, the size varying between wide limits. Apex in front of the shell center; in young specimens curved and slightly twisted, inclined backward and with a fissure in front of it. In the adult, this small and slightly twisted portion is totally lacking. Orifice at the summit or immediately anterior to it, variable in shape. Surface of the shell sculptured by conspicuous radiating ribs and concentric
threads or laminae. Basal margin of the shell resting upon a plane or slightly elevated in the middle part of the sides; never raised at the ends. Margin strongly crenulated. Muscle impression frequently indistinct, but when distinct, not uniform in width and with the anterior part incurved at the ends. A few species have the muscle scar completely oval and of uniform width. A small and narrow connecting ridge bridges the area between the incurved ends. The orifice is bounded by a callus which is truncated posteriorly and sometimes excavated at this region forming a deep pit. Shell completely external, not covered by the mantle and capable of containing all of the soft parts. Johnsonia 1111

San Juan del Sur, Nicaragua (Lowe) Diodora aspera (Eschscholtz), 1853. Cook's Inlet, Alaska to Magdalena Bay, L.C. Type locality: Dr. A.M. Keen advises is "Norfolksond bei Sitka."

Perhaps the most common agreement in connection with this species is the subspecies denisolathrata (Reeve), 1853. Grant and Gale, 1951, p. 850 place the subspecies denisolathrata in the synonymy of the typical. However this is by no means accepted by all. I have personally never seen a specimen so labelled nor have I recognized a specimen of this variety. It is described as having subequal, nodulous ribs, and these are characters I have never seen on a specimen of aspera. The range is given by Dall as Monterey south to San Quintin Bay and Socorro Island. An interesting item is that the San Diego Museum of Natural History have numerous sets in the Lowe collection labelled D. aspera denisolathrata Reeve, as follows: La Jolla (Galloway); San Pedro; Mission Bay; Guaymas; Sonora; Mazatlan; Cape San Lucas; Mazanillo; San Juan del Sur, Nicaragua (Lowe). In any event the Nicaragua record is an extension of range southward. Dr. W.C. Gregg states "I consider denisolathrata a synonym of D. aspera." The consensus of opinion seems to be that denisolathrata is either a subspecies of questionable validity or a synonym.

Collecting data: In our experience this is a comparatively common species littoral in about the same habitat as Fissurella in the northern part of the range but more common if not confined to deeper water in the south. It is easily found exposed on stones from Puget Sound south to Cayucos in our experience— from Crescent City, Monterey, Cayucos, littoral. We found it a shallow water species in the dredgings off Monterey not deeper than 15 fms, or perhaps 20 fms at most. This bathymetric range seems to be fairly constant southward to Todos Santos Bay, L.C. where we dredged it in 15 fms. It was rather common on help holdsfasts washed ashore in southern California from Los Angeles to San Diego, Imperial Beach etc. Not uncommon in the Pleistocene of Tim's Point, San Pedro, (March); "In March, 1922, I found a nice set of Diodora aspera on the breakwater at Fish Harbory San Pedro." (W.C. Gregg).

San Juan del Sur, Nicaragua (Searns). Diodora murina Arnold, 1903. Crescent City, Calif. south to Magdalena Bay, L.C. Type locality: not known.

Dr. A. Myra Keen comments on this species as follows: "There is a real problem in connection with this name. The first usage is clearly a nomen nudum (Dall, Proc. U.S. N.A. vol. 6, 1885, p. 543) "Fissurella (Olyphis) murina Car. Not common, San Diego. This is the Olyphis denisolathrata of Californian conchologists, and for a time of Carpenter but not of Reeve." Incidentally, Grant and Gale cite this reference as "Carpenter in Dall in Orcutt." But however one cites it still is a nomen nudum. Article 25 of the International Rules requires for a species
May, 1946

an indivation, a definition, or a description. Obviously the latter two are lacking, and an indication is defined in Opinion 1 as a bibliographic reference, or a published figure, or a definite citation of an earlier name for which a new name is proposed. Dall's usage does not conform to any of these since he says in effect cites only misidentified specimens. The later citation copied by Mrs. Oldroyd is no better. So far as I can find, the first valid usage is by Arnold, 1903 (Mem. Calif. Acad. Sci., vol. 3, p. 359), where there is a brief description. The first figure of the species would be also by Arnold, Proc. U.S. Nat. Mus., vol. 32, pl. 50, figs. 2, 33, the specimen being a fossil probably of Pleistocene age. Until someone selects a lectotype from among Arnold's material, most of which is here at Stanford, the type locality of this species is undetermined. If the Williamson collection is extant, one could select one of the Catalina specimens, as Arnold cites that record."

Collecting data: Our experience has been to find this species not littoral but confined to comparatively shallow water. We dredged it in 20 fms. off Monterey in considerable numbers; 15 fms. off Pacific Grove; 35 fms. off El Segundo; 25 fms. off Redondo Beach; 25 fms. off Avalon, Catalina Island; and occasionally taken from kelp holdfasts from Los Angeles to San Diego county. (Burch); San Diego (Hemphill); La Jolla and Long Beach and San Nicholas Island (Lowe) (San Diego Museum)

* Additional data for Diodora aspera Eschscholtz by W. J. Eyerdam: San Juan Islands, Port Orchard, Kitsap Co., Rosario Beach, Skagit Co., Challam Bay, Challam Co., Wash.; Port Armstrong, Baranof Island, S.E. Alaska. About 2 dozen specimens were collected on underside of stones at Rosario Beach. Each one of them had a polynoid commensal worm called Halosyndra lordi Baird nesting under the mantle."

Diodora inaequalis (Sowerby), 1835, ?? Santa Barbara, Calif. south to Martina, Ecuador and the Galapagos Islands. Dr. A. Myra Keen advises "The type loc. of D. inaequalis is Guacomayo and Galapagos Islands."

This species is unquestionably a member of the California fauna. We have it from many localities down the west coast of Mexico, Guaymas, Punta Penasco etc. The only specimens reported from California are from the San Diego Museum by Miss Bristol. "From many points from Lower Calif. to Panama. 2 specimens from Imperial Beach, Calif. found by Mrs. Kate Stephon."

Genus Puncturella Lowe, 1827. Type (by original designation) (fide Woodring), Patella noachina Linnaeus.

A number of subgenera have been described, Grant and Gale state "In the typical section of Puncturella, the apex is not absorbed by the perforation. In Section Fissuriscotia, Sequenza the apex is absorbed by the anal perforation. In Section Granopsis Adams, the fissure is on the front slope instead of at the summit."

Puncturella major Dall, 1891, Pribilof Islands, Bering Sea and southward to Dixon Entrance, Alaska. (Dall), north to San Juan Islands, Fuget Sound (Eyrdam). Type locality, Albatross Station 3262, off coast of Akutan Island, Bering Sea in 43 fathoms.
Puncturella galeata (Gould), 1848. Unalaska, Aleutian Islands, south to Redondo Beach, Calif. (Burch). Type Locality: Dr. A.M. Keen advises "The type locality of Puncturella galeata is Oregon according to the holotype label."

Collecting data: Dredged off Redondo Beach, Calif. in 50 fms.; off El Segundo, 5 mi. N. in 35 fms. (Burch); Drier Bay, Knight Island in 10 fms. mud; Izhuat Bay, Afognak Island; Raspberry Island, Alaska—dredged (by W.J. Eyerdam); Hinchinbrook Island, Alaska (Norberg) (Eyerdam); San Juan Islands, Puget Sound (Oldroyd); Drier Bay, Knight Island, Alaska from 20 fms. (Brown) (San Diego Museum).

Collecting data: Collected by W.J. Eyerdam in 1923, in mud bottom, in 25 fathoms.

Dr. Kenn advises that the correct date of these Gould descriptions is 1848 instead of 1846 as given in Bull. 112 and other works.

Grant and Gale state: "Puncturella cucullata (Gould) has sixteen prominent widely spaced, primary radiating ribs with subdued secondary ribs between. In Puncturella multistriata Dall the middle one of these secondary ribs is emphasized, giving the sculptural aspect of the shell a very different appearance. In Puncturella major Dall these middle secondary ribs areas strong as the primaries, giving the shell twice as many primary radiating ribs as cucullata. Mr. George Willett, of the Los Angeles museum staff, has a series of recent specimens of this species but they do not seem to intergrade and he is of the opinion that they are distinct species at least in the Recent fauna."

Puncturella cucullata attains a larger size in Alaskan waters than it does in southern California. Mr. Willett has Alaskan specimens that measure over 30 mm. in longer basal diameter whereas Catalina Island individuals rarely measure over 18 or 20 mm. In the north it occurs at low tide line but in southern California it is obtained only by dredging.

Collecting data: Dredged in 20 to 40 fathoms off Monterey, Calif.: Redondo Beach in 25, 50 and 75 fms.; off El Segundo in 35 fms.; common in the Pleistocene of San Pedro. (Burch); Catalina Island in 35 fms. (Love); Forroster Island, Alaska (Willett); Puget Sound (Randolph) (San Diego Museum); Sawmill Bay, Evans Island; Drier Bay, Fr. Wm. Snd.; Izhuat Bay, Afognak Island and Raspberry Island, Alaska (Eyerdam); dredged on mud bottom; Hinchinbrook Island (Norberg) (Eyerdam).

Puncturella multistriata Dall, 1914. Atka Island, Aleutians, south to San Diego and Cortez Bank, Calif. Type Locality: Dr. A.M. Keen advises "The type locality of P. multistriata is Station 2466, Strait of Fuca, 56 fms., according to the holotype label."

Collecting data: Dredged off San Juan Islands, Puget Sound in 50 fms. (Miss Ruth E. Coats); Seymour Narrows, B.C.; Izhuat Bay, Afognak Island, Alaska; San Juan Islands, Wash. (W.J. Eyerdam); Hinchinbrook Island (Norberg) (Eyerdam).

Puncturella cooperi Carpenter, 1864. Kasaan Bay, Alaska to San Diego in 50 fms. (Kelsoy). Type locality: Dr. A.M. Keen advises Catalina Island according to the holotype label.

Collecting data: Dredged off Redondo Beach in 25 to 75 fms.; common in the Pleistocene of Tim's Point, San Pedro. (Burch); Catalina Island in 35 fms. (Low); Forrester Island (Willett) (San Diego Museum).

Puncturella delosi Arnold, 1907. (P. caryophylla Dall, 1914.) Off Point Vincente, Calif. in 12 fms. (Gregg) south to off San Diego, Calif. in 67 to 81 fms. Type locality: Bath House Beach, Santa Barbara (Pleistocene).

Dr. A. Myra Keen advises on this species as follows: Dr. Woodring believes that P. caryophylla is a synonym of P. delosi Arnold, 1907.

Smith Misc. Coll., vol. 50, 1907, p. 439, pl. 57, fig. 5 a-b.

The only report on this species is from Dr. W.O. Gregg. From the dredgings in 12 fms. off Pt. Vincente I have a single specimen which Dr. Willett and I decided was P. caryophylla Dall. If the identification is correct that is another extension.

Genus Hemitoma Swainson, 1840. Type (by monotypy), H. tricostata (Sowerby) = ? Patella octoradiata Gmelin.

It had been our impression that Subemarginula was in the synonymy of Hemitoma. It may be but Dr. A.M. Keen indicates that there is still a question involved. "Patella octoradiata is the genotype of Subemarginula so that apparently the latter is a synonym of Hemitoma, provided octoradiate proves identical with tricostata Sowerby."

Hemitoma bella (Gabb), 1865. Forrester Island, Alaska south to San Diego, Calif. (Gripp). Type locality: Monterey, Calif.

The consensus of opinion is that H. yatesii Dall, 1901 is identical with this species and should be placed in the synonymy of the typical.

Collecting data: Our experience has been to consider this a very rare species. We have dredged two large specimens from 20 fms. off Monterey, Calif. (Burch); 1 specimen dredged off San Diego (Lowe Collection).

Dr. A.M. Keen notes "The holotype of Hemitoma bella is in the paleontological type collection at the University of California.

Hemitoma golischeae (Dall), 1916. Type locality: San Nicholas Island, Calif.

Grant and Gale state that this is an extreme instance of Fissurella volcano Reeve having developed an entirely imperforate apex. We have similar specimens as well as others with the apex almost closed. (Burch); Mr. E.P. Chace reports as follows: I examined the type at two different times. It was collected by the Golischos and I saw it and called it imperforate Fissurella before it was sent to Dr. Dall. Several years later when the Golisch collection was in the Southwest Museum, I had the case opened and again studied the specimen and found no reason to change my mind."
May 1946

Minutes of the Conchological Club of Southern Calif.-Feb. 1946 meeting

The Conchological Club of Southern California met Tuesday evening, Feb. 5, 1946 in the lecture room of the Children's Hall at the Los Angeles M Museum. The meeting was called to order by the president Dr. W. O. Gregg and there were 16 members present, two of the older ones back after a considerable absence were Bill Reeder and Albert Bauman and it was good to have them with us again.

Two new publications were reported "Fish and Shells of the Pacific World" by Nichols and Bartach, Mc Millan $2.50 and "Wonders of the Sea" by Shelley, Iris Press $3.00.

Communications were read from H. Carroll McGowan whose address is R.1., Box 72A, 4277 Hollister Ave., Santa Barbara, Calif. who sent greetings to the club and the following request for stamps "I can make very good use of any stamps and revenues you might be able to send me, especially commemoratives, airmail, and the higher value postage. Have lost out on some of the recent commons.

A letter from A. Sorenson tells of an interesting stay of part of October and all of November at Guaymas, Mex. at the Miramar Beach Hotel with the happy combination of delicious sea food and interesting collecting. He had such a good time, in fact, that he threatens to go back for another month or more.

A letter from F.R. Aldrich of Balboa, with a greeting to the club and a record of some good hauls in that vicinity such as 55 Solon rosaceus and 1212 Diplodonta orb Ellis, the most he had ever taken at one time.

An account of his experiences in collecting at Surf while he was still in the army was given by Alberty Bauman. From his description it would seem to be a rather easily accessible place and he made a few very good finds.

The regular study was then taken up with Mr. E.F. Chase as leader and notes were taken from the discussions and will be found elsewhere in this meeting. The subject matter was interesting and continued well up to closing time when the meeting was duly adjourned.

Effie M. Clark, Secretary.
May, 1916

Mr. R. Winckworth, 71 Whitworth Road, London SE 25, England.

The following correction of our conclusions is greatly appreciated. We are accepting the advice and changing our labels accordingly. Members are advised to change the copy to conform to the following data.

I was delighted to get your generous gift of so many numbers of the Minutes of the Conchological Club of Southern California as well as the book on Polyphemus and the Glossary. I found much interesting reading on spare evenings.

The only point I should like to raise is on Pedal, which cannot be regarded as a valid generic name as used by Hudsford in his edition of Lister, published in 1770. The full quotation is:

Index... juxta methodum... Linnaeus

Ostra, Oister

30 Isognan

Isognan who first drew attention to the existence of the genus Pedal, as a matter of historical interest does not use or recognize the name as valid. In the Great Barrier Reef, Sci. Rep. (Mollusca I) 5.319 (1939) under Isognan he gives:

Prashad points out that there is no justification for his (I) males latr suggestion that Pedal (Solander) Hudsford should replace Isognan. I did not suggest this.

Dr. F. Haas, Chicago Natural History Museum, Roosevelt Road and Field Drive, Chicago 5, Illinois.

We are flattered by the generous letter from Dr. Haas and appreciate the information on the Norrisii.

Yesterday, No. 57 of the Minutes of the Conchological Club of Southern California was received and is appreciated as all the other numbers have been. I have decided to stop all my only occasional study of West coast forms until the critical list with classification keys, as it is started and carried forth to a great extent in the "Minutes" will be finished; that will save much trouble of going into the literature for details. You certainly did and are still rendering an important service to all shell people who have to do with West coast shells.

I hope you will not mind a short note concerning the comment of my good and kind friend, Dr. Joshua S. Ball, on the nucleus of Norrisii (No. 57, p. 34). It so happened that a few years ago, I studied the spiral whorls of Norrisii and I found them dextral, as all the rest of the shell, and provided, furthermore, with a spiral sculpture which is lacking to the later whorls. For reference see: Zool. Soc. Field Mus. Nat. Hist. 24, p. 170, pl. 4, fig. 2, 1941 (Malacological Notes, II). I am almost sure that I sent you a copy of this publication.

Mr. H. J. Koch, P.O. Dynamite Factory, Somerset West, South Africa.

... I have just returned from leaving and have brought back a very valuable series of Patella, which I hope to be describing soon. No new species but most interesting gradations in form within the species.

We are pleased to send Mr. Koch a file of all of our available issues as requested.
May, 1946

We are in receipt of the following interesting letter from the Philippines. It is addressed to the Editor, Conchological Club of Southern California (Through the office of the President of the Philippines, Manila).

Sir:

At the outbreak of World War II, the Scientific Library of the Bureau of Science, an office under this department, had one of the largest and best known collections of technical and scientific publications in this part of the Orient. This same library was destroyed by the Japanese during the war.

We shall appreciate it, therefore, if you will help us in the task of building anew from scratch some such collection by donating to the library whatever publications you can spare now and in the future. Please send them addressed to: Scientific Library, Bureau of Science, Manila, Philippines.

Very respectfully, Jose S. Camis, Under Secretary.

We have mailed them a complete file of all of our available publications. Members in possession of duplicate publications could scarcely find a more deserving place to send them.

Wm. L. Kelley, 120 Chandler St., Worcester, Mass. Is interested in buying shells.

Mrs. R. Turtado, Kellog Creek, Byron, Calif. Asks to buy shells.

Mr. Godfrey Yaagor, 7500 N. Keystone Ave., Indianapolis 44, Indiana. Is interested in buying shells in connection with Girl Scout work.

B. Thaumus, 43 Coolho Way, Honolulu, Hawaii. We were happy to have a happy New Year from Mr. Thaumus, know that he is well and of course, thank him for his generous contribution to our publishing fund.

Roy L. Morrison, 3745 Grim Ave., Sub Diego 4, Calif. Enclosed find check for shell minutes. Haven't been able to take in any of the low tides this winter. Hope to get in on some in March.

Mr. and Mrs. Charles H. Longgrove, c/o General Delivery, Waynesboro, Va. Inquire about purchasing shells.

Glenn R. Wobb, Ohio, Illinois. We were glad to have a nice letter from Glenn and join him in his hope of meeting you and others of my California conchological friends at the Amateur Malacological Union meetings which are being planned this year. It has been a long time since my stay at Los Angeles.

Wray Harris, Bishop Luscan, Honolulu 35, T. Hawaii. This is the correct address. In some way we published Honolulu 10 instead of 35.

Captain C.M., Dunbaurd, U.S. Naval Hospital, Balboa, Canal Zone, Box 45, Navy 122, c/o F.V.O., New York. The back copies of your Minutes arrived several days ago and I have difficulty tearing myself away from them. I find the condensed keys from A.M. Strong's notebook particularly useful. Could you tell me if this notebook has ever been published or if publication is contemplated? The shell language is for the most part new to me and I find some of the descriptive terms difficult to apply. Has a glossary of terms used in shell descriptions ever been published? I find the one in Sea Beach at Ebb Tide much too brief. . . .

By this time you will all have our illustrated glossary of terms for the Phallopoda. We expect to publish a similar work covering the terms for all other groups. And incidentally we wish to perfect it by adding in these minutes other terms which may have been omitted. Please write in advising us of needed additions. Mr. Strong's notebook has never been published but his work is being published regularly in several established journals.

An addition or correction should be noted on our report on the Phasianellidae. Mr. Strong states that we have no true Phasianella. Triae...
Fulithidium are being recognized as full genera.

"

Minutes of the Conchological Club—March meeting

The Conchological Club of Southern California met in the Directors Room of the Los Angeles Co. Museum, March 5, 1946, at the usual hour. This change of meeting place was for the one time only due to another meeting which this smaller room would not accommodate.

The meeting was called to order by the President, Dr. W.O. Gregg. There were 14 members present, two of them, Mr. and Mrs. E. Cameron, having been long absent were most welcome. There were no standing committee reports and only one communication— from Mr. E.J. Post of Tampa, Fla who told of failing health and inability to do much collecting. For members who may wish to write him, his address is R. 6, Box 283. Attention was called to the meeting of the Pacific Shell Club held on the third Sunday of each month at 2:30 P.M. in the Directors Room of the Museum.

The lesson, this time on Calloistoma and Margarita, had so much of interest to discuss that there was not time to complete it before the closing hour and it will be taken up again at the next meeting. The comments of members will appear in the minutes at a later date. Mr. Chace led most ably in these discussions. The meeting was duly adjourned.

Effie M. Clark, Secretary.

George F. Kankoff, Curatorial Asst. in Paleontology, Los Angeles County Museum, Exposition Park, Los Angeles 7, Calif.

It has been more than three months since I finished with the war work and returned to the museum. These thirty months were very uninteresting and the shells I worked on were all alike—155 mm. ... Since I have returned to my work, I have been working on Rancho La Brea material with Dr. Pierce; washing the material in benzol, sifting it and sorting it by a different method with the result that we have a long series of tiny bones in thousands, amphi- ibian, reptilian elements and bird material in such abundance that it will take several specialists' years to study it. Dr. Pierce has so far separated 125 species of insects and a few new ones.

In my department (Invertebrate Paleontology) I am straightening out collections in chronological order and working about three hours a day on Newport Estuary material. As you probably know, Mr. Willett completed a brief description of the three localities on the Irvine Estate. It was his desire that I should get more of that material. It is the warmest of all the San Pedro series. I became very excited when Mr. Grouard of Santa Ana brought us Phyllonotus radix nigritus. A group of us, accompanied by Mrs. Clark and Liss Cook, were taken thro' by the Marsch family, and Mr. Grouard and Mr. Sprague showed us the places where they found a new Turbonilla and the Phyllonotus. When three hundred pounds of the material had been sorted Mr. Willett became very interested. This material has such an unusual proportion of species (about 10 new species of mollusca, bryozoa and crustacea) that at a glance it differs from any other San Pedro deposit. This was in 1940. In November 1942, Mr. Willett, Dr. Chester Stock, and I, visited this locality and brought back an additional 75 pounds of sifting from the southern locality. Then the war broke out and I had to take a leave of absence from the museum in order. Now I have gone through two tons of material and have many more records. I am writing all this to you not only to get it off my chest, but also let you know that as far as the Paleontology Department is concerned, the war is over. We have a great amount of the most valuable material and it will be at the service of all at any time, especially when I shall have completed woodcutting and arranging the collections by periods. (con.)
May 1946

It left me broken hearted when I read in the minutes that Mrs. Clark is intending to send her fossil material to the U.S. National Museum. Did she forget about our museum? I want to take this opportunity to remind our club members that business is now going on as usual; that we have wonderful material like Playa del Rey, Capistrano, Outfall Sewer Material, Lumberyard and many other collections containing thousands of perfect specimens with Mr. Willott's identifications. Lately we boosted up our Cretaceous material by adding that of Trabuco, Modjeska and Santiago Canyons. We have an abundance of fossil fish material and cut paleobotany collection has doubled in three years. The less complete collections are Hilltop Quarry and Timm's Point. Perhaps some of the members have some siftings from these localities left. They would be of the greatest help. I will be happy to show you our latest achievements if it will be possible for you to come to the museum......

Beatrice Hodge, "Spindrift", 1663 North Atlantic Boulevard, R.R. 2, Fort Lauderdale, Florida. We are happy to add Miss Hodge to our shell circle.

My aunt is an invalid and she is most interested in our shell collection. We now have shells from all over the world. Have you any unusual chitons, Pocitens, Spondylus, Amaena, Fissurellas or Abalones for sale? Also we are much interested in Cypraea. I am going collecting on the Keys in the spring and hope to find some rare specimens of Pocitens.

Harold Harry, R 2, Box 222, Shreveport, Louisiana. "... I have been at home less than a week, during which time I rushed madly into the task (rather plausibility) of unpacking. Things in that line are really in hand. Of the shells I managed to bring home alive, only the Pythia and Truncatella of Uilii and one Cyclophorus of Io Shima survived. One Pythia from Suma, P.I., will have been in captivity one year on Feb. 21 and under very adverse conditions. They are sluggish now, as our temperature ranges from 40 to 80 degrees and the house is poorly heated. Managed to add some Bradybaena and Rumina to the little zoo while in New Orleans. But Rumina is carnivorous and must be segregated. Have letters from Dr. Gregg, Miss Shepard, and Glenn Webb which demand attention as well as many leads in 'Min. of C.S.C.S.' Would you believe it I spent no less than 3 hours last evening doing nothing but reading the Minutes. Finished the first half of them. I found it literally useless to try and wade into all the boxes of material I have until I had first gone over the Minutes again. In about a week I'll have something to write about. Hope you are all well. Civilian life is very close to what heaven must be like (at least so far, I hasten to add)."

During the second voyage I was pleased to correspond with Dr. C. Montgomery Cooke, of B.P.F. Museum and have duplicates of some land shells from the pacific islands which were the subject of our letter writing.

During the spring I shall beat home, and shall devote the greater part of my time to conchology. Will probably return to school in the fall but all that I shall write later. Anyhow, greetings to you one and all. Sorry not to see you before going home.

Mrs. Ida Worthy, Patumahoo, Auckland, New Zealand. We are pleased to have a nice letter from our New Zealand friend and wish herewith to acknowledge receipt of the box of shells adding to our series of New Zealand species. We are flattered again by the comment "... The work you have put into the different families have been a great help in arranging the groups in our collections here in N.Z. and sorting out etc."

Incidentally members interested in exchanging for fine material should certainly write Mrs. Worthy. Your editor has hundreds of beautiful sets under her collecting label.

E.S. Richardson, 25 A Carlson Gene Rd., Auckland 63, New Zealand. "The members of the Auckland Museum Conchology Club desire to become corresponding members with your club, and as such have asked me as secretary for this
May, 1946

your year to write offering our club notes in exchange for your own. " " We send greetings to the conchologists and paleontologists of your club."

A rough estimate is that we are mailing about 25 or more copies of our minutes to various correspondents in New Zealand and are in return receiving their excellent mimeographed proceedings.

Mr. F. E. Shafer, R. R. 1, Trenton, Ohio. Many of us have beautiful material from Mr. Shafer while he was living in Cebu, Philippines. " " Although I have written many letters to P. I. friends, I have had very few replies. One of the officers of the corporation that employed me before the war is now back in Manila where he is liquidating such corporation assets as may have survived the Japs. He is an able businessman and an executive who really knows his Philippines. I have written to him by air mail and may have a reply soon. If I hear from him I will be in a position to make more or less definite plans for my return to the P. I. I will be here for a long time yet so please mail me anything on shells that you can spare me. Mr. Pedro de Mosa is well known to me. He is my friend and we each visited the home of the other. I visited him while he lived in Manila a few months before the war. Mr. De Mosa returned to his former home at Lubang, Mindoro where I understand he owns his own property. I wrote him there less than a month ago. Mr. De Mosa is honest and dependable which is more than I can say of several well known P. I. dealers and collectors. Before the war we corresponded the P. I. friends and we corresponded regularly. I sincerely hope that Pedro has come through in good shape and that we will soon hear from him. Your Manila letter is not apt to reach him so I have given you above his last address as known to me. Just before the war Mr. de Mosa's son (now mature) was working with his father at shell collecting and I hope to hear from him if his father does not write. I have forgotten the son's first name. Once I received pamphlets from Dr. Bartsch on land mollusks of the P. I. Please let me know his initials and address as I want to write to him. (Dr. Paul Bartsch, U. S. National Museum, Washington 25, D. C.) * There was also a man living at Lantana, Florida, who sent me a book he had written on shells which was of help to me. If you know him please furnish me his address. * Dr. Maxwell Smith, Box 65, Winter Park, Florida. I would like to get Dr. Bartsch's book before I get Mr. Webb's book or books. Perhaps you have seen that Jap book with colored plates. That book helped a lot as many of the species pictured therein were also P. I. species. Is there any magazine that would help? If so please advice as to where same can be obtained. I surely need a review after three years in the 1 Jap held old city of Cebu. Before the war old and dear friend of mine lived in Los Angeles. His wife had an interior decorating business. I have lost his address. His name is John Schilling. If he is listed in your directory you would mind sending me his address. (Dr. Asola Franco of Cebu City both collects and sells shells. She also has a considerable stock of Japanese postage stamps as used in the Philippines during the Jap invasion. Mrs. Helen Schlinger of Davao City, Davao, P. I. was a bigger dealer by far than Dr. Franco. Dr. Franco survived the war. I do not know whether Mrs. Schlinger survived. " " We have just mailed Mr. Shafer a complete file of all available papers of our proceedings. Other members having duplicate books are invited to write him.

Mr. E. P. Post, 609 W. Emma St., Tampa 3, Florida, Mr. Post is one of our own most active of active members and the fact that he is now living in Tampa will now remove his name from our list of active members. We are indeed sorry to hear that he has not been in good health. " " I have not been over to the club at St. Pete since I have been here. I have seen Mr. Emery once or twice. He is not very strong either."
May, 1946

Mr. C.L. Blakeslee, Mendon Center Road, Pittsford, N.Y. — I took out the Brachiopoda the other evening, that you once sent me with your usual kindness and it then occurred to me that you might like some Cepaea or Helix memorials that I collected from a colony that I discovered here last summer. (You may have noticed an account of it in the latest issue of the Nautilus.) So tonight I got busy and selected a hundred from the quantity that I have and they are now in a strong i hope box and will go forward tomorrow. I made it a hundred as there may be some of your club members who would like a set for their collections. And, by the way, Dr. Pilsbry gives them the name of Cepaea. I had quite a little correspondence with him about it and it ended with his statement "Helix or Cepaea, it is a matter of majority of opinion, since neither can be said to be definitely the only right one or clearly wrong. In the present case, either Helix or Cepaea is "right" according to excellent authorities." I had no intention of asking for anything in return when I began this letter but it just came to me that if someone would like to send me half a dozen Helix pisana I could use them. I have none."

The shells have arrived in perfect condition and will be available to the members when the editor can again be present with the shells. Any member having duplicates of Helix pisana will be thanked for sending a set to Mr. Blakeslee and needless to say got his pick of a fine set of Mr. Blakeslee shells.

New Publications

Proceedings of the Malacological Society of London, Vol. 26, part 8m, 31 January, 1946. A review of the many excellent papers in this issue should cover several pages. Therefore, we will simply mention the paper of importance to our own West Coast fauna.

Dr. S.S. Berry, pp 161-166, with two pages of plates and six text figures has given us a paper on Icchnochitonidae. It is a description of Stenoplax (Stenoradslia) heathiana n. sp. This is the species most of us have in our collections labelled Icchnochiton magallonis Hinds. Dr. Berry states that Hind's species is in reality the species we know as acor Carp which left our common species without a name.

The Nautilus, vol. 59, no. 3, January, 1946. This issue contains a number of fine papers but none of them dealing with West Coast species. There is a good photograph and a nice article on the life of George Willett.

Genera and Subgenera of the Pelecypod Family Glycymeridae by David Nicol of Stanford University and another paper by the same author "Restudy of Some Miocene Species of Glycymeris from Central America and Colombia". Both papers are published in the Journal of Paleontology, vol. 19, no. 6, Nov., 1945. The work is very good and well figured and should be in all libraries.

The American Malacological Union, News Bulletin and Annual Report, 1944-1945. The membership list to date along with the many news items about members together with a number of well-written papers makes this about the best of the annual reports. Mrs. Robertson should be congratulated. Incidentally all persons interested in shells should be members of the American Malacological Union. The dues are but $1.00 per year and should be mailed to Mrs. Harold P. Robertson, 136 Buffum St., Buffalo, N.Y.

The Value of Mussel Distribution in Tracing Stream Confluence by Dr. Henry Van Der Schalie—19 pages and a number of plates. Published in Papers of the Michigan Academy of Science and Arts and Letters, vol. XXX, 1944.
May, 1946

The Egg and Breeding Habits of Oncomelania quadrasi Mildv., the Schistomiasis Snail of the Philippines by Lieutenant Tucker Abbott.

Vitrinolidae and Similar Gastropoda of the Panamic Province, Part I by Henry A. Pilsbry and Axel A. Olsson. Proceedings of the Academy of Natural Sciences of Philadelphia, vol. XXVII, 1945, pp. 249-278. This carefully prepared work dealing with West Coast species should be in all libraries on this coast.

A Bibliography and Short Biographical Sketch of William Healey Dall by Paul Bartch, Harald Alfred Rehder and Boulah Shielès, Smithsonian Miscellaneous Collections, vol. 104, no. 15, Jan. 30, 1946. This list of Dr. Dall's works will be of particular value especially to those of us who wish if possible to add all of Dr. Dall's work on West Coast species to their libraries. Perhaps some of them are still available.

Revista De La Sociedad Malacologica "Carlos De La Torre", vol. 3, Dec., 1945, no. 3. This excellent publication in Spanish should certainly be in every conchological library. The address is Apartado 2634, Habana, Cuba. $2.50 per year.

Mollusca, vol. 1, no. 8, Feb. 25, 1946 published by Paul H. Reed, Box 267, Tavares, Florida. Price $2.50 per year. Mr. Reed is to be congratulated on the continued excellence of his periodical. It has become a necessary part of every conchological library. A number of new species have been described and beautifully figured in Mollusca as well as many other fine papers by conchologists of international repute. If you are not now a subscriber to Mollusca you are missing something.

The Natural History Museum Bulletin of the Natural History Museum, Balboa Park, San Diego is on my desk for February and March. All residents of this coast are very proud of the activities of this great institution. However, we will here simply report on the conchological work. Accessions received by the Conchological Department numbered over 900, of which 330 were new to the collection. The cataloguing of shells was continued. To date 189,604 specimens have been numbered and labelled. The collection has been made available for reference to many people, including servicemen and others seeking identifications etc. The March issue tells of the many members and friends in the service sending boxes of specimens. All this is added to the several of the finest collections of shells ever accumulated on this coast.

Ramón Lasini, No. 2954, Montevideo, Uruguay. I have on my desk a letter from this gentleman in Spanish in which he advises that he has a very large stock of mollusks from his country, marine from the Atlantic, fresh water from the Rio de la Plata, many land shells and also fossil species. Those he is desirous of exchanging for specimens from elsewhere. Your editor regrets that he does not have the time to exchange with him. I trust that other members will enjoy this correspondent.

Harold J. Jacobs, 538 N. Palos Verdes St., San Pedro, Calif. Mr. Jacobs is a deep sea diver and has been selling some exceedingly rare and fine shells. Those interested in really fine material should write him.

May, 1946

Dr. W. O. Grogg, 2200 S. Harvard Blvd., Los Angeles 7, Calif. — We had a very interesting meeting on Jan. 8. The meeting was devoted to the study of Acmaea and differences of opinion were amicably discussed. Dr. Hill showed us a specimen of Carinaria which Mr. Bauman had picked up on the beach at Surf, the first I had ever seen.

I will list some of the pertinent matters on the Acmaeas: It is my opinion that the name Acmaea tessulata patina Esch. should be used instead of A. t. scutum Esch. for our common west coast form; reasons given by Dr. Pilèsbray, Nautilus 36: 71. This would not hold true if there were an earlier revisor than Carpenter who used the name A. scutum for the species. I note that under A. tessulata you list A. emydio as a synonym. I am unfamiliar with A. emydio and have never read its description but the thing from Drier Bay, Alaska, which Dr. Dall identified for me as A. emydio is nothing but a color form of A. persona. It is an elevated shell and has the typical sculpture of persona. Doubtless other records are based on such misidentifications. How far south does true A. patina (or scutum if such you wish to call it) extend? Neither Mr. Chace nor I have ever seen specimens from south of Cayucos and I am definitely of the opinion that southern records are based on misidentifications.

I consider A. naeoloides, A. monticola, A. olympica and A. hybridas, but situ forms of A. pelta Esch.

Specimens identified by Dall Dall as Acmaea atrata Carp. (mentioned in Minutes 57: 15) are obviously unusually elevated forms of A. conus Test. They are very different from specimens of Acmaea atrata from Magdalena Bay, Lower California. I am of the opinion that other reports of A. atrata from the coast of California represent similar misidentifications.

Phasianella lurida Dall: I have specimens of this from Pt. Reyes, Calif. Specimens in my collection labelled P. lurida from Piedras Blancas are P. pullioiides.

In Strong's key to the Turbinidae on pages 20 and 21 it would appear that Homalopoma carpenterii and H. lurida are reversed.

I have a specimen of Tagula from Pt. Vicente which Dr. Dall identified as young Tagula impressa (Jonas), with the note "Most northern locality yet noted." I had previously considered it to be a young and unusually colored specimen of T. ligulata, but a careful study of its microscopic sculpture and the shape of the umbilicus and comparison with young of T. ligulata reveals it to be a distinctly different thing.

I have gone over the notes in Minutes #68 (March). When you are at home and have time I would like to go over my Margaritos material with you. Did I ever give you specimens from the Pt. Reyes lot which Mr. Willott called H. lirulatus obscoletus (Carp). If the identification is correct that is an extension of range.

C. Ray Fowler, 3615 E. 5th St., Long Beach 4, Calif.
Mrs. C. E. Evors, 412 N. Lake St., Los Angeles 26

The two names above are now members of the Long Beach Shell Club. However, I believe Mrs. Evors will return to Florida in May.

Mr. E. P. Chace, 24206 Eschelman Ave., Lomita, Calif. I am glad to have the following comments from the club members on some of our recent reports.

Cuculinidae — No comments
Phasianellidae — T. compta — Some of the club questioned the extreme ranges. Say large T. pullioiides could be confused with T. compta.
T. pullioiides — May go down the Lower Calif. coast but not into the gulf. A.M.S.

(con.)
Astraea undosa- 2 more loc records if you want to use them. Santa Barbara- Albert Bauman, Carpenteria- Gillis. Southern range " almost to Scammon's Lagoon" A.M.S.

Astraea gibberosa Dall. O.K. by the club. My own comment is that Dall's pacifica is a grown shell and montereyensis Oldroyd the mature form, and that the artist who made the figures for Martyn rather exaggerated the bumps on the periphery of the whorl and did a bum job generally.

Homalopoma baumii. Point Arguillo (Albert Bauman). Northern records in question- the Puget Sound records are almost certainly based on the shells that were later described as H. enghori.

Page 30 in the Koy. gumballium is given as San Pedro to the Gulf. I have specimens from Cayucos E.F.C.

Norrisia norrisii. Monterey record needs checking. No member has it from that far north.

Tegula gallina- " Not in the Gulf" A.M.S. No criticism of your statements about the varieties.

Tegula brunnea- Crescent City, Calif. Chaos.

Tegula L. fluctuosa- These who said a thing on this felt as you do. Var. of little value.

Tegula montereyi- add if you wish, Morro- in the bay (M. Caruthers).

Tegula regina- M. Jacobs has brought up two. Expects to go back and get more. Add Santa Barbara Island to the range.

On Margarites- A.M. Strong's comments- Carpenter's species are practically nude names. Some of the species were in the Cooper collection and the mice got into it and destroyed most of the labels. It is at U.C. Dall figures a lot of Margarites in Bull, 112 but the figures do not fit the Carpenter descriptions. Some species may be in the Carpenter collection at McGill Univ., Montreal (See Art. in recent Nautilus). The Cooper shells were described in an old Calif. Acad. paper and the Calif. Acad. has a copy of it (Most copies were destroyed in the big quake and fire). Cooper's shells were dredged off Catalina Island but the locality given for them is as you gave it- San Diego-San Pedro area.

Margarites optabilis- Has been taken at San Luis Obispo by M. Caruthers.

Comment that it is quite variable.

Turritella caffea Cobb- Has been taken at San Onofre (dead or crab specimens)

Calliostoma frigida- Has been taken in Morro Bay by M. Caruthers (June)

Calliostoma oxinum- Strong says " some Central American point but not in the Gulf fauna, or north of there."

Calliostomatricula tricolor- I have specimens from the San Pedro breakwater years ago.

C. livatus (Couth) (C. costatum) - San Diego record probably an error

Dr. A. Hyra Keen, Box 1563, Stanford University, Calif. Looking over the February Minutes (No. 57), I am puzzled by your reference on p. 11 to Acantha hybrida Shepard. Although there is a mention in our copy of Nautilus vol.9, pg.72, of the variety in question, it is a nomem nudum, there being no word of description. A half hour's search of the literature fails to bring to light the paragraph you quote." *Note* That reference was copied from some data from Mrs. Tust. Perhaps the editor overlooked something*

"Recently Stanford University received a donation from Mrs. Charles L. Simons consisting of over 400 species of microscopic shells, mostly West Coast gastropods."
New Publications

This is a very interesting paper of 8 pages and 5 8 figures.

This is a républication of Dr. Conelch's paper published some time ago in the Amer. Jour. of Tropical Medicine, with some additional data and figures.

All students of natural history will mourn the passing of Dr. Clinton C. Abbott, Director of the San Diego Museum of Natural History. While it is true that Dr. Abbott's specialty was ornithology, he was always interested and glad to give every possible assistance to students in all groups of natural history study.

MINUTES OF THE CONCHOLICAL CLUB OF SOUTHERN CALIFORNIA: April, 1946.

The Conchological Club of Southern California met at the usual time and place on Tuesday, April 2, 1946. The meeting was called to order by Dr. Gregg. There were eleven members present and one visitor, Arthur C. Bird, who expressed a desire to join the club. There were no reports from the standing committees.

A program of papers to be given in connection with our regular study schedule was arranged for the next three meetings as follows:

May: Mrs. Mary Turver, "Collecting in Mexico".
June: E.P. Chase, "Chitons of Australia".
July: A.W. Strong, "Cones of the West Coast".

The scheduled study used up the rest of the time. It concerned Vulturinidae, such tiny shells that most of us know very little about them, but which are very beautiful and interesting. The meeting was then duly adjourned.

Effie M. Clark, Secretary.

E.V. Edmonds, Amherst Hotel, 2231 Shattuck Ave., Berkeley, Calif.

The above is "Eye's" new address. Mrs. Edmonds and Bob are joining him there.

Donald Cordry, Fray Angelico #30, Mixcoac, D.F., Mexico. "I am a collector of marine shells and would be most grateful for your list of specimens. I am going on a collecting trip in the near future (laeaculeo) and will be glad to look for things that you are particularly interested in, if you tell me what you want. I have several fine Spondylus linonatus, 5 and 6 inch examples that I would like to exchange for Spondylus pictorum. I am interested in Conus and expect to get good examples of the following on my trip: Conus princeps, purpurascens, brunneus, pyriformis; Thais triserialis bisoralis, kiosquiline; Vasin caoastus; Phyllonotus princeps, oxyoanth. If there is anything special that you want lot know."

Captain Carl Hethers Dunkcloth, 59204, U.S. Naval Hospital, Portsmouth, Va.

Captain Dunkcloth has been serving in Panama. The above is his new address.

Garrett, Wondell, 4456 Vordenour Ave., Los Angeles 32, Calif. asks about buying shells.

Dr. In. G. Fargo, is now back in his Michigan home, 506 Union St., Jackson, Michigan.
Friends of Colonel H.G. Schonck of Stanford University will find the following of particular interest.

Nippon Times, Wed., Feb. 20, 1946. And also the following account in Stars and Stripes, Feb. 20, 1946. "American Officer 2nd U.S. Soldier to Meet Emperor—Tokyo (M.S.)—Col. H.G. Schonck, of Palo Alto, Calif., became the second American officer to talk to Emperor Hirohito since the war when he met the Japanese ruler in the biological laboratory within the palace grounds.

Gen. Douglas MacArthur was the first officer to meet Hirohito.

Schonck, who heads MacArthur's natural resources section, was inspecting the collection of shellfish in the laboratory when Hirohito walked in. The emperor, himself a biologist, had a long discussion with the American officer, and asked him about Dr. Henry Pillsbury of Philadelphia, who has done extensive work in this field."

Wray Harris, Honolulu, T. Hawaii "Captain S.M. Kimball passed through Honolulu last week on his way home from duty at Okinawa. He brought with him the first Ryu Kyu collection of shells I have seen, and I think the largest from that region. Is on his way to Waverlyville, Calif. where he will work up his Pacific area material."

Charles D. Nelson, R #5, Lake Michigan Dr., Grand Rapids, Mich. We wish to thank our friend Nelson for the fine box of fresh water shells recently received, but are concerned over his report that he has been having trouble with his oyes and expects to have one eye operated on soon. He asked for the Turbors address—Mr. and Mrs. H.R. Turver, 8669 Evergreen Ave., South Gate, Calif.

H.S. Mort, 13 Milnor St., Mossman, N.S.W., Australia. "In one of your recent Minutos (October 1946), the American Janthinas were discussed. Many years ago I think about 1928, our beaches were covered with a species we used to call exigua, but is now classified by Iredale as L. capricola Monteviaer. This is very similar to your bifida, but judging by specimens of bifida which Mr. Caruthers sent me from California, our shell is larger and the sculpture more pronounced. I am getting Mrs. Woolacott to send you a small parcel of these from my duplicates and should be glad to have an opinion of them from Dr. Myra Keen or some other authority as to whether she considers them to be distinct from bifida or not. I shall be glad if you will distribute any surplus shells among your members. They were collected at Sarraboon Beach, about 7 miles north of Port Jackson, and at the time all beaches within 30 miles of Sydney were thick with them; I made a check of one section and found between 200 and 300 shells per yard of beach, and as there are over twenty miles of similar beach near Sydney it would make well over 10 million shells near Sydney alone. This species is normally less common than the fragilis type, but appears to have about a 4-year cycle when it is more plentiful. L. globosa is a much rarer shell and I have never seen it in large quantities on the beaches. By the way I have had shells labelled globosa from Florida which are much paler than ours and correspond exactly with the figure of I horvichi in Tryon. The largest specimens of the fragilis type I have seen were from Norfolk Island, although I have very large ones from Cape Byron (most easterly point of Australia.)"

With regard to the spelling of Janthina, mentioned in your February Minutos the majority of English words beginning with J come through the French and the J has been adopted from that language, but Janthina comes directly from the Greek (which had no J), and for that reason I certainly prefer to spell it with an I. I fancy that taxonomically Janthina is older (con.)
as all the older books soon to use it. I hope it will not be troubling you too much to get an American opinion on my specimens, although Irodale is seldom wrong in his identification of local species, it is always well to get another opinion, especially in the case of a pelagic genus like Janthina.

Wishing Tom and yourself, also the Conchological Club the best of hunting in 1946. I always look forward to the arrival of the "Minutes".

This is a very fitting place to announce the arrival on March 12 of Ruth Janthina Burch, daughter of Thomas A. and Beatrice Burch. No your editor does not feel any older, having already become accustomed to being called "Gramps".

J. Soronson, 247 Granite, Pacific Grove, Calif. The editor and Mrs. Burch had the pleasure of being "Andy's" house guest for a night a week or two ago. We all enjoyed a lecture by Dr. Bollin of the Hopkins Marine Sta. on "Deep Sea Fish". Andy had just returned from Guaymas with a large lot of beautiful and some very rare material. However, he is even now off on another jaunt to Punta Rosasco, Mexico after more.

Ernest W. Wilcox, 1738 Johnson Ave., San Luis Obispo, Calif. We were also the house guest of our number and enthusiastic collector in San Luis Co. Mr. Wilcox devotes his time to shell collecting and his art. His paintings are remarkably fine.

George Pattison, 68 Partridge St., Glenelg, South Australia. I have just received the January "Minutes of the C.C. of S.C." Your Minutes are appreciated and found valuable for reference. So my wife binds them together in book form for that purpose. I am interested in: Marine Life in General-World Wide Sea Shells- Land and Fresh Water Shells- Buy Books on Shells Illustrated and Described.

I have spent most of my life seafaring in wind jammers of every rig, and lighthouse keeping until I retired 14 years ago. For 40 years I have been a keen conchologist. So be a fraternal Chorrie of good wishes to you and members of your club."

Dr. W.O. Groes, 2200 S. Harvard Blvd., Los Angeles 7, Calif. "This ruin should be good for land snails (March 30,1946). Last Sunday I went up into Kern County and found live Helminthoclypta boreyi. Some of these days I will write a paragraph or two on its ecology and also soon I will write on my five day trip into San Diego and Riverside counties. On the San Diego trip one of the snails we found appears to be one of the lost species. More about it in my story."

Mr. Ramon Fontecha formerly of Baguio City, Philippines. Mr. A. Soronson had sent him a letter by air mail immediately after the end of the war. We were shocked to see the terse comment on the envelope returned to Mr. Soronson "Mr. Fontecha was killed by the Japs.""

Mr. Pedro De Rosa, Lubang, Mindanao, Philippines. "Your letter of Sept. 1 received. Thanks that a friend in Manila P.O. found it. The house I rented in Manila (in Zaragoza St.) got burned and the shells I collected from Mindanao, Samar, Cebu, Iloilo and Leyte that I left there when we evacuated got all burned. My big collection not only of P.I. shells but also shells from N. and S. America and foreign countries acquired for 30 years until 1941- got burned in Lubang. The Japs burned half of this town when they retreated to the mountains and our three houses were included. My collection of old books, stamps, coins, medals, old china dishes (con.)"
and antique furniture turned into ashes. When we evacuated the town we were able to take along with us two sets of clothing and dresses for every member of the family so that after six months all became worn out so we remain barefooted and almost naked when Lubang was liberated (April 1, 1946). Lubang Island being isolated and small, never been reached by relief of any kind from the Govt., Red Cross or the Army. The black market is terrible so we imagine how hard it is to one who will have to start buying everything of needed materials in life at least one piece of every kind for every member of the family. I have appealed to various collectors on the Atlantic coast, like Dr. Gochen of Harvard, to help a fellow human being in distress. I am at a loss now. Do not know where to begin and how to start. If you are acquainted with the Red Cross chapter in your city please help us to secure some things of any kind— at least those needed for the four baby girls— ages 3-1 yr, old and one 3 months old. Two of these are crippled as a result of living in jungles to be far away from Jap barbarisms and atrocities. Second hand and worn out baby dresses will help lots—we can repair them. Thanks for the thought please. Once we get a little bit settled I shall resume collecting shells again. I am now more interested in the snails that are intermediary to human diseases as blood flukes, liver flukes and the like. Best wishes and kindest regards to you and yours with prayers.

F.S. Till now, there are 50 Japs alive with arms on the mountains of Lubang. We have no army here except two policemen.

Mr. De Mesa also sent a 3 page legal size document, certified and sworn to giving a detailed account of his heroic assistance to our armed forces throughout the war.

A further note on the above may be that we have just mailed Mr. De Mesa the fourth box of baby clothes and trust that other members will also do what they can.

Mr. Otello Ciarla, Rua Augusta no 91, Rio de Janeiro, Brazil. Mr. Ciarla is a member of the "American Malacological Union" and interested in West Coast shells.
Glenn Webb, Ohio, Illinois is now at the University of Illinois and we hear quite happy about it.

Harold Harry, Rte. 2, Box 222, Shreveport, La. We are happy to learn that our friend and fellow member expects to enter Stanford and later study at the Hopkins Marine Station so we will again have him with us on this coast. Also the editor wishes to thank him for the fine box of duplicate shells.

Mr. Arthur White, 11 Porter St., Everett 49, Mass. Mr. White is interested in purchasing shells. Is particularly interested at this time in Snail P.

More New Publications Received
Dr. S. Stillman Berry, "Two New Chitons from the Gulf of California", The American Midland Naturalist, vol. 34, no. 2, pp 491-495.

This paper is prepared with the usual thoroughness of Dr. Berry and should certainly be in the library of all interested in this group. SHELL NOTES, by Frank Lyman, Lantana, Florida. Numbers 15 and 16 arrived together. Frank is now republishing with all plates the rare book "Shells Which Have a Fascinating Story" by Howard Gilmore. His paper seems to improve with every issue. If not on his list you should be.

Auckland Museum Conchology Club have sent out their interesting Feb. bulletin with many items on the fauna of New Zealand.
May, 1946

Minutes of the Long Beach Shell Club

Feb. 10, 1946. The Long Beach Shell Club has decided to continue its wartime schedule so meets in the Childrens room of the public library the afternoon of the second Sunday in the month at 2:30 P.M. This day there were 13 members and 7 visitors. Mrs. Turver was in Mexico collecting shells. Mrs. Evers of Florida was to return to Florida the next day. Patricia Rolo attended for the first time. This year we are to have printed programs for the year and they will be ready soon. The club approved the Agassiz Club resolution favoring a move to obtain a museum for Long Beach with aquarium attached.

The speaker was Mr. E.P. Chace who took Acmaeas, "the most diversified group of shells." Using the new Conchological Check List of the Southern Californi Club, he explained puzzling items and described habits and habitats of the individuals illustrating with specimens from his own and Mr. Baker's collection. Members felt it one of the most interesting meetings.

March 10, 1946- Mrs. Chace served as secretary at this meeting, Mrs. Libby, vice-president had the program ready, but upon suggestion of club members it was decided to back the program with a list of names and addresses of members. Attention was called to an article in current Nautilus of a biography of Mr. George Willett. Laura May Totten was welcomed as a new member. Thanks of the club were extended to Mr. Howard Hill of the L.A. Museum for keeping a changing shell collection in the Long Beach Service Club. The day's program directed by Mr. Chace was a symposium on the lives and works of older conchologists.

April 4, 1946- At the April meeting both the president and vice-president were unavoidably absent so the secretary took charge of the business part and Miss Rogers kindly introduced the program and speakers. Mrs. Chace again supplied as secretary. Reference was made to the report that giant snails had been introduced into the Philippines as food for the Japanese and now become a menace to agriculture. Mr. Ulrich reported a successful collecting trip to Portuguese Bond. Raymond Fowler, a new club member was then presented by Miss Rogers and sketched for the club into his introduction to shell collecting when in the third grade, and illustrated the spread of his interest by showing many very beautiful and attractive collections. His deep interest and case of delivery and laughable personal stories made an enjoyable item on the program. This talk was followed by showing of his own collection by James Gorman, our youngest member. Specimens of live shells collected in Philippines, Mexico were offered to members by Mrs. Turver. The meeting was then adjourned to view Mr. Ulrich's beautiful collection of shells on display in the library.

Ruth E. Eaton, Secretary.

W.E. Griffith, 24 (Aster) Melita St., Sliema, Malta. We were pleased to have a long letter from our old correspondent in Malta. Many of us have large sets of fine shells from his collecting. However, at this time he seems to have deserted us to some extent and has gone into the postage stamp business, as he writes. And would be very pleased if you would put me in touch with any one either a dealer or collector who would like to do business with me either for cash or exchange, but I am afraid at the moment it must be by exchange. As mails take so long to arrive, you might pass the word that whoever you recommend me to can start by sending me a few say six of each of U.S.A. Commemoratives he may have and let me know what he requires. I can supply British Colonials and of course Malta stamps.

Seaweed holdfasts are a good collecting ground for marine shells, which nestle or hide in the twisted mazes of the kelp roots. Those that are torn loose from their rocky moorings and washed ashore after heavy storms often contain species that are rarely found, even by dredging.

On a number of different occasions, when searching the off-shore beds of the giant kelp (Macrocystis) in Monterey and Carmel Bays of California with a row boat, the attempt has been made to pull up the kelp by the roots. This is often impossible if the roots are well anchored as the storms usually break first. Sometimes, however, the attempt has been successful and the holdfast brought to the surface, often with a heavy boulder or slab of rock on which the kelp roots grow. In such instances the reward in shells collected from the roots and their attachment is usually worth much unsuccessful effort.

In Monterey Bay, about a quarter of a mile off shore, extending for a stretch of two or three miles from Del Monte toward Moss Landing, there used to be a fine bed of kelp. Unfortunately, it has been gone for many years, having been torn out completely during an unusually severe winter storm in the late 1920s. Dr. Harold South of Pacific Grove, once said that after this storm the kelp was piled six and eight feet deep on the Del Monte Beach. What a marvelous opportunity for any shell collector who may have been there at the time. The destruction of this bed was a real loss from the collectors standpoint as it was the habitat of the finest specimens of Calliostoma and Tagula that have been taken from the Bay. In addition, it was a prolific area for shallow dredging, which always produced good results.

In June, 1922, while hopefully hauling on kelp stumps to break one of the roots from its fastenings, one finally gave way and was brought to the surface from a depth of about ten fathoms. It proved to be an unusually large and complete one, with a widespread tangle of roots nearly four feet in diameter and two or three feet thick. Along with the roots came several slabs and many shattered fragments of shales. When cut from the stumps this holdfast almost completely filled the small row-boat, so it was taken ashore and thoroughly searched for shells. The haul proved to be so rich that a record was kept, which came to a total of 53 species and about 440 specimens. The list follows:

Coleypoda—Lima dohlscoa Conrad—1 juv.; Lithophaga plumula (Henley) 1 valve; Lucina ungulata Reeve—1 juv.; Nuculana penderi (Dall)—1 valve and 2 juv.; Nuculana taphria (Dall)—1 juv.; Poecila histatara Sowerby—1 juv.; Petricola carthlicoides (Conrad)—1 juv.; Philobrya setosa (Carpenter)—1;
Psophia salinana (Carpenter)—1; Rochefortia alactic (Dall)—2;
Saxicava arctica Linnaeus—1 juv.; Volvilla fornicate (Carpenter)—1 juv.;
Gastropoda—Alvinia acutilata (Carpenter)—3; P. purpurea Dall—4;
Amphissa recticulata Dall—27; Baldo thorsites (Carpenter)—55; Baldo n. sp. 2; Bittium attendaturn Carpenter—69; B. quadrifilatum Carpenter—122;
Calliostoma obtusatum (Martyn)—26; C. splendens Carpenter—2 (1 juv.);
Crenula daucna Sowerby—10 juv.; C. lingulata Gould—1; C. sp. indet.—1
nuclear stage, possibly C. perWiris Valenciennes; Daphnella fuscolorata Dall—6;
Dianthus californica Dall—2, a new northern record; Diadema aspera
(Boehschoffer)—14 juv.; Epitonium tinctum (Carpenter)—1; Eucosmopoma carpenteri (Pilebr)—12; E. peucicostatum (Dall)—35; Lacuna solidula
Levan—1; Margarites salinicus (Carpenter)—14; Mitrella gausapatata (Gould)—
(Continued)
Additions and Corrections

The following data was submitted by Mr. E. P. Chace following the club discussion at the April meeting.

"Margarites optabilis" - range Monterey to San Diego

Margaritifera crenulata - add Santa Cruz, Calif. (Turvar)

Fissurella virescens - Tremper had one specimen taken at San Pedro (Strong)

Diadura aspera and D. densiclavata are distinctly different based on anatomical work (Strong);

The following data has been submitted by Mr. Morris Caruthers:

Calliostoma supragranosum - Laguna Beach (plentiful); San Pedro breakwater; White's Point, San Pedro.

Calliostoma costatum - Cayucos; Piedras Blancas.

Calliostoma crenulatum - Pugot Sound; Morro Bay (one living specimen); Monterey.

Calliostoma canaliculatum - Laguna Beach (not rare); Morro Bay (inside); Monterey.

Calliostoma geminatum - Morro Bay (inside); Cayucos; Laguna Beach (not rare).

Calliostoma tricolor - Laguna Beach (small specimens); Morro Bay (inside).

Calliostoma gloriosum - Morro Bay (two large specimens); Corona del Mar.

The following data has been submitted by W. J. Eyerdam:

Halictis kantschatkana Jones, 1845 - Type locality: Unalaska, Kamchatka

 gọi (I presume that was the old Russian name for Bering Sea). "I am rather skeptical about the Unalaska record as type locality, but it may be correct. Ask Bartsch whether there are any specimens in the National Museum from the Gulf of Alaska or the Aleutian Islands. I know that they are quite common on the outer coasts of some of the S.E. Alaska islands and W. Washington Island. The following were collected by Eyerdam and are all quite similar: Craig, Prince of Wales Island, and Baranof Island, S.E. Alaska and Haida Gwaii, Japan.

Fissurella virescens Sowerby, 1835 - Mazatlan, Mexico and Corinto, Nicaragua Collected by Eyerdam, 1938 and 1939.

Diadura inaequalis Sowerby, 1835 - Mazatlan, Mexico; Corinto, Nicaragua; Gulf of Fonseca, Honduras, and Talara, Peru - Eyerdam, 1938 and 1939. Extended range southward from Ecuador.

Diadura aspera Eschscholtz, 1835 - Rosario Beach, Skagit Co.; San Juan Islands; Port Orchard, Kitsap Co.; Clallam Bay, Clallam Co., Wash. The specimens collected at Rosario Beach were taken from rocks at night time. About two dozen of them supported a commensal worm (Halosyphera lori) Baird about 2 inches long under the mantle of the shell. These worms belong to the family Polynoidae and are also sometimes to be found in the gill groove (cont.)
of the giant Chiton Cryptochiton stelleri.

Puncturella major Dall, 1891 - Strait of Fuca (Eyordan).
Puncturella galacta Gould, 1846 - Izhut Bay, Afognak Island; Drier Bay, Knight Island, Alaska; and Strait of Fuca (Eyordan); also Hinchinbrook Island, Alaska (Norberg).
Puncturella eyordani Dall, 1924 - Only known from the two type specimens at the National Museum - collected by Eyordan in 1923 in 16 feet shell and mud at Drier Bay, Knight Island, Alaska. A distinct species which should be figured.
Puncturella cucullata Gould, 1846 - Sitkalidak Island, Izhut Bay, Afognak Island; Drier Bay, Knight Island; and Strait of Fuca (Eyordan); and Hinchinbrook Island, Alaska (Norberg).
Puncturella multistriata Dall - Seymour Narrows, B.C.; San Juan Island; and Strait of Fuca, Wash. (Eyordan).

N. J. Eyordan* "A fellow that worked with me last summer did quite a lot of diving for abalones in Half Moon Bay. He claimed to have taken Halichion rufescens with the animal 18 inches across. Do they really get that big or did he get his figures mixed up?"

* Editorial note - Your editor scampled the stuff in that Half Moon Bay tavern one time and it didn't seem to affect him that way. But just the same it will be appreciated if someone will advise us if they know about the dimensions of the largest specimen of rufescens on record. But an 18 inch one would be a shell collection in itself.

H. Groendyke, Bi Idtechosstraat 15, Leemwarden, Holland. "I should very much appreciate it if you would like to exchange your duplicate shells with me. We have here in Leemwarden (Frierland - Holland) a museum for natural history, for which institution I am collecting shells. At present I have the following list of duplicates for exchange. I hope I'll soon be able to give a more detailed list. If you should happen to have more specified wishes please write."

Max G. Hammerschlag, 325 Grove Road, South Orange, New Jersey, wishes to purchase specimens of Trophon triangulatus and Murex scorpio. I have no doubt but that the shell he wishes is the species we now call Forreria ostalinensis Oldroyd rather than the small species we now call Trophon triangulatus.

Mrs. Witherspoon, 462 Shady Ave., Sharon, Pa., is interested in purchasing shells.

Keith A. Yonne, 37 Prentiss St., Cambridge 40, Mass., asks to purchase a copy of our Illustrated Glossary.

Ward's Natural Science Establishment Inc., P.O. Box 24, Rochester 9, N.Y. This firm wishes to purchase a number of the Ischnochiton conspicuous complete with the animal preserved in alcohol - a hundred or several hundred. They are also interested in a quantity of any species of Dentalium also preserved in alcohol with the animals complete.

Perhaps some of the members may be interested in collecting these for them.

May, 1946
Minutes of the Conchological Club of Southern California - May, 1946

The Conchological Club of Southern California met as usual, May 7, 1946. The meeting was called to order by the president. There were 20 members and three visitors present. The visitors were Mrs. Mary Wright, mother of Dr. Wright, Nettie B. Waut, 1119 Arapahoe, a guest of Mrs. Bagley, and C. O. Reis, 646 Juanita Ave., Los Angeles, who expressed a desire to become a member of the club. A long absent member, H. Carroll Mcowan, now living at Santa Barbara and who was in the city on business, was present for the first time in several years. There were no reports of standing committees so the scheduled subject for the evening, "Collecting Marine Shells at Guaymas, Mexico" was taken up first by Mrs. Harry Turver who enumerated the things that should be provided for a trip of that kind, how and where to get passports, the things that could be obtained there, health precautions, estimated expenses and weather and road hazards. He described the nature and extent of collecting grounds there and on the way, and gave an interesting account of the people and their general welcoming of travelers as well as some of the things they right- fully resented at the hands of thoughtless strangers.

Mrs. Turver followed giving a very interesting account of a trip that she and two friends took to Guadalajara, the second city of Mexico. The distance was considerable, the accommodations far from adequate, and the delays tedious. On their arrival, in the midst of a fiesta, they found themselves very much jarred in the crowds attending a political gathering. They heard a speech by the governor which she declined to repeat to us, it being, of course, in Spanish. They witnessed a lengthy parade either drawn by all kinds of animals or bearing them on their backs. She brought many snapshots and a box of their most interesting "finds" as well as a gift box of duplicates.

Their combined reports gave us a better understanding of what to do and what to expect in the way of enjoyment and of materials to be found.

An exhibit of the Lapidary Club was in the main building and on invitation, the club adjourned to attend it. We found it extensive and most beautiful.

Effio E. Clark, Secretary.

Copy of Attendance Register - May 7, 1946

Mr. and Mrs. Gillis, 1904 W. Madison Ave., Pasadena 6,
George P. Kanakoff, Los Angeles Museum, Exposition Park, Los Angeles
William Rudox
Albert D. Howard, 2307 W. 20th St., Los Angeles
Mr. and Mrs. E. P. Chace, Lomita, Calif.
Dr. Charles R. Wright, 601 Q. St., Sanger, Calif. Ph. 348 W.
Mrs. Mary A. Wright, 410 W. El Molino, Pasadena.
Harry R. Turver and Mary E. Turver, 5840 Evergreen Ave., Southgate, Calif.
Nettie B. Waut, 1119 Arapahoe St., Pl. 2061
Laura E. Bagley
H. Carroll Mcowan, 4277 Holister Ave., Santa Barbara, Calif. Ph. 24623
Morris E. Coruthers, 120 E. Chestnut St., Glendale, Calif.
A. Faughtman
Dr. and Mrs. Howard R. Hall, Los Angeles Museum.
C. O. Reis 646 Juanita Ave., Los Angeles 4
Mr. and Mrs. E. P. Baker, Downey, Calif.
Arthur C. Price 2618 Wellington Rd.,
Effio E. Clark.
*** The editor wishes to thank those who have been contributing to our fund. It seems logical to assume that those on our mailing list who have not done so are not interested and those names will be dropped after this issue. It has been just a year since we first asked for yearly contributions. Our publishing fund is again exhausted. The plans are for another large number covering the Turridae to be followed by another on the Chitons. We then expect to publish a complete index of everything covered in the Minutes to date. This is being prepared by Mrs. Thomas A. Burch and will be somewhat voluminous. ***

We have received a number of requests for our Illustrated Glossary from outsiders. It seems that we should receive at least one dollar to our fund for additional copies of this paper. We still have some stock of our bound report on the Paleocypoda for which we have been getting $5.00.

These papers are published by a group of interested students for our own pleasure and financed by voluntary contributions of members and friends. It is not our intention to offer subscriptions and guarantee regular periodical publication. However, non-members of our club will be placed on our mailing list and receive all papers published for contributions to our fund of $2.50 per year or $1.25 each six months.

We are now meeting the first Tuesday of each month at 7:30 P.M. at the Los Angeles Museum, Exposition Park, Los Angeles, Calif.

Please mail all shell news to your editor: John Q. Burch, 4206 Halldale Ave., Los Angeles 37, Calif. Phone Ax 2-7965.

The editor is again at home after an extensive business trip to San Francisco during which time these papers were badly neglected.

Dr. A. Hyman recent Box 1563, Stanford University, Calif.

I have just noted an oversight on my part in connection with Margarites cinerces (Couthouy). Rehder has shown (Proc. Biol. Soc. Wash., vol. 30, pp. 115, 1937) that this is a homonym and that the first available name is Margarites costalis (Gould), 1841, ex Lover MS. The reference for this is Gould, "Invertebrata of Massachusetts": p. 252.

The program committee of the Conchological Club of Southern California has announced the following special papers:
June- Chitons of Australia by E.P. Chace
July- Cones of the West Coast of America by A.M. Strong
August- Pectinidae by H. Caruthers
September- Land Snails of the Channel Island by G. Kanakoff.
Family Pyramidellidae

We have the following letter from Mr. A.L. Strong and for convenience will run all of his keys first and then take up the discussion of the various species involved.

I am inclosing copies of the keys to the principal subgenera in Turbonilla and Odostomia. These include all species that occur north of San Diego. I hope I have not omitted any.

In the subgenera where there are only one to four or five species in our list it hardly seems worth while to make out keys. However, if you think it best to have them to fill out the complete list it will be easy to make out such keys.

Turbonilla

Whorls with a low, rounded cord at the periphery...........gilli D. & B.
Length 3.3 mm. Monterey to San Diego Bull. 68-29, 2-3
Whorls without a cord at the periphery

- Whorls overhangingdigoncusa D. & B.
Length 3.3 mm. San Pedro to San Diego Bull. 68-31, 2-18
- Whorls not overhangingacra D. & B.
Length 10 mm. Off Catalina Island Bull. 68-32, 2-14

Chemitzia:

Adult large, more than 7 mm. in length

- Whorls well roundedhoyalispa D. & B.
Length 8.1 mm. Catalina to San Diego Bull. 68-34, 2-5
- Whorls flattenedgibbiana Cooper
Length 10 mm. Monterey Bull 68-35

Adult smaller, less than 7 mm. in length

- Summit of whorls tabulatedcopypota D. & B.
Length 6.2 mm. San Pedro to San Martin Island Bull. 68-55, 2-10
- Summit of whorls not tabulated

- Intercostal spaces terminating posterior to the suture

- Axial ribs week on the last whorl..................santarosana D. & B.
Length 4.5 mm. Santa Rosa Island Bull. 68-36, 2-7
- Axial ribs strong on all whorls

- Axial ribs on last whorl 16chiborgi Bartsch
Length 4.7 mm. Gulf of Georgia Proc. 70-5, 1-4
- Axial ribs on last whorl 18clarinda Bartsch
Length 4.7 mm. San Diego Proc. 42-264, 35-4

- Intercostal spaces extending to the sutures

- Whorls narrowly shouldered at the summit

- Axial ribs verticalmuricatoides D. & B.
Length 3.0 mm. Monterey Bull. 68-38, 2-11
- Axial ribs protractivekolsyi D. & B.
Length 4.7 mm. Santa Barbara to San Ignacio Bull. 68-39, 2-11
- Whorls almost appressed to the summitraymondi D. & B.
Length 5.2 mm. Santa Rosa Island to San Diego Bull. 68-39, 2-17
Strictoturbonilla
Point Conception to San Diego

Intercostal spaces terminating posterior to the suture
- Intercostal spaces pinched in anterior to the suture...dinora Bartsch
 Length 6.2 mm. San Diego Bull. 68-42, 56-8
- Intercostal spaces not pinched in anterior to the suture
- Axial ribs exceedingly protractive................. buttoni D. & B.
 Length 6.3 mm. Santa Rose Island to Gulf of Calif. Bull. 68-43, 3-1
- Axial ribs moderately protractive
- Whorls overhanging.................................. aseer D. & B.
 Length 8.3 mm. Rodondo to San Diego Bull. 66-45, 3-1
- Whorls not overhanging
 * Axial ribs obsolete on the body whorl.............. attritita D. & B.
 Length 7.4 mm. San Pedro to San Diego Bull. 68-46, 4-11
 * Axial ribs passing feebly over the periphery..... concilà Bartsch
 Length 4.5 mm. San Pedro Proc. 42-265, 35-1
 * Axial ribs well developed
 * Whorls slightly rounded, narrowly shouldered... bakori Bartsch
 Length 8.0 mm. San Diego Bull. 42-265, 35-10
 * Whorls well rounded, not shouldered........... torquata Gould
 Length 6.5 mm. San Pedro to San Diego Bull. 66-47, 4-15
 * Axial ribs vortical
 * Axial ribs much enfeebled on the last whorl,... carpentori D. & B.
 Length 7.9 mm. San Pedro Bull. 66-23, 3-9
 * Axial ribs strong on all whorls
 * Axial ribs 16 on the body whorl................... stimpsoni D. & B.
 Length 6.7 mm. Rodondo to San Diego Bull. 66-49, 3-11
 * Axial ribs 22 on the body whorl.................. profundicola D. & B.
 Length 6.3 mm. Off Catalina to off San Diego Bull. 66-30, 3-11

Intercostal spaces extending to the sutures
- Shell broadly conic
 * Axial ribs on body whorl 20 humerosa D. & B.
 Length 6.0 mm. Catalina to San Diego Bull. 66-54, 3-10
 * Axial ribs on the body whorl 28 gallisstoi 'D & B.
 Length 6.1 mm. San Diego to off Cape San Lucas Bull. 66-31, 4-12
- Shell slenderly conic
 * Periphery feebly angulated arosta D. & B.
 Length 5.4 mm. Santa Rosa Island to San Diego Bull. 66-54, 3-11
 * Periphery and base well rounded.................. dracona Bartsch
 Length 6.9 mm. San Diego Proc. 42-266, 35-2

North of Point Conception

Intercostal spaces terminating posterior to the sutures
- Axial ribs moderately protractive
- Whorls overhanging vancouverensis D. & B.
 Length 6.0 mm. Alaska to British Columbia Bull. 66-24, 4-9
- Whorls not overhanging
 * Whorls well rounded
 * Periphery and base well rounded.................. stylina Carpenter
 Length 6.5 mm. Monterey Bull. 66-48, 3-7
 * Periphery ontusely angulated barkleyensis Bartsch
 Length 9.2 mm. Vancouver Island Proc. 82-641, 44-9
 * Whorls almost flattened connadensis Bartsch
 Length 6.3 mm. Forroster Island Proc. 52-640, 44-11
 (con.)
#61 p 4

July 1946

- Axial ribs slightly retractive ... kincaidi Bartsch
 Length 5,5 mm. Pagot Sound Proc. 70-5, 1-3
- Intercostal spaces extending to the sutures serrae D. & B.
 Length 7,7 mm. Monterey Bull. 68-63, 4-3

Pyrgolamps
San Diego to Point Conception
Axial ribs poorly developed, obsolete on the last whorl halistreptus D. & B
Length 9,5 mm. Off Newport Bull. 68-72, 5-2
Axial ribs distinct on all whors
- Shell short and stout .. ridgwayi D. & B.
 Length 4,6 mm. San Diego Bull. 68-62, 6-10
- Shell elongate-sonic
- Shell unicolor
 Whorls well rounded ... lowei D. & B.
 Length 7,2 San Pedro to San Diego Bull. 68-64, 6-11
 Whorls flattened on the sides.
 Ribs decidedly retractive ... tormpori Bartsch
 Length 4,7 mm. San Diego Proc. 52-697, 44-7
 Ribs vertical or slightly retractive
 Ribs about 16 on the last whorl hallibrocta D. & B.
 Length 6,2 mm. Catalina Island Bull. 68-65, 5-10
 Ribs 22 or more on the last whorl
 Ribs weak, rounded ... gouldi D. & B.
 Length 5,8 mm. Santa Rosa Island to San Diego Bull. 68-66, 6-1
 Ribs strong
 Periphery well rounded .. ilfa Bartsch
 Length 10,5 mm. San Pedro Proc. 70-7, 1-1
 Periphery obtusely angulated ... strongi Willett
 Length 6,8 mm. Catalina Nautilus 45-67
 Shell not unicolor
 Colors in two zones ... pedroana D. & B.
 Length 7,0 mm. San Pedro to San Diego Bull. 68-57, 6-12
 Colors banded
 Bands only visible on the outer lip chocolata Carpenter
 Length 14,0 mm. San Pedro Bull. 68-70, 5-9
 Bands visible on the spire and base
 A single broad band covering the periphery
 Axial ribs strongly retractive gloriosa Bartsch
 Length 6,3 mm. San Diego Proc. 42-268, 35-9
 Axial ribs slightly protractive halia D. & B.
 Length 8,5 mm. Santa Barbara to San Pedro Bull. 68-68, 6-6
 Color bands double ... berryi D. & B.
 Length 8,0 mm. Monterey to Catalina Bull. 66-69, 5-5
 Color bands triple
 Ribs about 22 on the last whorl painei D. & B.
 Length 7,3 mm. Catalina to San Diego Bull. 68-71, 5-4
 Ribs about 30 on the last whorl keepi D. & B.
 Length 11,7 mm. Catalina to San Diego Bull. 68-71, 5-1
Point Conception to Alaska
Axial ribs poorly developed, faint or obsolete on the last whorl
- Axial ribs reduced to mere lines of growth oregonensis D. & B.
 Length 8,5 mm. Oregon and Washington Bull. 68-73, 5-5

(cont.)
Axial ribs more than mere lines of growth

. Shell over 11 mm. long ... lituyana D. & B.
 Length 11.5 mm. Lituya Bay, Alaska Bull. 68-73, 5-3
. Shell less than 9 mm. long

. Axial ribs retractive ... rinella D. & B.
 Length 8.5 mm. British Columbia Proc. 42-270, 35-6
. Axial ribs vertical or nearly so

. Flesh colored with a darker band franciscana Bartsch
 Length 6.8 mm. San Francisco Bay Proc. 52-C85, 42-2

. Chestnut with a paler band pessa D. & B.
 Length 6 mm. British Columbia Proc. 42-269, 35-5

Axial ribs distinct on all whorls

. Shell short and stout

. Shell unicolor

. Whorls excurred at the summit victoriana D. & B.
 Length 5.6 mm. British Columbia Bull. 68-51, 5-3
. Whorls not excurred at the summit valdezii D. & B.
 Length 5.6 mm. Monterey Bull. 68-62, 6-8

. Shell banded

. Shell elongate conic

. Shell unicolor .. taylori D. & B.
 Length 6.5 mm. British Columbia Bull. 68-64, 6-7

. Shell not unicolor

. Shell bicolor

. Axial ribs 18 on the body whorl talma Bartsch
 Length 9 mm. British Columbia Proc. 42-269, 35-7
. Axial ribs 22 on the body whorl aurantia Carpenter
 Length 5.8 mm. British Columbia Bull. 68-64, 6-4

. Shell banded

. Band single, broad

. Shell over 3 mm. in length

. Axial ribs 18 on the last whorl stelleri Bartsch
 Length 8.3 mm. Alaska Proc. 70-C3, 2-4
. Axial ribs 50 on the last whorl everdani Bartsch
 Length 10.5 mm. Alaska Proc. 70-9, 2-12

. Shell less than 7 mm. in length

. Axial ribs retractive ... lyallii D. & B.
 Length 5-7 British Columbia Bull. 68-68, 6-6

. Axial ribs vertical or slightly protractive

. Axial ribs 24 on the last whorl middendorffii Bartsch
 Length 6.4 mm. Alaska Proc. 70-8, 2-2
. Axial ribs 18 on the last whorl

. Axial ribs curved .. shuyakensis Bartsch
 Length 6.3 mm. Alaska Proc. 70-7, 2-1

. Axial ribs straight

. Axial ribs expanded at the suture pugotensis Bartsch
 Length 4.0 mm. Seattle, Wash. Proc. 52-59, 44-4

. Axial ribs not expanded at suture skogbergi Strong
 Length 5.0 mm. Seattle, Wash. Nautilus 51-54

. Band double .. alaskana D. & B.
 Length 8.0 mm. Alaska Bull. 68-70, 6-9

. Bands triple ... macouni D. & B.
 Length 9 mm. British Columbia Proc. 42-268, 35-11
Pyrgicus
San Diego and North

Axial ribs terminating anterior to the umbilical region

Axial ribs terminating abruptly at the periphery

Shell broadly conic

Incised spirals 6, of uniform strength.............. voxativa D. & B.
Length 6.2 mm. San Pedro Bull. 68-77, 7-11

Incised spirals 7, not uniform....................... obesa D. & B.
Length 5.2 mm. Pacific Beach Bull. 68-78, 7-3

Shell elongate conic

Shell large, adult over 12 mm. long

Summit of whorls narrowly shouldered nuttingi D. & B.
Length 12.3 mm. San Pedro to San Diego Bull. 68-79, 7-13

Summit of whorls appressed doris Bartsh
Length 13.8 mm. San Diego Proc. 52-649, 42-10

Shell smaller, adult less than 5 mm. long callia D. & B.
Length 4.7 mm. San Diego Bull. 68-80, 7-4

Axial ribs fading out before the middle of the base

Shell stout and very robust

Axial ribs somewhat tuberculated Pluto D. and B.
Length 7.5 mm. San Pedro Bull. 68-81, 9-9

Axial ribs not tuberculated jwwettii D & B
Length 5.5 mm. San Pedro to San Hipolito Point Bull. 68-82, 7-2

Shell not stout and very robust

Shell broadly conic

Incised lines of uniform strength

Shell large, adult more than 10 mm. long signae D. & B.
Length 10.2 mm. San Pedro Bull. 68-83, 7-1

Shell smaller, less than 7 mm. long

Base with incised spiral lines only

Axial ribs 20 on the last whorl morchi D. & B
Length 6.4 mm. Catalina to San Diego Bull. 68-84, 7-6

Axial ribs 30 on the last whorl aragoni D. & B.
Length 7.0 mm. Monterey Bull. 68-85, 9-12

Base with incised spiral lines and fine striations........ recta D. & B.
Length 3.6 mm. San Diego to Pt. Abreojos Bull. 68-85, 7-12

Incised spiral lines not of uniform strength

Incised spirals all strong

Axial ribs 18 on the last whorl nereidii D & B.
Length 5.8 mm. San Pedro to San Diego Bull. 68-86, 8-11

Axial ribs 35 on the last whorl weldi D & B.
Length 6.8 mm. San Pedro Bull. 68-86, 8-11

Incised spiral lines partly strong, partly fine

Shell large, adult more than 12 mm. long ista Bartsh
Length 12.5 mm. San Diego Proc. 52-650, 42-6

Shell smaller, less than 7 mm. long

Periphery and base wall rounded eva Bartsh
Length 4.3 mm. San Diego Proc. 52-651, 44-5

Periphery angulated, base short

Axial ribs 22 on the last whorl

Whorls overhanging anterumunda D & B
Length 6.9 mm. Santa Rosa to Catalina Island Bull. 68-88, 8-15

Whorls not overhanging ina Bartsh
Length 6.1 mm. San Diego Proc. 52-649, 44-10
July, 1946

Axial ribs 28 on the last whorl antestriata D & B
Length 9.7 mm. Esteros Bay to San Diego Bull. 68-87, 8-5

Shell elongate-conic

Incised spirals all strong

Summit of whorls exserted tenuicula Gould
Length 7.5 mm. Monterey to Pt. Abreojos Bull. 68-92b, 8-7

Summit of whorls not exserted

Spacing of incised spirals regular virgo Carpenter
Length 4.8 mm. Santa Barbara Bull. 68-95, 8-4

Spacing of incised spirals not regular

Whorls flattened on the sides canfieldi D. & B
Length 6.3 Monterey Bull. 68-95, 8-3

Whorls rounded

Whorls shouldered at the summit callimene Bartsch
Length 7.2 San Diego Proc. 45-271, 37-7

Whorls appressed at the summit almo D. & B.
Length 4.6 mm. San Diego Bull. 68-95, 8-3

Incised spirals not all strong

Summit of whorls exserted tenuicula Gould
Length 7.5 mm. Monterey to Pt. Abreojos Bull. 68-92, 8-7

Summit of whorls not exserted eucoilobasis D. & B.
Length 11.2 mm. San Luis Obispo to Santa Rosa Isl. Bull. 68-93, 10-11

Axial ribs extending to the umbilical region

Base of last whorl decidedly inflated

Shell large, adult more than 10 mm. long castanea Keep
Length 10.5 mm. San Pedro to San Diego Bull. 68-100, 9-1

Shell smaller, adult less than 8 mm. long aureocon D. & B.
Length 7.2 mm. San Pedro to Scannons Lagoon Bull. 68-101, 9-5

Base of body whorl not inflated

Shell broadly conic

Whorls shouldered at the summit adusta D. & B.
Length 5.7 mm. San Diego Bull. 68-100, 10-12

Whorls not shouldered at the summit

Axial ribs broad and flattened castanella D. & B.
Length 13.5 mm. Monterey Bull. 68-102, 8-7

Axial ribs rounded, distinct burchi Gordon
Length 10.4 mm. Redondo Beach Nautilus 51-49

Shell elongate-conic

Whorls narrowly shouldered at the summit dolmontensis Bartsch
Length 9.7 Del Monte Proc. 70-9, 2-11

Whorls slopingly shouldered on upper part

Shell milk white wickhami D. & E.
Length 8.0 mm. Catalina Island Bull. 68-106, 10-9

Shell golden brown grippi Bartsch
Length 11.00 mm. San Diego Proc. 42-270, 36-9

Mormala
San Diego to Alaska

Varices present on the outside of the whorls

Adult large, more than 15 mm. long

Shell conspicuously banded lordi E.A. Smith
Length 29.8 mm. Sitka to Puget Sound Bull. 68-111, 11-4

Shell not conspicuously banded

Incised spiral lines 6 between the sutures regina D. & B.
Length 19.6 mm. Santa Rosa Isl. to San Pedro Bull. 68-112, 11-1
Incised spiral lines between the sutures more than 6

Incised spiral lines between the sutures 9. Catalinensis D. & B.
Length 16.5 mm. Catalina Island Bull. 68-113, 11-10

Incised spiral lines 12 between the sutures. Eschscholizii D & B
Length 13.3 British Columbia Bull. 68-113, 11-8

Adult smaller, less than 12 mm. long

Incised spiral lines 5 or 6 between the sutures

Periphery of the last whorl angulated. Tridens Carpenter
Length 11.2 mm. Monterey to San Diego Bull. 68-114, 11-12

Periphery of last whorl rounded. Clementina Bartsch
Length 7.6 mm. San Clemente Island Proc. 70-11, 2-9

Incised spiral lines 10 between the sutures. Ambusta D. & B.
Length 10.0 mm. San Pedro Bull. 68-115, 11-13

Varices absent from the outside of the whorls

Adult shell more than 11 mm. long. Enna Bartsch
Length 11.6 mm. San Pedro Proc. 70-10, 2-3

Adult shell less than 10 mm. long

Adult shell more than 8 mm. long. Pentalopha D. & B.
Length 8.5 mm. San Pedro to Todos Santos Bay Bull. 68-117, 11-3

Adult less than 6 mm. long

Axial ribs 28 on the last whorl. Heterocineta D. & B.
Length 5.5 mm. San Pedro to San Hipolito Pt. Bull. 68-113, 11-9

Axial rib 14 on the last whorl. Perciscilidae D & B
Length 3.2 mm. Santa Rosa Island Bull. 68-119, 11-6

Chrysallida

Point Conception to San Diego

All spiral cords nodulous

Sutures strongly channeled

Shell elongate-conic, slender

Basal cords 4. Heterocineta Bartsch
Length 5.2 mm. San Diego Proc. 42-272

Basal cords 5. Eugene D & B
Length 4.3 mm. San Pedro to San Hipolito Pt. Bull 68-166

Basal cords 6. Ritteri D & B
Length 4.5 mm. Catalina to San Diego Bull. 68-146

Basal cords 8. Tremori Bartsch
Length 3.7 mm. San Clemente Island Proc. 70-14

Shell broadly conic or ovate

Basal cords 4. Trachis D & B
Length 2.5 mm. Monterey to San Diego Bull. 68-148

Basal cords 5

Shell large. Adult 4 mm. long. Lucca D & B
Length 4 mm. Monterey to San Diego Bull. 68-148

Shell small. Adult 2.3 mm. long. Clementina D. & B.
Length 2.3 mm. San Clemente Island Bull. 68-157

Basal cords 6

Whorls slopingly shouldered. Oldroydi D & B
Length 5.6 mm. San Diego to Coronado Isls. Bull. 68-150

Whorls not shouldered. Trachis D & B
Length 5.0 mm. Santa Barbara to Pacific Beach Bull. 68-156
July, 1946

Basal cords
- 7
- Length 2.6 mm. San Pedro
- Pulicola D & B
- Bull. 68-153

- Sutures not channeled
- Spiral cords between sutures 4
- Basal cords 6
- Length 2.2 mm. San Pedro
- Pulicola D & B
- Bull. 68-150
- Basal cords 10 or more
- Virginalis D & B
- Length 3.0 mm. San Pedro to Pt. Abreojos
- Bull. 68-160

- Spiral cords between sutures more than 4
- Basal cords 10
- Length 2.6 mm. San Pedro
- Bull. 68-165

- Basal cords 12
- Length 3.1 mm. Catalina Island
- Catalinensis Bartsch
- Proc. 70-17

- More than one cord smooth
- Spiral cord between sutures 4
- Shell large, more than 4 mm. in length
- Helga D & B
- Length 4.2 mm. San Pedro to Coronado Islands
- Bull. 68-166

- Shell small, adult less than 3.5 mm. in length
- Dinella Bartsch
- Length 3.0 mm. San Diego
- Proc. 42-274

- Spiral cords between sutures more than 4
- Shell elongate conic, slender
- Virginalis D & B
- Length 3.0 mm. San Pedro to Point Abreojos
- Bull. 68-160

- Shell ovate
- Length 2.8 mm. San Diego
- Bull. 68-157

Chrysalidea North of Point Conception

- All spiral cords nodulous
- Sutures strongly channeled
- Basal cords 4
- Length 2.5 mm. Monterey to San Diego
- Trachis D & B
- Bull. 68-148

- Basal cords 5
- Whorls slopingly shouldered
- Lasca D & B
- Length 4 mm. Monterey to San Diego
- Bull. 68-148

- Whorls not shouldered
- Chauci Bartsch
- Length 2.9 mm. Monterey to Cayucos
- Proc. 70-16

- Basal cords 7
- Anterior spiral cord the strongest
- Euglypta Jordan
- Length 2.1 mm. Trinidad
- Proc. 58-2

- All spiral cords equal in strength
- Ustricata D & B
- Length 2.9 mm. Monterey to San Diego
- Bull. 68-154

- Basal cords 8
- Length 3.1 mm. Monterey
- Bull. 68-159

(con.)
Sutures not channeled

- Spiral cords between the sutures 4
- Posterior spiral cord the weakest... cumshawaensis Bartsch
 Length 2.7 mm. British Columbia Proc. 76-13
- All spiral cords equal in strength... monterycynensis D. & B.
 Length 3 mm. Monterey Bull. 66-159
- Spiral cords between the sutures more than 4... oroconensis D. & B.
 Length 3.3 mm. B.C. to Monterey Bull. 66-182

Monostho- San Diego to Alaska
Shell elongate-conic... pharcida D & B
 Length 2.2 mm. British Columbia Bull. 66-185, 21-5
Shell elongate-ovate or ovate
- Last whorl with about 40 spiral cords... oxarta D & B
 Length 3.9 mm. Monterey Bull. 66-186, 21-1
- Last whorl with much less than 40 spiral cords
- Spiral cords 3 between the sutures... gloriosa Bartsch
 Length 3.1 mm. San Diego to San Hipolito Pt. Proc. 42-276, 36-2
- Spiral cords more than 3 between the sutures
- Spiral cords 4 between the sutures
- Basal cords 3... amilda D & B
 Length 2.6 mm. San Diego to Round Island Bull. 68-186, 21-4
- Basal cords more than 3
- Basal cords 4
- Spiral sculpture very strong... farma D & B
 Length 2.4 mm. Catalina Island Bull. 66-188, 20-1
- Spiral sculpture very feeble... onora D & B
 Basal cords more than 4
- Spiral cords equally spaced... fettella D & B
 Length 4.4 mm. San Pedro to San Ignacio Lagoon Bull. 66-189, 21-9
- Spiral cords unequally spaced... excisa Bartsch
 Length 3.9 mm. Catalina Island Proc. 42-278, 36-8
- Spiral cords 6 between the sutures
- Basal cords 5... hapocurta D & B
 Length 4.3 mm. Alaska Bull. 66-190, 21-3
- Basal cords 8... harfordensis D & B
 Length 3.2 mm. Port Harford Bull. 68-191, 21-3

Amaura- San Diego to Alaska
Shell unbilicated
- Shell very large, adult over 10 mm. long.
- Shell very elongate-ovate... lastra D & B
 Length 13.6 mm. Catalina to San Diego Bull. 68-219, 28-7
- Shell broadly ovate... kennerleyi D & B
 Length 10.2 British Columbia Bull 68-219, 23-8
- Shell smaller, adult less than 10 mm. long
- Shell ovate
 - Summit of whorls concavely shouldered... elsa D & B
 Length 6.1 mm. Alaska Bull. 66-220, 29-1
 - Summit of whorls flatly shouldered
 - Shell widely unbilicated... berendi Dall
 Length 5.7 mm. Alaska Bull. 68-220, 27-8
July, 1946

shell very narrowly umbilicated .. subglobosa Bartsch
Length 6.0 mm. San Diego Proc. 42-286, 27-2

shell elongate-ovate

umbilicus wide, open

summit of whorls tabulatedly shouldered farallonensis D. & B
Length 5.5 mm. Off Farallonnes Bull 68-221, 27-7

summit of whorls faintly shouldered

Columella reflected over edge of umbilicus satura Carpenter
Length 6.4 mm. Nehal Bay, Wash. Bull 68-221, 27-1

Columella not reflected over umbilicus helena Bartsch
Length 5.3 mm. San Pedro Proc. 42-286, 27-10

 Umbilicus very narrow

summit of whorls appressed ... sillana D & B
Length 5.6 mm. Unalaska Bull 68-222, 27-9

summit of whorls shouldered

Shoulder concave .. talpa D & B
Length 8.0 Mole Harbor, Alaska Bull 68-222, 27-9

Shoulder flat or rounded

Whorls strongly contracted at the suture kraussel Closin
Length 9.9 mm. Alaska Bull 68-222, 29-5

Whorls not strongly contracted at the suture

Adult shell over 9 mm. in length .. eldorana Bartsch
Length 9.1 mm. Kodiak Island, Alaska Proc. 42-287, 36-12

Adult shell less than 9 mm. in length

Surface with fine spiral lirations ... grippiana Bartsch
Length 7.5 mm. British Columbia Proc. 42-287, 36-11

Surface without spiral lirations

Columella strongly curved ... arctica D & B
Length 7.7 mm. Santa Rosa Island Bull 68-223, 27-3

Columella very oblique ... houldi Carpenter

Shell not umbilicated

Shell very large, adult over 12 mm. in length arctica D. & B
Length 12.4 mm. Arctic Ocean Bull 68-224, 28-5

shell smaller, adult less than 10 mm. in length

Shell ovate

Summit of whorls appressed ... nuciformis Carpenter
Length 7.7 mm. Nehal Bay, Wash. Bull 68-227, 28-1

Summit of whorls shouldered

Adult shell more than 6 mm. long

Summit of whorls with a beveled shoulder campfieldi Dall
Length 9.6 mm. Monterey Bull 68-228, 28-2

Summit of whorls with a tabulated shoulder subturrita D. & B
Length 6.9 mm. Santa Barbara to Todos Santos Bay Bull 68-228, 28-4

Adult shell less than 6 mm. long .. martensi D & B
Length 5.3 Alaska Bull 68-229, 29-3

shell elongate-ovate

surface of shell finely spirally lirate ... moratora D & B
Length 9.5 mm. Off Point Reyes Bull 68-225, 30-7

surface of shell not finely lirate

Summit of whorls appressed ... avellana Carpenter
Odostomia, subgenus Evalea
Monterey to Bering Sea
Shell umbilicated

- Spiral sculpture consisting of incised lines and raised lirations
- Lirations confined to the base • septentrionalis D & B
 Length 4.6 mm, Unalaska • Bull 68-200, 26-9
- Lirations on base and spire • capitana D & B
 Length 4.6 mm, Kodiak Island • 68-200, 26-7
- Spiral sculpture consisting of incised lines only
- Columellar fold in the middle of the columella • munivakensis D & B
 Length 3.9 mm, Nunivak Island, Alaska • 68-194, 22-6
- Columellar fold posterior to the middle of the columella
- Spiral sculpture strong
- Shell thick and robust
- Summit of whors narrowly tabulated • youngi D & B
 Length 6.5 mm, Barkley Sound, B.C. • 42-277, 37-6
- Summit of whors not tabulated • killisnooensis D & B
 Length 6.4 mm, Killisnoo, Alaska • 68-195, 22-7
- Shell thin and delicate
- Shell broadly tabulated at the summit • vancouverensis D & B
 Length 4.7 mm, Barkley Sound, B.C. • 42-280, 37-1
- Whors not tabulated at the summit
- Incised lines strongest anteriorly • spreadboroughi D & B
 Length 3.3 mm, Barkley Sound, B.C. • 42-279, 33-8
- Incised lines equal on all whors • tillamookensis D & B
 Length 4.1 mm, Tillamook, Oregon • 68-195, 22-2
- Spiral sculpture very fine
- Shell very broadly conic
- Suture strongly contracted • aleutica D & B
 Length 4.4 mm, Bering Sea to Unalaska • 68-196, 22-5
- Suture not strongly contracted
- Whors moderately shouldered at the summit • quadræ Bartsch
 Length 6.2 mm, Barkley Sound, B.C. • 42-281, 37-3
- Whors not shouldered • kadiakensis D & B
 Length 5.2 mm, Kodiak Island, Alaska • 68-197, 22-9
July, 1946

- Shell elongate conic
- Whorls narrowly tabulated at the summit
- Periphery of last whorl inflated hypatia Bartsch
 Length 5.2 mm Skidegate, Alaska 42-282, 37-5
- Periphery of last whorl not inflated cypris Bartsch
 Length 4.0 mm Skidegate, Alaska 42-282, 37-7
- Whorls not tabulated
- Periphery of last whorl subangulated
- Shell narrowly elongate conic barkleyonsis D & B
 Length 3.1 mm Barkley Sound, B.C. 42-283, 38-9
- Shell very broadly elongate conic franciscana Bartsch
 San Francisco Bay 52-365, 46-7
- Periphery of last whorl well rounded
- Whorls roundly shouldered valdezii D & B
 Length 3.0 mm Del Monte, Calif. 66-198, 23-6
- Whorls not shouldered cockerana D & B
 Length 3.2 mm Ellamar, Alaska 42-283, 37-8

Shell not umbilicated
- Incised lines strong over the entire surface
- Periphery of last whorl subangulated inflata D & B
 Length 6.2 mm Nech Bay, Wash. 68-201, 24-7
- Periphery of last whorl rounded
- Shell elongate conic columbiana D & B
 Length 6.3 mm Vancouver to Port Townsend 68-202, 23-1
- Shell elongate ovate unalaskensis D & B
 Length 4.8 mm Unalaska 68-203, 25-5
 Incised lines strong on early whorls only
- Shell pure white, semitransparent phanae D & B
 Length 4.8 mm Monterey 68-204, 25-5

Shell not white and semitransparent
- Periphery of last whorl rounded, inflated tenuisculpta Carpenter
 Length 5.3 mm Washington to Port Harford 68-205, 23-2
- Periphery of last whorl feebly angulated Willetti Bartsch
 Length 5.8 mm Prince of Wales Island, Alaska 52-366, 43-3
 Incised spiral lines only moderately strong
- Periphery of last whorl very strongly angulated angularis D & B
 Length 5.6 mm Sitka to Puget Sound 68-207, 24-5
- Periphery of last whorl well rounded
- Shell very broadly conic tacomasensis D & B
 Length 4.3 mm Tacoma, Wash. 68-209, 24-8
- Shell elongate conic
 Adult shell very small anchitkana D & B
 Length 3.5 mm Anchitka, Alaska 68-210, 24-7
 Adult shell larger stephi D & B
 Length 5.3 mm Baranoff Island 68-210, 24-5
- Shell elongate ovate
- Whorls slightly shouldered oyordami Bartsch
 Length 4.5 mm Afognak Island 70-15, 4-1
- Whorls not shouldered classini D & B
 Length 6.6 mm Baranoff Island 68-211, 24-4
 Incised lines very fine
- Summit of whorls tabulated baranoffensis D & B
 Length 6.3 mm Baranoff Island 68-215, 25-3
Shell broadly conic.

Columella almost straight. sitkaensis D & B
Length 4.0 mm. Sitka 68-215, 26-3.

Columella strongly curved. hagemeiistori D & B
Length 4.4 mm. Bering Sea 68-218, 36-1.

Shell elongate ovate.

Periphery feebly angulated. skidegaenosis D & B
Length 3.4 mm. Skidegate 42-254,33-7.

Periphery well rounded. delicos D & B
Length 4.0 mm. Monterey 68-216,25-3.

Shell ovate, with tabulate whorls. cassandra D & B.
Length 2.5 mm. Skidegate 42-265,38-5.

The figures under the species named refer to the Bulletin or Proceedings of the U.S. National Museum and the page. Also the plate and figure.

The following species have been reported from the Montecito area: velozi D & B, phanea D & B, tonisisculpta Carpenter, delicos D & B.

Odostomia, subgenus Evaloa- San Diego to Santa Barbara, Calif. Shell uninflated.

Spiral sculpture distinct.

Spiral lines strong on early whors, fading out on last then Bartsch.
Length 4.7 mm. San Pedro 42-278,37-7.

Spiral lines strong on all whors.

Shoilder of whors strongly tabulated. calliope Bartsch.
Length 4.2 mm. Off Pt. Loma 110-100 mms. 42-278,36-10.

Shoulder of whors not strongly tabulated.

Shell very broadly elongate-conic. calcarrolla Bartsch.
Length 3.2 mm. Off Santa Rosa Island 46 mms. 42-278,37-4.

Shell elongate ovate. cirrata D & B.
Length 5.6 mm. Off San Diego 559 mms. 68-196,22-1.

Spiral sculpture microscopic.

Shell elongate conic.

Summit of whors narrowly tabulate. heralda D & B.
Length 2.3 mm. Off San Diego 66-197,23-8.

Summit of whors not tabulate.

Periphery inflated, rounded.

Whors somewhat constricted at the summit. callimone Bartsch.
Length 3.1 mm. Off San Pedro, deep water 42-251,38-2.

Whors roundedly shouldered at the summit. callimone D & B.
Length 4.3 mm. San Pedro to San Diego 66-196,22-3.

Periphery faintly angulated. lea D & B.
Length 5.6 mm. Santa Rosa Island.

Shell ovate.

Summit of whors slopingly shouldered. pratoma D & B.
Length 2.9 mm. Off Santa Rosa Island 53 mms. 66-199,23-4.

Summit of whors appressed. bachia Bartsch.
Length 3.6 mm. San Clemente Island 70-17,2-7.

Shell not uninflated.

Incised lines strong on all whors. jewetti D & B.
Length 4.1 mm. Santa Barbara 66-201,23-3.
Incised lines strong on early whorls only

Shell broadly ovate

With raised lirations on the body whorl atossa Dall
Length 6.5 mm. San Pedro 68-203, 26-8

Without raised lirations obesa D & B
Length 6 mm. San Pedro 68-203, 26-4

Shell elongate ovate

Shell white, semitransparent planolla D & B
Length 3.5 mm. San Pedro 68-205, 23-9

Shell not white and semitransparent

Incised lines on second whorl 15................... tenusculpta Carpenter
Length 6.3 mm. B.C. to Catalina 68-206

Incised lines on second whorl 7 to 10

Subsutural incised lines heaviest whitii Bartsch
Length 2.2 mm. San Pedro 70-11-19, 4-3

Without a heavy subsutural line

Body whorl with fine spiral lirations santarosana D & B
Length 4.9 mm. Santa Rosa Island 68-206, 28-6

Body whorl without spiral lirations strongi Bartsch
Length 3.5 mm. Catalina Island 70-11-19, 4-4

Incised lines only moderately strong

Periphery subangulated

Posterior angle of aperture with a weak notch ... baldridgeae Bartsch
Length 5.6 mm. San Pedro 42-284, 38-1

Posterior angle of aperture without a notch

Adult shell 5.5 mm. long donilla D & B
San Pedro to Todos Santos Bay 68-208, 24-3

Adult shell 3 mm. long californica D & B
San Diego 68-208, 22-2

Periphery of last whorl well rounded sorilla D & B
Length 4.6 mm. Off San Diego 68-208, 22-6

Incised spiral lines exceedingly fine

Periphery of last whorl strongly angulated

Shell narrowly conic minutissima D & B
Length 3.1 mm. San Diego to Pt. Abreojos 68-211, 25-4

Shell broadly conic raymondi D & B
Length 3.6 mm. Off Catalina Island

Periphery of last whorl subangulated

Shell large, adult more than 6.5 mm in length ... dravida Gould
Length 6.6 mm. Santa Barbara 68-212, 25-7

Shell small, adult less than 4 mm in length

Shell elongate ovate

Summit of whorls subtabulated notilla D & B
Length 2.7 mm. Off Catalina Island 68-215, 25-6

Summit of whorls slopingly shouldered novilla D & B
Length 3.6 mm. Off San Diego, 359 fms. 68-213, 25-1

Shell ovate ... altina D & B
Length 3.0 mm. Off San Diego, 359 fms. 68-214, 24-2

Periphery of last whorl well rounded

Summit of whorls tabulated profundicola D & B
Length 4.5 mm. Off San Diego, 359 fms. 68-214, 25-8

Summit of whorls not tabulated

Whorls inflated, strongly rounded rosina D & B
Length 2.2 mm. Arch Beach 68-216, 27-6
July, 1946

Whorls flattened in the middle.
Length 4.8 mm. San Pedro to San Diego 66-198, 22-8

Only one of these species, Odostomia (Evalu6) tenuisculpta Carpenter, has been reported north of Santa Barbara.

It has been our custom to republish all descriptions since the publication of Oldroyd, in order to make these papers as near a complete supplement as possible to that great work. Inasmuch there are a number of such species in this group the descriptions will follow without regard to order. Our discussions will follow with references back to these descriptions.

Turbonilla (Striitubomilla) cayucosensis Willett, 1929. Nautilus 45: 26, 27 pl. 3, figs. 2, 3. "Shell large, broadly-elongate-conic, bluish white in younger specimens, yellowish white in adults. Nuclear whorls small, rounded, having their axes at right angles to the succeeding turns. Post-nuclear whorls somewhat flattened and shouldered at the summit. Surface marked by heavy, rounded, closely spaced, strongly protractive axial ribs, of which fourteen occur on each of the first eight whorls, sixteen on the 9th and 10th, 18 on the 11th, and 20 on the 12th and last whorl. Those ribs extend from the summit of the whorl to the periphery, where they morgand terminate. Intercostal spaces a little narrower than the ribs, also terminating at the periphery. On the type and other adult specimens the axial ribs extend over the base, becoming more or less feebly and uneven on the anterior portion. In immature specimens (ten whorls or less) the ribs terminate at the periphery. Entire base and spire covered with fine spiral striations, visible only under a fairly strong lens. Aperture oval, post-axial angle narrowly, obliquely truncated by the flattened summit. Outer lip thin, slightly contracted; inner lip slightly oblique and somewhat reflected. The type has 12 post nuclear whorls and measures: Length 9 mm, diam. 2 mm.

The type, No. 1016, Coll. Los Angeles Museum, and 24 additional specimens were taken by Mr. H.W. Lovecorder stones at Cayucos, Calif. June, 1927.

Remarks: In general shell characters this species seems to resemble T. attrita Dall and Bartsch. It is easily differentiable from this species, however, by its larger size, as well as by its more protractive and different number of ribs. A study of the type species shows some individual variation in the width of the ribs and in their number. While most of the specimens are like the type in the latter character, in some specimens the increase in number of ribs occurs one whorl earlier.

Turbonilla (Pyrgolampros) strangi Willett, 1931. Nautilus 45: 67, pl. 14, f. 4. "Shell very slender; chocolate brown (nuclear whorls decomitted). Post-nuclear whorls almost straight along the sides, only very slightly rounded toward the shouldered summit and the periphery, marked by strong, rounded, slightly protractive axial ribs, of which there are 13 on the first and second, 16 on the third to sixth, 18 on the seventh, 20 on the eighth and ninth, and 24 on the tenth (last) turn. Intercostal spaces two or three times as wide as the ribs. Periphery of the last whorl obtusely angulated, marked by the continuations of the axial ribs, which remain strong to the columellar region. The type, No. 1019 Coll. of the Los Angeles Museum, has ten post-nuclear whorls, and measures: Length, 6.8 mm; diam. 1.6 mm. (cont.)
It was taken by the writer in 25 fathoms off the north shore of Catalina Island, 1920. A smaller specimen taken at the same time is in the writer's collection.

Remarks: This species is proportionally the most slender of our known west American Pyrgolamprops. In dimensions it more nearly resembles some of the slender species of the subgenus Turbonilla. It is probably as close to T. halibrecta Dall and Bartsch as to any member of its subgenus. From this species it differs markedly in more slender proportions, different number of axials and their much stronger continuation on the base.

Turbonilla (Pyrgolamprops) skogesbergi Strong, 1937 Nautilus 51:54, pl. 4, figs. 3-5

"Shell slender, acutely conic, shining, whitish, with, beginning at the third or fourth whorl, a brown band covering the anterior third of the whors between the sutures and extending over the periphery to the middle of the base; nuclear whors small, depressed, not immersed, having their axis at right angles to that of the following whors; postnuclear whors moderately rounded, sutures distinct; axial sculpture consisting of about 18 threads, nearly straight, slightly protractive ribs which extend from suture to suture but fade out just below the periphery, with shallow, narrowly interspaces; spiral sculpture of numerous, fine, closely-spaced, striations over the entire surface; periphery well rounded; base rather short, well rounded; aperture subquadrate, posterior angle acute, outer lip thin, showing the brown color band within; columella slender nearly straight.

The holotype has lost the nucleus and first postnuclear whorl, the remaining 8 whors measure: length 5.6, maximum diameter 2.0 mm. The description of the nucleus was taken from an immature paratype of 5 whors which measured length 2.5, maximum diameter, 0.8 mm. Comparison: This species is nearest to Turbonilla (Pyrgolamprops) nowacordi Dall and Bartsch, from British Cula, differing principally in the wider ribs and shorter base.

Turbonilla (Pyrgicus) burchi Gordon, 1938 Nautilus 52:49, 50, pl. 4, figs. 3-5

"Shell large, broadly-conic, flesh-colored with a wide brown band which extends from one fourth the distance from the suture to the periphery, to one fourth the distance from the periphery to the columella. Early nuclear whors broken away; remaining half-turn smooth, slightly oblique, and slightly immersed in the first post-nuclear whorl. Post nuclear whors rounded, slightly appressed at the summit, marked on the early whors by rather strong, almost vertical, rounded, axial ribs, which become slightly retractive on the last three whors of these there are 14 on the third, 18 on the fourth to sixth, 17 on the seventh, 18 on the eighth, 20 on the ninth, 22 on the tenth, and 28 on the last whorl. The spiral sculpture consists of heavily incised lirae or elongated pustules and finely incised lines. There are five rows of the elongated pits; the first, second, and fourth of equal strength, and the third and fifth slightly stronger. The first of these marks, the posterior boundary of the brown color band, the second is just anterior to it, the fifth is almost at the periphery, the fourth is the same distance posterior to it as the first to the second, and the third is half way between the second and fourth. The flesh-colored area in front of the suture is marked by five finely incised lines of equal strength and equidistant except for the third and fourth which are set a slightly further apart. There are two finely incised lines between the first (con.)
and second rows of spiral pits, two between the second and third, three between the third and fourth, and none between the fourth and fifth. The spiral sculpture does not cross the summits of the axial ribs though several of the rows of spiral pits encroach well upon the slopes. The periphery is well rounded and marked by a smooth area as wide as that separating the fourth and fifth rows of spiral pits. A few of the axial ribs cross the periphery but these evanescce quickly. The base is well rounded and marked by eighteen fairly strong, subequal, spiral grooves which are unequally spaced. Aperture moderately large, rhomboidal; posterior angle acute; outer lip thin, showing the sculpture within; columella moderately thin, oblique, revolute, but almost straight; parietal wall covered by a thin callus. The type possesses eleven whorls and measures: height, 10.4, greatest diameter, 2.9 mm.

Holotype: No. 1067 Los Angeles Museum coll. dredged at 25 fathoms in gravel one mile west of the pier at Redondo Beach, Calif. by M. Gordon and J. Q. Burch in June, 1938.

A study of the paratypes shows that the finely incised spiral lines do not constitute a constant character, the specimen in the author's collection possessing twelve of these in the flesh-colored zone anterior to the first row of spiral pits. The rows of spiral pits, however, are always five in number though varying in strength from the type, and are especially apparent on the earlier post-nuclear whorls.

The species is evidently most closely related to Turbonilla (Pyrgicusa) dora Bartsch but differs from that species in being banded, in having stronger and less numerous axial ribs on all the whorls, less appressed at the suture, a different pattern of spiral sculpture, and not as many spiral grooves on the base.

The species is named for Mr. John Q. Burch of Redondo Beach, Calif.

Odocostoma (Chrysallida) ornatissima (Haas), 1943. Described as Chrysallida (Chrysallida) ornatissima - Zoological Series of the Field Museum of Natural History, vol. 29, no. 1, 1943, pp 4-5, pl. 2, figs a, b, c.

Type from Point Pinos, Monterey Peninsula, California; washed from sand in a tide pool, No. 17029 Field Museum of Natural History. Collected May 19, 1941, by Fritz Haas.

Diagnosis: A medium sized species of the typical subgenus of the pyramidal-lid genus Chrysallida, characterized by a slender conic shell, an upper constriction of the whorls, and a peculiar pattern of shell sculpture.

Comparisons: The presence of only three keels on the nuclear whorl suggests a closer relation to species like C. orogenensis Dall and Bartsch, but the sculptural pattern of the post-nuclear whorls is quite different from that present in the group mentioned. It closely resembles the pattern seen in species like C. oldroydi Dall and Bartsch, but these differ in having five keels developed on their nuclear whorls. The classification of the species of Chrysallida is still rather artificial, being based on unstable characters, such as the mutual relation of spiral or axial sculptural elements, and the preponderance of one or the other, so that the relation of the new form with any of the many congeneric species can not yet be stated.

Description of type: Shell elongate-conic, shiny white, composed of five and one half whorls which increase gradually. Nuclear whorls one and one half, with three keels, the upper of which forms a sharp edge (fig. 2c); the first half of the nuclear whorls is immersed (fig. 2b). The four post-nuclear whorls are a little inflated, the two upper ones with almost straight
sides, the two lower ones with rounded sides. They are separated by a deeply incised suture. The upper part of every post-nuclear whorl shows a narrow but decided and almost-concave constriction. The shell is highly ornamented by a sculpture in which axial and spiral elements are almost equal; only on the base of the last whorl does the spiral element predominate. There are three spiral cords on the first and on the second post-nuclear whorls, four on the third, and five on the fourth, while the base of the shell shows about seven. All these cords are separated by sharply incised furrows about one half as wide as the cords themselves; on the base of the shell only, these incised lines are much narrower in proportion to the cords. This system of revolving cords is crossed by axial furrows approximately as wide as the incised spiral furrows, but not as deep as these; this means that the points of crossing of spiral cords and axial furrows are at a higher level than the bottom of the incised lines. The consequence of this intersection of both spiral and axial elements is a meshwork presenting the edges of the cords cut into almost square, but obtuse angled raised knobs. The lower cords of every whorl are less heavily carved than the upper ones; thus the fourth on the third whorl and the fifth on the fourth whorl are practically intact and have only a somewhat wavy outline, while the cords on the base, exhibit almost no intersecting furrows. The aperture of the shell is comparatively small, oval, and simple; its right upper margin, close to the insertion, is somewhat damaged in the type. In the interior of the aperture, the external shell sculpture is somewhat visible. The base of the aperture is decidedly effuse; its left margin is so closely appressed to the base of the shell that no trace of a secondary umbilical chink can be seen. The columella presents a very faint, hardly visible fold.

Measurements:—Height 2.7 mm., width 1.25 mm., height of aperture 1 mm.
Notations on the paratype.—No. 17030 Field Museum of Natural History. Same locality, same date and same collector as the type. Its measurements are height 2.9 mm., width 1.3 mm., height of aperture 1.1 mm. The paratype matches the description of the type perfectly, with the exception that, being higher, it has an additional fraction of a whorl (about one fourth). Its aperture is a little damaged, somewhat more so than in the type.

Discussion.—The West Coast species of *Chrysallida*, whose number was 50 when Dall and Bartsh wrote their Monograph of West American Pyramidellid Mollusks, may be double that number now. The species are generally easily recognized, since the respective sculptural patterns offer distinctive features together with differences in the general shape of the shell. It has not yet been possible to split this mass of species into natural groups, the characters used for specific distinction being, apparently, either unstable or of only secondary value. The number of keels on the phylogenetically oldest part of the shell, the nuclear whorls, might prove to be a useful means for defining natural groups. In *Chrysallida ornatissima* the pattern of sculpture closely resembles, in a general way, that of *C. oregonensis* Dall and Bartsh, except that the raised parts in *ornatissima* are impressed in *oregonensis*, and vice versa. Three main features characterize *ornatissima*: the presence of three keels on the nuclear whorls, the slender, constricted shape of the whole shell, and the type of meshwork pattern of the sculpture. No other species of *Chrysallida* appears to possess this combination, though the separate features, or combinations of two of them, occur in numerous species.
Pyramidellidae

Pyramidella Lamark, 1799. Type (by monotypy), Trochus dolabratus L.

Shell of many whorls, turrited, unbulicated; columella with three folds; outer lip usually reinforced within, at irregular intervals, by spiral lamellar thickenings. The sculpture consists of more lines of growth and very fine spiral striations. [(Dall & Bartsch, 1909, p. 19)]

Type (side Dall and Bartsch), Pyramidella punctata Schubert and Wagner. Shell elongate-conic, not unbulicated, having three columella folds, a basal fasciole and spiral sulcus. The entire surface is marked by fine lines of growth and microscopic spiral striations. [(Dall & Bartsch)]

Key to Species of the Subgenus Longchaeus (from Dall & Bartsch, 1909, p. 21).

Shell variegated .. adamsi

Shell not variegated

Shell rose-purple anteriorly .. bicolor

Shell brown

Adult shell more than 16 mm long mexicana

Adult shell less than 14 mm long

Sutures very strongly channeled conica

Sutures moderately channeled mazatlanica

Pyramidella adamsi Carpenter, 1864. San Pedro (Lowe) south to Salina Cruz, Mexico (Lowe). Type locality: "from a species of Chama at Mazatlan."*

* In spite of the above key to species it is my personal opinion that it is impossible to separate the Pyramidella of the California fauna into more than one species. Our experience has been to take many specimens of Pyramidella from Newport Bay, Orange Co., and also from Mission Bay, San Diego Co., on eel grass, and also in abundance from Todos Santos Bay, Lower California. While it is quite possible that I have before me several species I will be sincerely obliged to anyone who will show me how to separate them.

Grant and Gale, 1931, p. 866 were disposed to place P. conica variegata in the synonymy of mexicana.

I am disposed to place at least P. mexicana (Dall and Bartsch) 1909 in the synonymy. (Burch).

In response to the above suggestion it was approved by Mr. E.P. Chace and several other members of the club. However, Mr. A.H. Strong in his notes seems to list both adamsi Carpenter (Newport Bay, subfossil) and P. mexicana Dall and Bartsch (Todos Santos Bay).

Collecting data: "Plentiful in July and August 1942, have been uncommon since... in Mission Bay, near Crown Point and the Causway. By the way, how do you tell this from P. mexicana D. & B.?" (W.K. Emerson);

Estero, 10 miles S. of Ensenada; Salina Cruz, Mex.; San Pedro, Calif. (Lowe); San Diego (Dr. F. Baker);

Pyramidella mazatlanica (Dall and Bartsch), 1909. San Diego to Cape Topoca, West Mexico. Type locality: off Cape Topoca in 14 fathoms.

The San Diego record for this species should certainly be confirmed.

No member reports it from California, and the records of the San Diego Museum of Natural History show only southern localities.

Collecting data: Conception Bay, L.C.; Magdalena Bay; Angel de la Guardia Island, Gulf of Calif. in 20 fms.; Punta Penasco in 10 fms.; Acapulco, Mexico in 20 fms. (Lowe); Espiritu Santo Island, Gulf of Calif. (Baker).
Genus Peristichia Dall, 1889. Type (by original designation): P. toretata Dall, 1889.

Dr. Harald Rehder in Proc. U.S. National Museum, vol. 95, p. 195, 1943 in his discussion of the type of this genus also states that "other known species is Iridella pedroca Dall and Bartsch, 1909." Dr. Rehder discusses the genus as follows: "Originally proposed as a genus of dubious affinities, Dall later placed Peristichia in the Pyramidellidae near Oscilla. Bartsch (Proc. Biol. Soc. Wash., vol. 17, p. 9, Feb. 5, 1914) considered it a subgenus of Turbonilla. Thiele, 1929, does not mention it at all, and Wenz (Handb. Palaeozo., vol. 6, p. 874, 1940) lists it as a subgenus of Turbonilla with a question. An examination shows that it is a pyramidellid close to Tripychus and should be accorded full generic rank. It differs from Tripychus in having only one basal entrant spiral cord, instead of two, and in lacking colunmellar folds."

Mr. A. M. Strong, Mr. Allyn G. Smith and others of our club agree that we should follow Dr. Rehder on this.

Peristichia pedroca (Dall and Bartsch), 1909. San Pedro, Calif. to Scarpions Lagoon, L.C. Type locality: San Pedro.

Dr. Dall in Bulletin 112 placed this species under Odostomia, subgenus Iridella. This has often been questioned by students of the group. Mr. A. G. Smith comments "I've always thought this was completely out of place in Odostomia. Would follow Rehder on this."

Collecting data: Dredged off Catalina Island, Avalon in 25 fms.; Punta Banda, Lower Calif. littoral (Baruch); Tide pools at White's Point, San Pedro; Isthmus Cove, Catalina (Strong); White's Point, San Pedro; Mission Bay, San Diego Co. (A. G. Smith);

Genus Turbonilla Riso, 1826. Dr. A. Myra Keen advises on the type of this genus as follows: "The genotype of Turbonilla is T. plicatula Riso, 1826 (by sub. des. Dall and Bartsch in Arnold, 1903), (not Turbo plicatula Brocchi, 1814, a Turbonilla) = T. typica Dall and Bartsch in Arnold, 1893."

"Shell with a sinistral apex, cylindro-conic, many whorled, generally slender; with a single columnellar fold which varies in strength and frequently is not visible in the aperture. The sculpture both axial and spiral ranges from obsolete to strongly incised lines or raised lamellae" (Dall and Bartsch, 1909, p. 28).

Subgenus Turbonilla Riso s.s. Type: Turbonilla typica Dall and Bartsch = T. plicatula Riso, 1826, not Turbo plicatula Brocchi, 1814.

"Turbonillas without spiral sculpture, having prominent vertical ribs which extend from the sumits of the whorls to the umbilical region; the same is true of the intercostal spaces. Usually both ribs and intercostal spaces are less strongly defined on the base below the periphery, than on the exposed portion of the whorls above it. Columella straight or slightly twisted. All our west coast forms belonging to this subgenus are small and slender, of seric-translucent bluish-white to milk white color." (Dall and Bartsch, 1909, p. 29).

Turbonilla nero Dall and Bartsch, 1909. Catalina Island, Calif. to Los Coronados Islands (Baker). Type locality: Catalina Island.

Collecting data: Catalina (30 to 50 fms. (Gordon); Coronado (Baker).
July, 1946

Turbonilla diegensis Dall and Bartsch, 1909. San Pedro to San Diego.
Type locality: San Diego.
Collecting data: Mission Bay (A.G. Smith); San Pedro: San Diego, a variety on the mud flats (T.S. Oldeyda); San Diego (Orcutt); La Jolla (Chaney); San Diego 12/30 Hemphill and Baker (San Diego Museum).

Turbonilla gilli Dall and Bartsch, 1907. Catalina Island to San Diego.
Type locality: San Diego. Pt. Vincent to Los Coronados (Baker).
Collecting data: Off Catalina in 30-40 fathoms (Strong); South Island, Los Coronados in 18 fathoms (Baker); 12 fathoms off Point Vincent, Los Angeles Co. (Dr. W.O. Gregg).

Turbonilla gilli delmontensis Dall and Bartsch, 1907. Monterey Bay, Calif.
Collecting data: Monterey Bay in 5 to 25 fms. rare (A.G. Smith).

Subgenus Cherimitzia D'Orbigny, 1839. Type (by monotypy), Helania campanellae Philippi.

"Turbonillas without spiral sculpture, having prominent axial rib in which fuse or terminate at the periphery. The intercostal spaces are deep and sunk and terminate at or a little above the periphery, extending upward to the summits of the whorls. Base smooth, devoid of all sculpture. Columella straight. All our West American species belonging to this group are small, slender forms of semitranslucent bluish-white to milk white color." (Dall and Bartsch, 1909, p. 33).

This is as good a place as any for a general discussion of the subgenera of Turbonilla. Mr. George Willett in Trans. San Diego Soc. Nat. Hist. vol. 8, no. 30, pp. 379-406, pls. 25, 36 was of the opinion that Cherimitzia and Stricturbonilla should be lumped with Turbonilla s.s.

While it seems to me that Mr. Willett made an excellent case for this practice the fact remains that there are many other students who so far from 'lumping' these groups are disposed to elevate them to generic rank.

I wish some of them would explain in simple words just how they propose to conveniently separate them though in actual practice. However, Mr. A.K. Strong, our recognized authority on this family continues to use the three subgenera. Mr. A.G. Smith comments as follows: "My thought would be to leave the subgeneric names of the Pyramidalidae stand as Dall has them in Bull. 112. In our Monterey paper we follow Willett, as we believed he had a real point in grouping some of the genera in Turbonilla. Certainly it is difficult to separate Turbonilla, Cherimitzia, and Stricturbonilla as you indicate. However, as you are not monographing the family, I would let the situation stand as it is. Some day not too far off, someone is going to raise all subgenera to genera. Personally I am opposed to this as being unnecessary, although those who would split up the genus Costaria have something to be said for their point of view. It would save some time in writing of subgeneric names which is now essential in a genus with so many species. Dr. Keen comments "I'll admit I have difficulties with these subdivisions."

However, we will follow the old classifications in this paper leaving it to some specialist and may he start work soon to adjust these matters.

Mr. A.K. Strong comments with an interesting note on a point "There are quite a number of species which it seems like we should have which have not shown up. In hunting for them I think that we have been inclined to pay too much attention to individual differences. I usually find that
July, 1946

when one of these missing species does show up that the differences are much greater than an examination of the figure and description would lead one to expect at first glance.

Dr. Joshua L. Bailey Jr. comments "I believe Chennitzia is not iden-
tical with Turbonilla though it might profitably be consolidated with it. I would make it a subgenus or section if Dr. Strong approves."

Dr. A. Myra Keen brings up a point of interest involving the date of publication of many of these species: "I note also that Iredale discusses the date of publication of the Mazatlan Catalogue and proves pretty con-
clusively that it was published as a whole in 1857. The title page says
1855-1857, and there are a series of dates running through the work at the
foot of certain pages. This would imply publication in parts, and I have
always naively taken these dates as the dates of publication. Iredale,how-
ever, cites a note by Carpenter that shows that those dates refer to the
pulling of proof sheets which were circulated among Carpenter's colleagues.
The book as a whole was not issued by the British Museum until after June
1857. I am afraid this is going to mean some nomenclatorial changes. For
example, Akyllus adamsianus Dunker vs. M. Multiformis (see the Minutes
no. 36, p. 10). If these are synonymous, then adamsianus will have slight
priority. Doubtless you will find other examples as you index the Minutes."

Turbonilla aspynota Dall and Bartsch, 1909. San Pedro, Calif. to San Martin
Island, Mexico. Type locality 1 off San Martin Island in 30 fms.
Collecting data: Tide pools, Point Vincento (Strong); La Jolla (Chancy);
South Island, Los Coronados 3-6 fms. (Dr. F. Baker); Catalina Island in 20
-70 fms. (Hanna); San Diego (Gripp); off Avalon, Catalina Island in '35
fms. (Burch).

Turbonilla clarinda Bartsch, 1912. San Diego to Rödondo Beach, 75 f (Burch)
Collecting data: San Diego 12-30 fms. (Humphill); San Diego (Gordon);
off Rödondo Beach in 75 fms. mud bottom (Det. by A.M. Strong) (Burch).

Turbonilla engelberti Bartsch, 1920. Puget Sound
Type Locality: San Juan Island, Gulf of Georgia.
Collecting data: Strait of Juan de Fuca (Eyordan); Olga, Orca's Is.
Puget Sound li Turn Island, Puget Sound (T.S. Oldroyd); Washington (Love).

Turbonilla gabbiana Cooper, 1870. Monterey, Calif.
Collecting data: "Apparently known only from the type collected at
Monterey, which is not in the Univ. of Calif. collection and is presumed
to be lost. There is a possibility that T. cayucosensis Willett, which is
occasionally found in beach drift at Monterey and Pacific Grove may be
gabbyana although Gabb's description calls for 23 axial ribs, while cayuc-
cosensis normally has 20-22. (Syn. Chennitzia gracillima Gabb)." (A.C. Smith)

Turbonilla hypolioga Dall and Bartsch, 1909. San Pedro and Catalina Island
south to San Martin Island, Mexico. Type locality: off San Diego.
Collecting data: off Long Beach in 12 fms. (Strong); San Diego Bay in
12 and 30 fms. (Humphill and Baker); San Martin Island (Baker); San Pedro;
Catalina Island in 35 fms. (Love); off Santa Monica, Calif. in 15 fms.
and off Malaga Cove in 15 fms. (Burch).
Turbonilla kelseyi Dall and Bartsch, 1909. Santa Barbara, Calif. to San Ignacio, Mexico. Type locality: San Diego

Collecting data: Off Long Beach in 12 fms. (Strong); San Diego (T.S. Oldroyd); Mission Bay; Reef Point, Orange Co. (A.G. Smith); San Diego Bay off National City (Chace); San Diego Bay in 12 and 30 fms. (Hemphill and Baker); End of Point Loma (Baker); Laguna Beach (Lowe); between Pt. Firmin and White's Point (Dr. W.G. Gregg).

Turbonilla muricatooides Dall and Bartsch, 1907. Monterey to San Pedro

Type locality: Monterey

Collecting data: Monterey Bay in 15 to 25 fms. (Calif. Acad. Sci.); White's Point, San Pedro (A.G. Smith); off Monterey in 15 fms. (Burch)

Turbonilla raymondi Dall and Bartsch, 1909. Santa Rosa Island to San Diego

Type locality: Off Catalina Island to Pt. Abreojos, L.C. (Burch) (Strong)

Collecting data: Off Catalina Island in 30-40 fms. (Strong); White's Point, San Pedro (T.S. Oldroyd); off Coronado in 50 fms. (Gordon); San Diego in 10 and 30 fms. (Hemphill and Baker); Catalina Island in 35 fms. (Lowe); off Point Vincente in 12 fms. (Dr. W.G. Gregg); off Redondo (Burch). Set in Burch Coll. fr Pt. Abreojos ex M. Gordon Det. by A.G. Strong.

Turbonilla santacruzena Dall and Bartsch, 1909. Monterey Bay (C.A.S.) to South Coronado Island (Baker). Type locality: off Santa Rosa Isd. in 53 fms.

Collecting data: Monterey Bay in 25 fms. (C.A.S.) (A.G. Smith); Newport Bay—sand bar near entrance—bar since dredged but (W.G. Gregg); Ocean Beach (Baker); South Coronado Island in 7-14 fms. (Baker).

Subgenus Strictoturbanilla Sacco, 1892. Type (fide Dall and Bartsch, 1909)

Strictoturbanilla alpina Sacco

Shell as in Turbonilla and Chonmitzia but finely and closely spirally striated on the spire and base. All our West American species, with the exception of T. affinis and T. smithii, are of bluish white to milk-white color; the two exceptions being of a yellowish cast. (Dall and Bartsch, 1809, p. 40).

Turbonilla aresta Dall and Bartsch, 1909. Santa Rosa Island to San Diego

Type locality: Catalina Island.

Collecting data: off Catalina Island in 30-40 fms. (Strong); White's Point, San Pedro (Det. by Bartsch, USNM) (A.G. Smith); San Diego (T.S. Oldroyd); San Diego Bay (Hemphill and Baker); San Pedro and Catalina Island in 35 fms. (Lowe); off Redondo Beach in 25 fms. and off Catalina Island in 35 fms. (Burch).

Turbonilla asser Dall and Bartsch, 1909. Monterey Bay to San Diego

Type locality: off Redondo Beach, Calif.

Collecting data: Midspit, San Diego Bay (Hemphill and Baker); Newport Bay (Strong); Monterey Bay in 15-25 fms. (Smith and Gordon); San Diego (Gordon); San Pedro (Chace); off Avalon, Catalina Island in 35 fms.; off Malaga Cove in 15 fms.; off Santa Monica in 15 fms.; off Redondo Beach in 25-75 fms. (Burch).

Turbonilla attributa Dall and Bartsch, 1909. San Pedro to Todos Santos Bay (Burch). Type locality: San Pedro.

Collecting data:

(con.)
#31 p 25 July, 1946.

Collecting data: Newport Bay (Strong); off Coronado Hotel in 35 fms. (Hemp- hill); San Diego Bay; Point Loma in 5-8 fms. (Baker); San Pedro and Newport Bay (Low). San Pedro (T.S. Oldroyd); San Diego (Oldroyd); Coronado in 25 fms. (Gordon); Todos Santos Bay in 5-10 fms. (Burch and Gordon); off Malaga Cove in 10 fms.; from pilings off Redondo Beach (Burch).

Turbonilla bakeri Bartsch, 1912. / Redondo Beach to Todos Santos Bay (Burch).

Collecting data: Off Redondo Beach 25 fms., Malaga Cove 10 fms., off Ensenada in 15 fms., San Pedro 15 fms.; Crystal Pier; San Diego in pilings (Burch) (Det. by A.M. Strong).

Turbonilla barkleyensis Bartsch, 1917. Barkley Sound, Vancouver Island, B.C.

Collecting data: Queen Charlotte Islands (Gordon); (Oldroyd).

Turbonilla buttoni Dall and Bartsch, 1909. Santa Rosa Island, Calif. to Pt. Abreojos, L.C. Type locality: San Pedro, Calif.

Collecting data: Many shore localities (Strong), San Pedro; San Diego; Pt. Abreojos; San Hipolito Pt.; La Paz, L.C. (T.S. Oldroyd); White’s Point; San Pedro—common (A.G. Smith); So. Coronado Island; San Martin Island (Baker); Espiritu Santo Island (Capt. Porter); San Gerominio Island (Low); Pt. Abreojos (Hempill); San Diego Bay (Hempill); Ocean Beach (Baker); Pt. Loma (Baker); Laguna Beach (Baker); (San Diego Museum); Pt. Firmin, San Pedro (W.O. Gregg); Pt. Firmin and San Diego (Chaco); Mission Bay; Santa Monica; Malaga Cove in 10 fms.; Bird Rock, San Diego Co.; off Redondo Beach in 25 fms. (Burch).

Turbonilla carteri Dall and Bartsch, 1909. Off Redondo Beach, 10 fms. (Burch).

Islands. Type locality: San Pedro.

Collecting data: off Coronado Islands in 50 fms. (T.S. Oldroyd); La Jolla (Bristol); La Jolla (Chaney); off Redondo Beach and Malaga Cove in 10-25 fms. (Det. by A.M. Strong) (Burch).

Turbonilla cayucosensis Willett 1929. Monterey to Cayucos.

Type locality: Cayucos.

Turbonilla dinora Bartsch, 1912. San Diego, Calif.

Collecting data: San Diego (Gripp).

Turbonilla dracona Bartsch, 1912. Off Redondo Beach in 25 fms. (Burch) to San Diego.

Type locality: San Diego.

Collecting data: Reef Point, Orange Co. (Det. by H.S. N.M.) (A.G. Smith); off Redondo Beach in 25 fms., gravel bottom. (Det. by A.M. Strong).

Turbonilla encella Bartsch, 1912. San Pedro, Calif.

Turbonilla humerosa Dall and Bartsch, 1909. Catalina Island to San Diego. Type locality: off Catalina Island.

Dogfish Bay, Puget Sound.

Collecting data: Dredged in Puget Sound near San Juan Islands, 1940 (T. Kincaid); Paratypes in San Diego Museum, Gordon Collection and also A.G. Smith coll; Olga, Wash. (Engberg) (U.S. Gregg).

Turbonilla profundicolacola Dall and Bartsch, 1909. Off Catalina Island to San Diego, Calif. in 197 fms. Type locality: off La Jolla, Calif. off Redondo Beach in 25 fms. (Burch).

Collecting data: San Diego Bay to Coronado Islands (Baker). Type locality: Monterey.

Mr. A.M. Strong comments on this as follows: "Dall and Bartsch give Monterey as the type locality but list "two specimens both immature, dredged in 50 fms, off the Coronados Islands" and the range is usually given as from Monterey to the Coronados Islands. I have seen no specimens from southern California which are the same as Monterey specimens which I have. I doubt the range." Collecting data: Monterey (Strong); Departure Bay, B.C. and Coronado Islands (T.S. Oldroyd); Monterey Bay in 10-40 fms. (Smith and Gordon); Carmel Bay in 25 fms. (C.A.S.) (A.G. Smith); off Pt. St. Vincento (Gregg); Coronado Islands in 50 fms. (Oldroyd); San Pedro (Lowe) (San Diego Mus.).

Turbonilla torquata Gould, 1853. Monterey to San Diego to Todos Santos Bay

Type locality: Santa Barbara, Calif.

Mr. A.M. Strong comments on this as follows: "Dall and Bartsch describe a species which they credit to Gould. They list several localities all from deep water. All your specimens come from 25 to 75 fathoms. It is hard to see how Gould could have had a specimen of this, presumably collected on shore at Santa Barbara." Collecting data: Monterey Bay in 10-30 fms. (Smith and Gordon); San Diego (Hemphill) (Orcutt) (T.S. Oldroyd); Todos Santos Bay; off Redondo in 25-75 fms.; off Avalon, Catalina Island in 35 fms. (Burch); off Santa Cruz Is. in 50 fms. (Burch).

Turbonilla vanouverensis Baird, 1863. Port Etches, Alaska to Monterey (Berry). Type locality: Esquimalt Harbor, Vancouver Island "Taken from the crop of a Pintail duck." Collecting data: Strait of Fuca (Eyerdam); Departure Bay, B.C. in 25 fms.; Nanose Bay, B.C. in 20 fms. (T.S. Oldroyd); Uyak, Kodiak Island, Alaska (Hanna).

Turbonilla simpsoni Dall and Bartsch, 1909. Off Redondo to San Diego

Type locality: San Pedro, Calif.

Collecting data: off Catalina in 30-40 fms. (Strong); off Catalina in 35 fms. and also San Pedro (Lowe); San Pedro (T.S. Oldroyd); Off Redondo Beach in 25-75 fms. (Burch) (Det. by A.M. Strong).
Subgenus Pyrgolampros Sacco, 1892. Type (by orig. des.): Pyrgolampros mioperoplacatus Sacco.

Turbonillas with low, broad, rounded vertical ribs which almost always disappear as they pass over the periphery and base of the last whorl, and many very fine, faint, wavy spiral striations; surface covered by a thin epidermis. Columella usually somewhat fleshy.

All our west American species are of a light—yellow to chocolate brown color. The intercostal spaces are not depressed as in Cheirmitzia, but appear as simple shallow undulations between the axial ribs. The spiral striations, in perfect specimens, appear as if they were situated beneath a light-colored epidermis and were shining through it. (Dall and Bartsch, 1909, p. 59-60.)

Collecting data: Wide Bay, Alaska, in 13 fms. (Hanna, C.A.S.); Orcas Island, Puget Sound in 10-30 fms. (Dr. Fred Baker); Shuyak Strait; Raspberry Island (Eyerdan).

Turbonilla berryi Dall and Bartsch, 1907. Monterey to Catalina Island. Type Locality: Monterey.
Mr. A.G. Smith comments on this species as follows: "We believe this and chocolate are conspecific. Records for berryi should appear under chocolate." However, since there seems to be a difference of opinion on this matter we will carry both names for the time being.
Collecting data: Monterey Bay in 8-29 fms. (Smith and Gordon); Carmel Bay in 20 fms. (A.G. Smith); Monte rey (Strong); dredged off Monterey, Del Monte in 20 fms. (Burch).

Turbonilla chocolata Carpenter, 1864. San Pedro to San Diego. Type Locality: San Diego.
Mr. A.G. Smith is of the opinion that both T. berryi D & B and also T. pannat D & B should be placed in the synonymy of this species.
Collecting data: San Pedro (Willet); Coronado Beach 15 fms. (Gordon); off Newport Bay in 10 fms. (Strong).

Turbonilla gloriosa Bartsch, 1912. Off San Diego, Calif., in 12 fms.

Turbonilla pulchra Dall and Bartsch, 1909. Santa Rosa Island to San Diego Type Locality: San Pedro.
Collecting data: off Long Beach in 12 fms. (Strong); San Pedro (Lowe); San Pedro—2 sp. (T.S. Gilroy); off Pt. Vicente in 12 fms. (J.O. Green); Malaga Cove in 15 fms. (Burch); S. Coronado Island (Dr. Baker).
July, 1946

Turbonilla haliata Dall and Bartsch, 1909. Monterey (Smith and Gordon) to Todos Santos Bay (Gordon and Burch). Type locality: San Diego.

Mr. A. M. Strong in rechecking the Burch collection made the following note: "If the identifications made for me in Washington are correct you do not have P. lowei or P. chocolata. I am inclined to put all your specimens in P. haliata as a variable species." We are very much surprised at this but are accepting Mr. Strong's diagnosis.

Collecting data: San Pedro in 8 fms. (Lowe); Monterey Bay in 12-25 fms. and Coronado in 25 fms. (Gordon); Todos Santos Bay 5-10 fms. (Gordon and Burch); off La Jolla in 35 fms. (W. O. Gregg); Redondo Beach 25 fms. (Burch); Santa Monica in 15 fms.; Monterey in 25 fms.; off Ensenada in 15-25 fms.; off the large spider crab Loxorhynchus crispatus off Santa Monica (Burch).

Turbonilla halibrecha Dall and Bartsch, 1909. Monterey Bay (Smith) to Catalina Island. Type locality: Catalina Island.

Collecting data: 10 fms. off Del Monte, Monterey Bay, Det. by P. Bartsch at the U.S.N.M. (A. G. Smith); off Redondo Beach in 75 fms. (Burch).

Turbonilla haliastropta Dall and Bartsch, 1909. Monterey to San Diego. Type locality: off Newport.

Collecting data: off Del Monte in 10 fms., 2 specimens which seem to belong to this species (A. G. Smith); Coronado in 25 fms. (Gordon).

Collecting data: "I collected the original on Terminal Island, but evidently only found one. Bartsch says it is the largest of the Pyrgolampros." (A. G. Smith).

Turbonilla keepi Dall and Bartsch, 1909. Long Beach to San Diego, Calif. Type locality: Long Beach, Calif.

Turbonilla lowei Dall and Bartsch, 1903. Monterey to Todos Santos Bay, L.C. Type locality: off San Pedro, Calif.

Collecting data: San Pedro in 10 fms. (Lowe); off Coronado Hotel in 12 fms.; Ballast Pt., San Diego in 10 fms. (Pr. P. Baker); off Malaga Cove in 10 fms. (Willett); Monterey 10-40 f (Smith); Del Mar Santa Cruz Bay (Burch). Monterey specimens det. by Bartsch.

Turbonilla lyncili Dall and Bartsch, 1907. Banks Island, B.C. Banks Island (T. S. Oldroyd).

Turbonilla middendorffii Bartsch, 1927. Proc. U.S.N.M. vol. 70, pp. 8, 9, pl. 2 fig. 2. Type locality: Shuyak Strait, Afognak Island, Alaska.

Collecting data: W. J. Eyerdam has paratypes from Shuyak. Wide Bay, Alaska (Hanna, V.A.S.).

Turbonilla newcombii Dall and Bartsch, 1907. Port Simpson to Victoria, B.C. Type locality: Port Simpson, B.C.

Collecting data: Departure Bay, B.C. (T. S. Oldroyd).
Turbonilla oregonensis Dallas, 1907: Off the coast of Washington and Oregon in 30 fathoms south to Crescent City, Calif. in 19 fms. (Gordon).
Collecting data: Crescent City in 19 fms. (Gordon).

Turbonilla painei Dallas, 1909. Redondo Beach to San Diego
Type locality: Off Redondo Beach, Calif.
Collecting data: Dredged off Redondo Beach in 25 fms. (Burch); off Newport Bay in 10 fms. (Strong); off Pt. Vicente in 20 fms. (Burch) / Victoria, B.C.

Turbonilla pedroensis Dallas, 1903. Monterey to San Diego
Type locality: San Pedro
Collecting data: off Newport in 10 fms. (Strong); San Pedro in 10 fms. (Lowe); Monterey (Lowe); off Long Beach in 8 fms. (J.G. Gregg); Monterey Bay in 10-20 fms. (Smith and Gordon); San Diego (T.S. Oldroyd); Punta Bandera, L.C.; off Santa Monica in 5 fms. (Burch).

Turbonilla pugetensis Bartsch, 1917. Puget Sound.

Turbonilla pesa Dallas, 1910. Barkley Sound, Vancouver Island, B.C.

Turbonilla ridgwayi Dallas and Bartsch, 1909. San Diego, Calif., to San Pedro
Collecting data: San Diego (T.S. Oldroyd); Bird Rock, San Diego (Dekar) Point Firmin, San Pedro (Strong).

Turbonilla rinella Dallas and Bartsch, 1910. Barkley Sound, Vancouver Island
Collecting data: Nanaimo, B.C. (T.S. Oldroyd).

Turbonilla shuyakensis Bartsch, 1927. Proc. U.S.N.M. vol. 70, pp 7-8, pl. 2
Fig. 1. Shuyak Strait, Afognak Island, Alaska.

Turbonilla skogsbergi Strong, 1927. See p. 17 for description.

Nautilus 51-52, pl. 2, fig. 3. Type locality: Monterey Bay in 28 fms.
Range: Monterey to Redondo Beach, Calif.
Collecting data: Monterey Bay in 28 fms.; (Gordon); off Capitola in 5 fms. (W. Williams); Redondo Beach in 25 fms. (Burch); Drakes Bay in 30-35 fms., are close to this (A.G. Smith); off Monterey in 20 fms. (Burch).

Turbonilla stelleri Bartsch, 1927. Proc. U.S.N.M. vol. 70, pp 67, pl. 2, fig. 4

Turbonilla strongi Willett, 1931. See p. 16 for description.

Nautilus 45-57, pl. 14, fig. 4. Type locality: "in 25 fms. off the north shore of Catalina Island.

Turbonilla talma Dallas and Bartsch, 1910. Barkley Sound, Vancouver Island.

Turbonilla taylori Dallas and Bartsch, 1907. Port Simpson to Vancouver Island
Type locality: Departure Bay, B.C. / to Puget Sound
Collecting data: Victoria, B.C. (Eyordam); Departure Bay and Puget Sound (T.S. Oldroyd).
July 1946

Turbonilla valexai Dall and Bartsch, 1907. Barkley Sound, Vancouver Island to Monterey. Type Locality: Monterey.
Collecting data: Pacific Grove, 2 specimens not quite typical (A.M. Smith); Cayucos (Burch); San Pedro, Calif. specimens not typical but close (T.S. Oldroyd); off Monterey in 20 fms., shale; littoral at Cayucos; (Burch) (Det. by A.M. Strong).

Turbonilla victoriana Dalland Bartsch, 1907. Vancouver Island, B.C. to Puget S.
Collecting data: Departure Bay (T.S. Oldroyd); Olga Island, Puget Snk. (Baker).

Turbonilla tremperi Bartsch, 1917. off San Diego Bay in 15 fms.
Collecting data: San Diego (Baker).

Subgenus Pyrgicus Philippi, 1841

Turbonilla adusta Dall and Bartsch, 1909. San Diego, Calif. to Redondo (Burch).
Collecting records: San Diego Bay in 1½ fms. (Baker); off Redondo 25 fms. (Burch).

Turbonilla almca Dall and Bartsch, 1909. Monterey (Smith & Gordon) to Todos Santos Bay (Burch and Gordon). Type locality: San Diego.
Collecting data: Monterey Bay in 5-40 fms. (Smith & Gordon); off Redondo Beach in 25 fms. (Burch & Gordon); Todos Santos Bay (Burch & Gordon); San Diego (T.S. Oldroyd); Arbolitos, L.C. littoral (Burch).

Turbonilla antemunda Dalland Bartsch, 1909. Monterey Bay (Smith & Gordon) to San Diego (Gordon). Type locality: off Santa Rosa Island, Calif.
Collecting data: Monterey Bay in 5-15 fms. (Smith & Gordon); off Coronado in 25 fms. (Gordon); Point Vicente (Burch).

Turbonilla antestriata Dalland Bartsch, 1907. Esteros Bay to San Diego, Calif.
Type locality: Esteros Bay, Calif.
Collecting data: Monterey Bay in 40 fms. (Burch); off Redondo Beach in 25 fms. (Burch); San Diego (Gripp); So. Coronado Island (Dr. Fred Baker); Ballast Point in 8 fms. (Baker); San Pedro (Lowe); off Long Beach in 12 fms. (Strong); off Catalina Island in 35 fms. (Burch); Malaga Cve. in 10 fms. (Burch).

Turbonilla aragoni Dall and Bartsch, 1909. Monterey to Redondo Beach (Burch).
Type locality: Monterey Bay in 20 fms.
Collecting data: Monterey Bay in 10 fms. (Det. by U.S.N.M. - Smith) (Burch); off Redondo Beach in 25 fms. (Burch); off Monterey 10, 25 & 40 fms. (Burch).

Turbonilla auricoma Dall and Bartsch, 1903. San Pedro to Scammon's Lagoon, L.C.
Type locality: Scammon's Lagoon.
Collecting data: Scammon's Lagoon; San Diego (Dr. Baker); San Pedro (Lowe); off Santa Monica in 15 fms.; San Onofre, Calif. littoral (Burch). (Det. by A.M. Strong).
Nautilus 32: 43, 50, pl. 1, figs. 5-6.
Type locality: off Redondo Beach in 25 fms. Also dredged off Rocky Pt. in 40 fms. (Burch).

Turbonilla callia Dall and Bartsch, 1909. San Diego, Calif.

Turbonilla callimone Bartsch, 1912. San Diego, Calif.

Turbonilla callinfieldi Dall and Bartsch, 1907. Monterey Bay to Todos Santos Bay (Burch). Type locality: Monterey.

Mr. A.H. Strong comments on this species as follows: "Your specimens from off Redondo seem to be identical with that described and figured from Monterey. If so this is the only species of Turbonilla which is found in the southern California and Monterey that I know of."

Collecting data: Monterey Bay in 10-40 fms. (Smith & Gordon); Redondo Beach in 25 fms. (Burch); Todos Santos Bay in 5-10 fms. (Burch); S. Coronado Island (Baker).

Turbonilla castanea Kepp, 1888. Monterey Bay (Smith) to San Hipolito, L.C. (T.S. Oldroyd). Dr. A.H. Kepp advises regarding the type locality: "The type locality was not given in the original. Synotype labels give it as San Diego."

Collecting data: Monterey Bay, 1 specimen (A.G. Smith); San Hipolito, L.C. (T.S. Oldroyd); San Diego Bay (Dr. Baker); San Diego (Hemphill); off Newport in 10 fms. (Strong); S. Coronado Island (Baker).

Turbonilla castanella Dall, 1908. Monterey to Redondo Beach (Burch).
Type locality: Monterey.

Collecting data: Dr. A. Hyra Kepp advises Oldroyd, vol. II, pl. 2, p. 142 cites pl. 66, fig. 7 for castanella; this is castanella.

Monterey Bay in 10-40 fms. (Smith & Gordon); Redondo Beach in 25 fms. (Burch); South Coronado Island in 14 fms. (Dr. Fred Baker); Monterey (Strong) (Burch).

Turbonilla delmontana Bartsch, 1937. Nautilus 50: 100, 101. New name for T. delmontensis Dall and Bartsch, 1907 (Broc. U.S. N.M. vol. 70, pp. 9, 10, pl. 2, fig. 11). Type locality: off Del Monte in 10 fms.

Turbonilla dora Bartsch, 1917. San Diego, Calif.

Turbonilla ova Bartsch, 1917. San Diego, Calif.

Turbonilla cacosephalos Dall and Bartsch, 1907. San Luis Obispo to San Diego, Calif. Type locality: off Santa Barbara, Calif.

Collecting records: San Pedro (Lowe).

Turbonilla gredi Bartsch, 1912. San Diego.
Collecting data: San Diego (T.S. Oldroyd).

Turbonilla ima Bartsch, 1917. Long Beach (Strong) to San Diego.
Type locality: San Diego.
Collecting data: off Long Beach in 12 fms. (Strong).

Type locality: San Diego.
Collecting data: off Point Vincent in 12 fms. (Strong).
Turbonilla virgo Carpenter, 1864. Santa Barbara, Calif.

Turbonilla wendi Dall and Bartsch, 1909. Off Redondo Beach in 75 fms. (Burch)

Mr. George Willett in his Baldwin Hills paper in Trans. San Diego Soc. was of the opinion that the species arata (from off Catalina Island) and listed under the subgenus Bartschella is conspecific with this species.

Mr. Allyn G. Smith comments on this: "I think G. W. had a good point. You might follow him on it by combining it and T. (Bartschella) arata, but consider he was dealing with fossils and the Recent material might not bear out his opinion." No member of the club has reported the species.

Turbonilla wickhami Dall and Bartsch, 1899. Catalina Island, Calif.

Subgenus Mornula A. Adams, 1864. Type (Sub. Design. Verrill-Bush, 1900), Mornula rissoina Adams.

Turbonilla's having axial ribs and deeply incised spiral lines; also irregularly disposed varices on the outer surface, which usually mark internal lirations on the outer lip, or internal lirations of the outer lip only. Sculpture never nodulose. (Dall and Bartsch, 1909, p. 110.)

Turbonilla ambusta Dall and Bartsch, 1909. Redondo Beach to San Diego.

Mr. Allyn G. Smith comments: "Gordon and I believe this and tridentata are conspecific. There is disagreement on this though so we list it.

Collecting data: Ocean Beach and off South Coronado Island in 16 fms. (Dr. F. Baker); off Malaga Cove in 15 fms. and also from Newport Bay (Burch) (Det. by A.H. Strong).

Turbonilla catalinensis Dall and Bartsch, 1909. Catalina Island, Redondo Beach (Burch) to San Diego (Baker). Type locality: Catalina Island.

Mr. A.H. Strong comments on the Burch specimens as follows: "This species is supposed to have external varices. Your specimens only occasionally show indications of varices but seem to agree in other ways. Most of them are young."

Collecting data: off Redondo Beach in 75 fms. (Burch); off Catalina Island in 30-40 fms. (Strong); Santa Barbara Channel in 65 fms. (Crocker); (Gordon Col.). Catalina Island in 35 fms. and San Pedro (Love); Ocean Beach (Baker).

Type locality: San Clemente Island.

No collecting records and only comment is from Allyn G. Smith: "Bartsch says related to T. dora Bartsch, which is a Pyrgulopsis?"

Type locality: off Deadman's Island, San Pedro, Calif. in 6 fms. (Sah.

Turbonilla escholtzi Dall and Bartsch, 1907. (escholtzi). Izhut Bay, Kurgan Island, 1922 and Drier Bay, Knight Island, 1923 (Eyerdam) south to Vancouver Island, B.C. Type locality: Carter Bay, B.C. to San Diego.

Collecting data: Eyerdam's record listed above is an extension of range northward from Fort Simpson; there is a record with a ? in the San Diego Museum from Ballast Pt., San Diego in 8-10 fms. by Dr. F. Baker; Departure Bay B.C. (T. Oldroyd); Ocean Beach (Baker).
Turbonilla heterolopha Dall and Bartsch, 1903. Off Santa Monica, Calif. (Burch) to Todos Santos Bay, L.C. Type locality: San Diego.

Collecting data: Off Santa Monica in 15 fms.; off Redondo Beach in 25 fms. (Burch); off South Coronado Island in 10 fms. (Baker); San Pedro (T.S. Oldroyd); Istmus Cocos, Catalina Island (Strong).

Turbonilla poktalophia Dall and Bartsch, 1909. Santa Rosa Island, Calif.

Type locality: Monterey to San Diego to La Paz, L.C. Type locality: Monterey, Calif. (by holotype label in U.S.N.M. (Keen)

Collecting data: Dredged off Santa Monica in 15 fms.; off Malaga Cove and Redondo Beach in 15-25 fms.; off Catalina Island in 35 fms.; Mission Bay in eel grass; off Monterey in 20 fms. on shale bottom (Burch); Newport Bay (Strong); Chaco (Gregg); Monterey in 10-40 fms.; Carmel Bay in 20 fms. (A.G. Smith); San Pedro littoral; La Paz, L.C.; (T.S. Oldroyd); San Diego (Hemphill); Ocean Beach (Bristol); Newport Bay (Baker) (Low); Mission Bay and San Pedro (Low).

Dr. A. Myra Keen advises on this as follows: "For Bartschella you may use the description Dall and Bartsch give for Dunkeria (1909, p. 120). As Iredale points out, their reinterpretation of type species is inadmissible under the rules, so Iredale proposed the genus Bartschella for Dunkeria subangulata. The name Dunkeria then applies to the group Dall and Bartsch called Pyrgiscus, and the latter goes into synonymy. This change was made in Bull. Ill., though without comment. Although the genotype of Dunkeria by designation of Dall and Bartsch, 1904 (D. paucilirtata Carpenter) is not identical with the genotype of Pyrgiscus, it is congenere, so that you may use Dall and Bartsch's description of the latter for Dunkeria." "Turbonillae having the whorls stronger, rounded, and usually shoulder-ed, marked by strong axial ribs and strong spiral cords, the junctions of which are frequently subnodulus." (Dall & Bartsch, 1909, p. 120- for Dunkeria)

3 ml. N. of Cayucos (A.G. Smith)

Turbonilla laminata Carpenter, 1864, Redondo Beach (Burch) to South Coronado Islands (Baker), San Diego. Type locality: Santa Barbara & San Diego.

Collecting data: off Rodondo Beach in 25 fms.; (Burch); S. Coronado I. in 10 fms. (Baker); San Diego (Hemphill) (San Diego Bay (Baker); Ballast Pt. (Kelsey); Ocean Beach; San Martin I., L.C. (Baker); San Pedro (Low); Whites Pt.; Roof Pt.; Mission Bay (A.G. Smith); Pt. Firmin, San Pedro (Strong); San Pedro (Chaco); Portugueso Bend (Gregg).
Gordon.)

Shell Gordon)

Turanillas with a turritip, spire having the whorls decidedly constricted at the suture, and tabulated at the summit, marked on the spire and base by many well incised lines." (Dall & Bartsch, 1909, p. 136 - Pyrgicus)

Turbonilla swani Dall and Bartsch, 1909. San Pedro, Calif.

Genus Odostomia Fleming, 1813. Dr. A. Hyra Keen advised on this genus as follows: The genus Odostomia dates from Fleming, 1813. Edinburgh Encyclopædia, vol. 7, p. 67. Type (Tide Winckworth, 1832), Turbo plicatus Montagu.

Shell with sinistral apex, usually short, few whorled, subconic or ovate, with a single columellar fold which varies in strength and sometimes is not apparent at the aperture. The sculpture varies from smooth to lamellar axial ribs and spiral keels." (Dall & Bartsch, 1909, p. 151).

Subgenus Salasiella Dall and Bartsch, 1909. Type (by Orig. Desig.), Odostomia laxa Dall and Bartsch.

Shell pupiform, whorls inflated, marked by axial ribs which extend undiminished from the summit to the umbilical area. Varices strong, irregularly distributed." (Dall and Bartsch, 1909, p. 133).

Odostomia laxa Dall and Bartsch, 1909. Catalina Island (Gordon) to Scammons Lagoon, L.A. Type locality: Scammons Lagoon. Espiritu Santo Id. (Baker)

Collecting data: Off Catalina in 30-70 fms. (Gordon); Coronado Id. (Baker)

Odostomia richi Dall and Bartsch, 1909. San Pedro, Calif.

Subgenus 'Salassia' Do Folin, 1885. Type (Sub. Desig. Dall & Bartsch), S. carinata De Folin = Salassia tripolata Dall and Bartsch

Collecting data: Isthmus Cove, Catalina Island. (Strong).

Range: Catalina Island and San Pedro.

Subgenus Beela Dall and Bartsch, 1904. Type (by Orig. Desig.), Chrysalida convexa Carpenter.

Small Odostomias with axial ribs and three strong spiral raised threads, one at and two posterior to the periphery between the sutures; base marked by raised spiral threads." (Dall & Bartsch, 1909, p. 135).

Odostomia calliomorpha Ballard Bartsch, 1909. San Pedro, Calif. to Todos Santos Bay (Crotty). Type locality: San Pedro.
Subgenus Chrysalida Carpenter, 1856. Type (Sub. Desig. Dall & Bartsch, 1909), Chrysalida communis Carpenter, not Chemnitzia communis C. B. Adams, 1852 = Odostomia (Chrysalis) torrita Dall & Bartsch, 1909. Odostomias having strong axial ribs crossed by equally strong spiral keels between the sutures, the intersection of these two elements forming nodules. The axial ribs pass only faintly over the base, while the spiral sculpture remains quite prominent. (Dalland Bartsch, 1909, p. 137).

As stated above there has been a disposition to raise the subgenera of both Odostomia and Turbonilla to generic standing. Of course, they may be right if many of these subgenera do not overlap. As a matter of fact it seems to me that there is little enough difference between some species of Odostomia and Turbonilla. Perhaps some species could actually be placed in either with a fair argument to support it. The above remarks were made because several species of this group recently described were described using Chrysalida with generic standing. Mr. Allyn G. Smith comments on this "If the taxonomic reason for splitting is merely to elevate a lot of new genera thus making room for more new subgenera, then there is no end to the possibilities. You gain nothing real."

Odostomia astriecta Dalland Bartsch, 1907. Moss Beach, San Mateo Co., Calif. (Vokes) to San Diego (Gripp), to Lower Calif. (T. S. Oldroyd). Type locality: Monterey, Calif.
Collecting data: Monterey Bay in 5-30 fms. (Smith and Gordon);
Odostomia catalinaensis Bartsch, 1927. Proc. U.S.N.M. vol. 70, p. 17, pl. 3, fig. 4. Type locality: "on abalone at Catalina Island.
Collecting data: Catalina Island (Lowe and Baker); Isthmus Cove, Catalina Island (Paratypes) (Strong);
Odostomia cineta Carpenter, 1864. Santa Barbara to San Diego
Type locality: Santa Barbara Islands.
Collecting data: San Diego (Hemphill); La Jolla (Chaney); San Pedro and San Diego (T. S. Oldroyd); Isthmus Cove, Catalina Island (Strong).
Odostomia clementensis Bartsch, 1927. Proc. U.S.N.M. vol. 70, pp. 15,16, pl. 3, fig. 3. Type locality: San Clemente Island.
Range: Monterey Bay in 5-15 fms. south to San Clemente Island.
The Monterey record is a northern extension of range by A.G. Smith.
Odostomia clementina Dall and Bartsch, 1909. Santa Cruz and Catalina Islands south to South Coronado Island. Type locality: San Clemente Island.
Collecting data: So. Coronado Island (Dr. Baker); Isthmus Cove, Catalina Island and Santa Cruz Island (A.M. Strong); Avalon, Catalina, littoral (A. G. Smith) (Det. by Bartsch at U.S.N.M.).
Odostomia cooperi Dall and Bartsch, 1907. Monterey, Calif.
Collecting data: Monterey Bay, shore to 25 fms. (Smith and Gordon);
Mr. A. G. Smith suggests that this species is very close to O. montereyensis and may be conspecific.
Odostomia cumshewaensis Bartsch, 1927. Proc. U.S.N.M. vol. 70, pp. 13,14, pl. 3, fig. 10. Type locality: Cumshewa Inlet, British Columbia.
Odostomia dicolla Bartsch, 1912. San Diego
Collect. Data: La Jolla (Chaney);
Odostomia eugena Dall & Bartsch, 1909. Redondo Beach (Burch) to San Hipolito Point, L. C. Type locality: San Hipolito Pt.
Collect. Data: Off Redondo Beach 25-75 fms.; off Avalon, Catalina in 25 fms. (con.)
July, 1946

Odostomia euglypta E. Jordan, 1920. Crescent City (Chace) to Trinidad
Type locality: Trinidad.

Odostomia fla Bartsch, 1927. Proc. U.S. N. M. vol. 70, pp. 12, 13, pl. 3, fig. 3
Type locality: todos Santos Bay, L.C.

Odostomia heterocincta Bartsch, 1908. Redondo Beach (Burch) south to San Clemente Island, Gulf of Calif. (Lowe). Type locality: San Diego, Calif.
Collecting data: Redondo Beach, shore to 25 fms.; Pt. Vicente, littoral; Corona del Mar; Ensenada, L.C.; Mission Bay; Dana Point; Punta Banda, L.C.; on Malolits along Palos Verdes (Burch); off S. Coronado Is. in 7-14 fms.; Pacific Beach (Dr. Baker); National City (Anery); San Diego (Hemphill) (Stepphen); Bird Rock (Baker); San Pedro; San Clemente Island (Lowe);
San Pedro (Chace); Reef Pt., Orange Co.; Avalon, Catalina; La Jolla (A.G. Smith); San Pedro; San Diego (T.S. Oldroyd).

Odostomia heterocincta Bartsch, 1912. San Diego, Calif.

Odostomia luca d'All and Bartsch, 1908. Monterey to San Diego
Type locality: San Diego, Calif.
Collecting data: Monterey Bay in 15 fms. (Gordon).

Odostomia montereyensis Dall and Bartsch, 1907. Monterey to San Luis Obispo
Type locality: off Del Monte, Monterey Bay, Calif.
Collecting data: Monterey (Strong); Monterey Bay, shore to 30 fms. (A.G. Smith); off Monterey in 15 fms. (Burch).

Odostomia oldroydi Dall and Bartsch, 1909. Monterey to Coronado Islands
Type locality: San Diego.
Collecting data: Monterey Bay, beach drift and 10 fms. (Smith & Goran);
San Pedro (T.S. Oldroyd); So. Coronado Island (Baker); San Pedro and Reef Pt. in 12 fms. (Lowe); San Pedro, Pt. Firmin; Portuguese Bend; off Pt. Vicente in 12 fms. (W.O. Gregg); White's Pt.; Reef Pt. in 10 fms. (Strong).

Odostomia brevogemesis Dall and Bartsch, 1907. Queen Charlotte Islands, B.C.
Collecting data: San Pedro, San Luis Obispo Co. (A.G. Smith). Type locality: Cumshawa Inlet, Queen Charlotte Islands, B.C., in 10 fms.

Odostomia punctata (Haas), 1943. See description, pp. 18-19 this issue.
Zoological Series of Field Museum of Natural History, vol. 29, no. 1, 1943, pp. 4-5, pl. 2, a, b, c.

Point Pinos, Monterey Peninsula.

Odostomia promiscus Dall and Bartsch, 1909. San Diego; Todos Santos Bay, L.C.
Type locality: Todos Santos Bay.

Odostomia pulcherrima Dall and Bartsch, 1909. San Pedro, to San Diego.
Type locality: San Pedro.
Collecting data: San Diego (Kelsey); La Jolla (Chancy); White's Pt. San Pedro (A.G. Smith); San Pedro (Mrs. Baldridge) (A.G. Smith).

Odostomia pulcius Dall and Bartsch, 1909. San Pedro to San Martin Island, L.C.
Type locality: San Pedro.
Collecting data: San Martin Island (Dr. Baker); So. Coronado Island (Baker); San Pedro (Low); So. Coronado B.C.; White's Point, San Pedro on Humalopa buculca Carp. (Strong); White's Pt. (A.G. Smith); San Pedro (Chace); Portuguese Bend (W.O. Gregg).

Odostomia ritteri Dall and Bartsch, 1909. Catalina Island to San Diego, Calif.
Type locality: off Catalina Island. Redondo Beach in 25 fms. (Burch)
Collecting data: Off Catalina in 30-40 fms. (Strong).

Odostomia sanctorum Dall & Bartsch, 1909. Todos Santos Bay; Type locality:

Ho al Jolla (Whitney) to San Hipolito Pt. and Magdalena Bay (Orcutt).
Odostomia sapia Dall and Bartsch, 1909. San Diego, Calif.
Odostomia thalia Bartsch, 1912. Coronado Islands.
Odostomia trachis Dall and Bartsch, 1909. Monterey to San Martin Is.; L.C
Type locality: San Pedro, Calif.
Collecting data: off Rodondo Beach; Punta Banda, L.C.; Arbolitos, L.C.; San Pedro breakwater; (Burch); off S. Coronado Island (Baker); off Point Pinos in 12 fms. and Santa Cruz Island (Strong); San Martin Island (Baker); Catalina Island in 35 fms. ('Lowe'); Mr. A.G. Smith reports that neither he nor Mac Gordon have taken this species at Monterey. The record is in question.
Odostomia vicina Dall and Bartsch, 1909. Monterey (Smith & Gordon) to San Pedro.
Type locality: San Pedro.
Collecting data: San Pedro (Gordon).
Odostomia virginalis Dall and Bartsch, 1909. Redondo Beach (Burch) to Point Abreojos, L.C.
Type locality: Todos Santos Bay, L.C.
Collecting data: Off Rodondo Beach 5 to 25 fms.; Corona del Mar, Pt. Vicente (Burch); N. Coronado Island (Frank Stephens); San Pedro ('Lowe'); (T.S. Oldroyd); White's Point; Reef Pt., Orange Co. (A.G. Smith); San Diego (Gordon); White's Point, San Pedro (Strong); Pt. Vicente (Gregg);
Subgenus Ividella Dall and Bartsch, 1909. Type (by Orig. Desig.),
Odostomia navis Dall and Bartsch, 1909.
"Odostomias marked with lamellar spiral ridges and equally strong lamellar axial rib, both of which ornament spire and base." (Dall and Bartsch, 1909, p. 172).

Odostomia navis Dall and Bartsch, 1909. San Pedro, Calif. to Scammon's Lagoon.
Type locality: Scammon's Lagoon.
Collecting data: White's Point, San Pedro; Guadalupe Island (Strong); South Coronado Island in 7-10 fms. (Dr. Baker); La Jolla (Chaney); San Pedro ('Lowe'); (T.S. Oldroyd); Catalina Island in 30-70 fms. (Hanna-C.A.S.) San Diego (T.S. Oldroyd); Scammon's Lagoon (Hemphill);
Odostomia navis delmontensis Dall and Bartsch, 1907. Off Del Monte, Monterey Bay, Calif. to ? San Diego. Type locality: off Del Monte.
Collecting data: Monterey Bay in 10-30 fms.; San Diego (T.S. Oldroyd).
"Would be inclined to question this lot with a Gordon label—subject to confirmation." However, there are several sets in the San Diego Museum so labelled, collected by Hemphill and T.S. Oldroyd.

"Odostomias with very strong spiral keels between the sutures and on the base; the anterior one of which, and sometimes the next one to it, strongly crenulate; the remainder simple and acute. Base axially striate." (Dall & Bartsch, 1909, p. 176).

Odostomia hemphilli Dall and Bartsch, 1909. San Pedro to Point Abreojos, L.C
Type locality: San Hipolito Pt., L.C.
Collecting data: Lower California localities (Strong).
Odostomia vicinalis Dall and Bartsch, 1909. San Pedro to Cape San Lucas.
Type locality: San Pedro, Co.
Collecting data: White's Pt., San Pedro; Guadalupe Island (Strong).
Subgenus Ivena Dall and Bartsch, 1903. **Type (by monotypy)**, *Odostomia terriicula* Dall.

"Odostomias having feebly developed axial ribs which are usually only indicated near the summits of the whorls; spiral sculpture consisting of many subequally spaced fine lirations; summits of the whorls strongly tabulated." (Dall and Bartsch, 1909, p. 179).

Odostomia terriicula Dall and Bartsch, 1903. **Type locality**: San Pedro, Calif.

This specific name has been generally spelled *terriicula*. Dr. A.H. Keen advises on this: "Although Dall and Bartsch afterward said 'terriicula' was a misprint, it was used consistently in text and plate explanations, and as no derivation was given for the name, there is no internal evidence that justifies change to 'turricula.'"

Collecting data: Portuguese Bond, L.A. Co. (W.C. Gregg); Monterey Bay in 25 fms. (Smith and Gordon); San Pedro (Gordon); Reef Pt., Orange Co., (A.C. Smith); Todos Santos Bay (Orcutt); Sanmon's Lagoon (Baker); San Martin Island; So. Coronado Island in 3 fms.; Bird Rock, San Diego Co.; Baker); Del Mar (Kate Stephens); La Jolla (Kelsay); San Pedro (Lowe).

Subgenus Evalina Dall and Bartsch, 1904. **Type (by orig. design.)**, *Odostomia americana* Dall and Bartsch.

"Odostomias having feebly developed axial ribs which are usually only indicated near the summits of the whorls; spiral sculpture consisting of many fine lirations; summit of the whorls not tabulated." (Dall & Bartsch, 1909, p. 180).

Odostomia americana Dall and Bartsch, 1904. **Type locality**: San Pedro, Calif. to San Martin Island (Baker). **Collecting data**: White's Point, San Pedro (Strong); (Chace); (Gordon); San Martin Island, L.C.; So. Coronado Island in 7-10 fms. (Baker); North Coronado Island (F. Stephens); San Pedro (Lowe).

Subgenus *Isolaea A. Adams, 1867. **Type (fide Dall & Bartsch)**, Iole scitula A. Adams.

"Shell umbilicate, marked by spiral cords, and axial riblets which cross the grooves between them." (Dall & Bartsch, 1909, p. 181).

Odostomia unijata Dall and Bartsch, 1907. **Type locality**: Point Abreojos, L.C.

Collecting data: Off Monterey in 40 fms.; off Catalina Island in 25 fms.; off Redondo Beach in 5-75 fms.; off Santa Cruz Island in 50 fms. (Burch); off Reef Pt. in 10 fms. (Strong); off Pt. Vicente in 12 fms. (W.C. Gregg); Monterey Bay, shore to 30 fms. (Smith and Gordon); San Pedro (Gordon); San Diego (Humphill); San Pedro (Lowe).

Odostomia cucosia Dall and Bartsch, 1909. **Type locality**: Point Abreojos, L.C.

Collecting data: White's Pt., San Pedro (Strong); (A.C. Smith); (Gordon); (Lowe); Reef Pt, Orange Co. (A.C. Smith); bot. Pt. Firmin & White's Pt. (con.)
Subgenus *Menestho* Moller, 1842. Type (by monotypy), *Turbo albulus* Fabricius.

Shells not umbilicated, marked by moderately well developed and usually equally spaced spiral cords; axial sculpture reduced to mere lines of growth which frequently appear as very slender raised threads in the grooves between the cords. (Dalland Bartsch 1909, p. 184).

See page 47 for additional species.

Odostomia amilda Dall and Bartsch, 1909. San Diego to San Martin Island, L.C.

Type Local: San Diego, Calif.

Collecting data: San Diego (Gordon); San Martin Island (Strong).

Odostomia enora Dalland Bartsch, 1909. San Pedro, Calif.

Odostomia excisa Dall and Bartsch, 1907. Monterey, Calif. to San Diego (?)

Type Local: Monterey.

Collecting data: Monterey Bay in 5-15 fms. (A.G. Smith); one lot in the Gordon collection from San Diego labelled *exsраст.*

Odostomia hypa Dall and Bartsch, 1909. Catalina Island to La Jolla (Chancy).

Type Local: Catalina Island.

Odostomia fastella Dalland Bartsch, 1909. Malaga Cove, Santa Monica Bay (Burch) to San Ignacio Lagoon, L.C. *Type Local*: San Diego.

Collecting data: Malaga Cove, littoral; Mission Bay from eel grass; Todos Santos Bay (Burch); Newport Bay on oysters (Strong); (A.G. Smith); Anaheim Bay (Chace) (A.G. Smith) (W.O. Gregg on *Ostrea lurida*); Reef Pt. Orange Co. (A.G. Smith); San Diego (Gordon); San Pedro; Anaheim; (Lowe); Bird Rock; San Diego (Baker); San Pedro (Chace).

Odostomia gloriosa Bartsch, 1912. San Diego, Calif. to San Hipolito Pt., L.C.

Type Local: San Diego.

Collecting data: San Diego (Gordon).

Odostomia harfordonis Dall and Bartsch, 1907. Port Harford, Calif.

Odostomia hypocurtia Dall and Bartsch, 1909. Bristol Bay, Bering Sea in 33 fms.

Odostomia pharcida Dall and Bartsch, 1907. Queen Charlotte Islands, B.C.

Evalea elegans A. Adams.

"Odostomias having the surface marked by fine incised spiral lines.

(Dalland Bartsch, 1909, p. 192).

Odostomia aleutica Dall and Bartsch, 1909. Captain's Bay, Unalaska Island, Al.

Odostomia allida Dall and Bartsch, 1909. Off San Diego, Calif. in 359 fms.

Collecting data: Shuyak Strait, Afognak Island, and Unalaska Island (Eyerland); Ellamar, Alaska (Dr. Baker); Bear Bay, Peril Straits (Kate Stephens).

Odostomia angularis Dall and Bartsch, 1907. Sitka, Alaska to Monterey.

Type Local: Nanaimo, B.C.

Collecting data: Off Friday Harbor, Puget Sound (T. Kincaid); Monterey Bay, shore to 15 fms. (Smith and Gordon); Puget Sound (Lowe) (T.S. Oldroyd); NanOOSE Bay, B.C. (Oldroyd).
Odostomia atosca Dall, 1908. San Pedro, Calif.

Type locality: San Clemente Island.

Odostomia baldridgei Bartsch, 1912. San Pedro, Calif.

Odostomia baranoffensis Dall and Bartsch, 1909. Baranoff and Admiralty Islands, Alaska to Windfall Harbor, Alaska (Kate Stephens). Type L: Bear Bay, Peril St.

Odostomia barkleyensis Dall and Bartsch, 1910. Monterey Sound, Vancouver Isl.

Odostomia calcarrella Bartsch, 1912. Off Santa Rosa Island in 40 fms., and off Reef Point, Orange Co., in 10 fms. (Strong). Type Loc.: off Santa Rosa Isl.

Odostomia californica Dall and Bartsch, 1908. Monterey Bay in 10-30 fms. (Smith & Gordon) to San Martin Island, L.C. (Baker). Type locality: Ocean Beach, Calif.

Collecting data: San Diego (Gordon); Reef Pt., Orange Co. (A.C. Smith); La Jolla (Chaney); So.; Coronado Isl. in 4-14 fms. (Baker); on Kolletik in deep water off Catalina Island (Field) (Gregg); off Reef Point in 10 fms. (Strong).

Odostomia callimana Bartsch, 1912. San Pedro, Calif. to Reef Point, Orange Co. (Strong). Type locality: San Pedro.

Collecting data: Off Reef Pt., in 10 fms. (Strong); off Point Vincenzo in 12 fms. (Dr. W.O. Gregg); Reef Pt., Orange Co., in 12 fms. (Gordon).

Odostomia capitata Dall and Bartsch, 1909. Captain's Harbor, Unalaska to Kodiak, Alaska. Type locality: Captain's Harbor.

Odostomia cassandra Bartsch, 1912. Skidogate, Queen Charlotte Islands, B.C.

Odostomia classata Dall and Bartsch, 1909. Baranoff and Admiralty Islands to Sitka, Alaska (Dall). Type locality: Bear Bay, Peril Straits, Baranoff Id.

Collecting data: Bear Bay, Peril Straits (Stephens).

Odostomia columbiana Dall and Bartsch, 1907. Por_estimators Island, Alaska (Milloff) to Puget Sound. Type locality: Victoria, Vancouver Island, B.C.

Collecting data: off San Juan Islands, Puget Sound (T. Kincaid); there is a set in the San Diego Museum collected by Dr. Fred Baker at La Jolla, San Diego Co., labelled as this species—such an extension should be checked; Puget Sound (T.S. Oldroyd); Victoria, B.C. (Eyerdum).

Odostomia delicatissima Dall and Bartsch, 1907. Monterey Bay, Vancouver Island to Monterey. (Smith). Type locality: Monterey Sound.

Collecting data: Pt. Reyes (W.O. Gregg); Monterey Bay in 10-25 fms. (Smith and Gordon). (Det. by F. Bartsch, U.S.N.M.); Queen Charlotte Islands (T.S. Oldroyd); (Love); Ballard Beach, Seattle, Wash. (Dr. Baker).

Odostomia dorilla Dall and Bartsch, 1909. Santa Monica, Calif. (Burch) to San Martin Island, L.C.; (Dr. Baker). Type locality: San Pedro.

Collecting data: Santa Monica, shore to 10 fms.; wharf pilings under Venice Pier and also Playa del Rey pier; Redondo Beach on Mytilus on wharf pilings; came from Crystal Pier, San Diego (Burch); San Diego (Gordon); Anaheim Bay under mussels (Chace); Reef Pt., Orange Co. and White's Pt. (A.C. Smith); San Diego (Chaney) (K. Stephens) (Baker); off Reef Pt. in 10 fms. (Strong); Pt. Reyes, Calif. (Gregg).

Odostomia edmondsi E. Jordan, 1920. Trinidad, California.

Odostomia esilda Dall and Bartsch, 1909. Off San Diego in 359 fms.

Collecting data: Shuyak Strait, Afognak Island, 1924 under stones (Eyerdarni).
Odostomia franciscana Bartsch, 1917. San Francisco Bay, Calif.

Collecting data: S.F. Bay (Albatross, C.A.S.); drift, Alameda Pier (M.G. Smith).

Odostomia gravida Gould, 1852. Monterey to San Diego. Type Loc.: Santa Barbara

Collecting data: Monterey (Cooper); San Diego (T.S. Oldroyd) (Hemphill); La Jolla (Chaney); Anaheim Bay (Love); Monterey (Strong).

Odostomia hagemeisteri Dall and Bartsch, 1909. Hagemeister Island, Bering Sea

Collecting data: Monterey (Cooper); San Diego (T.S. Oldroyd) (Hemphill); Monterey (Strong).

Odostomia herida Dall and Bartsch, 1909. Off Santa Cruz Island and off Redondo Beach (Burch) to San Diego. Type locality: San Diego.

Collecting data: off Redondo Beach in 75 fms.; off Santa Cruz Island in 50 fms. (Burch); off Catalina Island in 30-40 fms. (Strong).

Odostomia hypatia Dall and Bartsch, 1912. Skidegate, Queen Charlotte Island.

Collecting data: Monterey, Calif. Type locality: Neah Bay, Wash.

Dr. A. Myra Keen advised on this name. Crediting Odostomia inflata to Dalland Bartsch in Bull. 112 was a typographical error, for it was clearly described by Carpenter and was credited to him by Dalland Bartsch in the 1907 reference." Mr. Alyn G. Smith sent in the following data: "O. inflata dates from Carpenter 1864 (Rept. British Assoc. Adv. Sci. for 1863, pub. Aug. 1864) in which he gives the usual meager description and cites the species from he Farallone Isds. (Darbishire). See Kerint, page 144. In 1855 (P.Z.S., p. 7, Reprint p. 285) he described it more fully and gave localities as Santa Barbara (Jewett); Farallone (sic) Islands, in cavities in Haliotis (testa R.O. Darbishire); near San Francisco (Rowell); Neah Bay (Swan)." Dalland Bartsch redescribed it, 1907.

Collecting data: Monterey (Cooper); Monterey (Gordon); (Love).

Oakland, Calif. (Hemphill); Orcas Island, Puget Sound (Baker).

Odostomia io Dall and Bartsch, 1909. Santa Rosa Island to San Diego (Kelcy). Type locality: Santa Rosa Island, Calif. / to Todos Santos Bay (Burch).

Collecting data: dredged off Ensenada, L.C. in 15 fms.; off Santa Cruz Island in 50 fms.; off Redondo Beach in 25-50 fms.; off Santa Monica, at 50 fms. (Burch); Newport (Gordon); Whites Point, San Pedro (Strong); Bird Rock, San Diego Co. (Baker); San Pedro and Portuguese Bend (M.O. Gregg).

Odostomia jessetii Dall and Bartsch, 1907. Santa Barbara, Calif.

Collecting data: Kanatuk Lagoon, Portage Bay, Alaska in 6 fms. (Hanna, C.A.S.)

Odostomia killisnoensis Dall and Bartsch, 1909. Killisnoo, S.E. Alaska.

Odostomia minuta Bartsch, 1909. Off Redondo Beach (Burch).

Collecting data: Point Lobos, L.C. Type locality: San Diego, Calif.

Collecting data: off Redondo in 75 fms., mud bottom; off Ensenada, L.C. in 50 fms. (Burch); Ballast Point, San Diego in 8 fms.; South Coronado Island (Baker).

Odostomia movilla Dall and Bartsch, 1909. Off San Diego in 359 fms.

Odostomia nova Dall and Bartsch, 1909. Off Santa Monica (Burch) to Todos Santos Bay (Burch). Type locality: San Diego.

Collecting data: off Santa Monica in 15 fms.; off Avalon, Catalina Island in 25 fms.; off Redondo Beach in 25 fms.; off Ensenada, Mexico in 15 fms. (Burch); San Pedro (San Diego (Gordon); South Coronado Island in 10-14 fms. (Dr. Baker); off Reef Point in 12 fms. (Strong).

Odostomia notillia Dall and Bartsch, 1909. Catalina Island, Calif. and off Point Vicente in 12 fms. (Gregg). Type locality: off Catalina.

Odostomia nunivakensis Dall and Bartsch, 1909. N. end of Nunivak Island, Bering Sea.
Odostomia obsa Dall and Bartsch, 1909. Monterey (Smith and Gordon) to San Pedro. Type locality: San Pedro.

Collecting data: Dredged off Redondo Beach in 75 fms.; off Point Vincente in 40 fms. (Burch); off Point Vincente in 12 fms. (Gregg); Monterey Bay, shore (Smith and Gordon); Point Vincente (Strong).

Odostomia phanae Dall and Bartsch, 1907. Monterey to San Diego (Gordon). Type locality: Monterey.

Collecting data: From backs of Haliotis at both Monterey and Morro Bay; Monterey 0-25 fms. on rocks and backs of abalones (Smith and Gordon); Cayucos; San Diego (Gordon); La Jolla (Chancy); Monterey and near Morro (Strong).

Odostomia phanella Dall and Bartsch, 1909. Santa Monica (Burch) to Todos Santos Bay (Burch). Type locality: San Pedro.

Collecting data: off Santa Monica in 10 fms.; off Redondo Beach 10-25; Punta Banda, L.C. (Burch); off South Coronado Island in 14 fms. (Dr. Baker); San Pedro (Lowe); there is a set in the San Diego Museum collected by Hemphill at Monterey with this label: it is not thought this species ranges so far nor'. White's Point, San Diego (W.G. Smith); San Diego (Gordon); Isthmus Cove, Catalina Island (Strong).

Odostomia proxima Dall and Bartsch, 1909. Off Santa Cruz Island and Redondo Beach (Burch) to Catalina Island (Strong). Type locality: Santa Rosa Island in 50 fms.

Collecting data: off Redondo Beach 50-100 fms.; off Avalon, Catalina Island in 35 fms.; off Santa Cruz Island in 50 fms. (Burch); off Catalina in 30-40 fms. (Strong); (Lowe).

Odostomia profundicola Dall and Bartsch, 1909. Point Vicente to San Diego in deep water. Type Loc.: off San Diego in 559 fms.

Odostomia quadrae Dall and Bartsch, 1910. Drier Bay, Knight Island, Alaska to Barkley Sound, Vancouver Island, B.C. Type locality: Barkley Sound.

Collecting data: NanOOSE Bay, B.C. (Museum); Departure Bay, B.C. (T.S. Oldroyd); Olga Island, Puget Sound (Bakyr); Decatur Island near Olga, Wash. (Engberg).

Odostomia raymondi Dall and Bartsch, 1909. Catalina Island.

Collecting data: Catalina Island 50-40 fms. (Strong) (Lowe) (Dr. Baker); Off Catalina Island, this species as the identification is uncertain (W.G. Smith).

Odostomia rosea Dall and Bartsch, 1909. Arch Beach, Cali. to San Diego Type locality: Arch Beach.

Collecting data: Ballast Point, San Diego dredged (Dr. F. Baker); Point Loma from Haliotis (Baker).

Odostomia santarosana Dall and Bartsch, 1909. Santa Rosa Island to San Diego Type locality: Santa Rosa Island.

Collecting data: San Diego (Kate Stephens).

Odostomia septentrionalis Dall and Bartsch, 1909. Unalaska Island, Alaska.

Odostomia sessilis Dall and Bartsch, 1909. Carpenteria, Santa Barbara Co. (W.O. Gregg) south to Todos Santos Bay (Burch). Type Loc.: Off San Diego.

Collecting data: Off Ensenada in 15 fms.; from pilings of Crystal Pier, San Diego (Burch); Newport Bay on Mytilus (Strong); San Pedro (Lowe); Ballast Point, San Diego dredged (Dr. Baker); Carpenteria, Santa Barbara Co., Venice, ol Roy. In each locality on Mytilus californicus. (W.O. Gregg).

Odostomia sitkaensis Close, 1900. Sitka, Alaska to Japan (Baker).

Collecting data: Abashiri, Hokkaido, Japan (Dr. F. Baker).

Odostomia stephonsae Dall & Bartsch, 1909. Drier Bay, Pr. Wm. Snd, Alaska (Eyerdam) to Barkley Sound, B.C. Type locality: Bear Bay, Peril Straits.

Collecting data: Bear Bay (Baker); Departure Bay, B.C. (Oldroyd).
Odostomia alaskensis Bartsch, 1912. Prince William Sound (Alaska, (Eyreman) to Queen Charlotte Islands, B.C. to Trinidad, Calif. Type Loc.: Skidegate, B.C.
Collecting data: Crescent City, Cal. (Chace); Queen Charlotte Isd. (T.S. Oldroyd); Martaga Harbor, B.C. (Oldroyd) (Strong); Port Orchard, Kitsap Co., Wash. (Eyerman).
Odostomia spreadboroughi Dall and Bartsch, 1910. Barkley Sound, Vancouver Is., B.C.
Odostomia strongi Bartsch, 1927. Proc. U.S.N.M. vol. 70, pp. 19-20, pl. 4, fig. 4. Type locality: "from abalone at Catalina Island."
Collecting data: Isthmus Cove, Catalina Island (Strong—paratypes); Catalina Island (Lowe); (Gordon).
Odostomia taconensis Dall and Bartsch, 1907. Tacoma, Puget Sound, Wash.
Odostomia tenuisculptus Carpenter, 1865. Barkley Sound, Vancouver Island to Lower California. Type locality: Noah Bay, Wash.
Collecting data: From Haliotis at Avila, San Luis Obispo Co.; from Haliotis fulgens at Malaga Cove, L.A. Co.; off Santa Cruz Island in 4 fms.; off Rodondo Beach 10-15 fms.; Todos Santos Bay, L.C. (Hempill); Pt. Loma; Ocean Beach (Dr. Baker); Long Beach (Lowe); San Pedro (Oldroyd); Monterey Bay (Berry); Isthmus Cove, Catalina Island (Strong); Portuguese Bend (Wm. Gregg); common on backs of red abalones 3 mi. N. of Pt. Ross (A.G. Smith); Monterey Bay C-15 fms. (Smith and Gordon—Det. by F. Bartsch, U.S.N.M.); San Diego (Gordon); Carmel off abalones; San Pedro; (Gordon); According to D. & E. O. streamina is the smooth southern form (A.G. Smith).
Odostomia tillamookensis Dall and Bartsch, 1907. Off Tillamook, Ore. in 786 f.
Odostomia valdai Dall and Bartsch, 1907. Puget Sound (Baker) south to San Diego (Kelsey) (Gripp). Type locality: Monterey.
Collecting data: Off Monterey in 40 fms. shell (Burch); Monterey Bay 10-25 fms. (Smith and Gordon—Det. by F. Bartsch, U.S.N.M.); off Santa Monica in 15 fms.; off Rodondo Beach in 25 fms. (Burch).
Odostomia vancouverensis Dall and Bartsch, 1910. Forrester Island (Alaska) (Wilton) to Barkley Sound, B.C. Type locality: Barkley Sound.
Collecting data: Kitichikan, Alaska (Wilton);
Odostomia youngi Dall and Bartsch, 1910. Barkley Sound, Vancouver Island, B.C.

Subgenus Amaura Holler, 1942. Type (by monotypy), Amaura candida Holler.
Dr. A. Myra Keen advises though as follows "Amaura Holler, 1942" is pre-occupied by Amaura Geyer, 1837.
"Very large, usually inflated Odostomias, the sculpture of which consists of very fine lines of growth and still finer wavy closely placed spiral striations." (Dall and Bartsch, 1909, p. 213).
Odocoileus arcticus Dalland Bartsch,1909. Sechorse Islands, Arctic Ocean south to Bristol Bay, Bering Sea. Type locality: Magomeister Island, Bering S.

Odocoileus caribou L.C. (Dr. F. Baker); Olga, Wash. (Engberg) (Gregg).

Odocoileus engelberti Bartsch,1920. San Juan Islands, Gulf of Georgia.

Collecting data: Olga Washington (Engberg)

Odocoileus furax Dall and Bartsch,1909. Farallone Islands to off. Redondo Beach, Calif. (Burch). Type locality: off the Farallone Islands.

Mr. A. Strong comments on this species as follows: "About the only difference between this and A. holena Bartsch is in the amount of shoulder-ing to the whorls. The locality. It is doubtful if satisfactory distinction of the two could be made without type or topotype material to work with. The range is open to question."

Collecting data: Monterey Bay (Keon); off Redondo Beach in 25-100 fms. and off Avalon, Catalina Island in 35 fms. (Burch).

Odocoileus gouldi Carpenter,1864. Neah Bay, Wash. south to San Diego. Type locality: Neah Bay, Wash.

Collecting data: San Diego (Dr. F. Baker) (Gripp); off Friday Harbor, Wash. (T. Kinoed) (Burch).

Odocoileus griseifair Dall and Bartsch,1912. Nanaimo, B.C.

Odocoileus holena Dall and Bartsch,1912. Off Redondo Beach (Burch) to San Pedro an Catalina Island. Type locality: San Pedro.

Collecting data: Dredged off Malaga Cove in 15 fms.; off Redondo Beach in 15-50 fms.; off Avalon, Catalina Island in 25 fms. (Burch); Catalina in 35 fms. (Love)

Collecting data: Tiniulak Harbor, Unalaska Id. (Eyerdam).

Odocoileus kennerlyi Dall and Bartsch,1907. Sammill Bay, Prince William Sound, Alaska (Gordon) south to Monterey, Calif. Type Loc.: Nanaimo, B.C.

Collecting data: Ballard Beach, Seattle, Wash. (Eyerdam); Sitka, Alaska (Gordon); Fuget Sound (Oldroyd); Monterey Bay in 10-30 fms. (Smith & Gordon); Santa Catalina Island-1 large spec. (Love).

Odocoileus krusi Clossin,1900. (Krusel) Kodiak to Killians, Alaska. Type locality: Verbrug, Japan.

Collecting data: Shuyak Strait, Afognak Id., Alaska (Eyerdam).

Odocoileus lastra Dall and Bartsch,1909. Catalina Island to San Diego, Calif. Type locality: U.S.N.F. Sta. 2917, in 90 fms. off southern Calif.

Odocoileus noravala Dall and Bartsch,1909. Off Point Reyes, Calif.

Odocoileus nota Dall and Bartsch,1909. Santa Rosa Island to San Diego. Type locality: San Diego.

Collecting data: Mr. A. Strong recently told me that this species is to be collected by pulling up the oel grass by the roots and found deep in

(cont.)
the roots, perhaps as deep as six inches. (Burch); White's Point, San Pedro; Point Loma, San Diego in grass-grown tide pools (Strong); San Diego (Kelsey) (Gordon); San Pedro (Chace) (Love); Anaheim Bay (Chace); Pt. Loma (Baker); White's Pt. and Reef Pt., Orange Co., common in oel grass roots at minus tides (A.G. Smith); San Pedro (Gragg).

Odostomia *nuciformis* Carpenter, 1864. Noah Bay, Wash. to San Diego. Type locality; Noah Bay. Collecting data; San Diego; Pacific Beach; off Coronado Hotel in 10 fms. (Dr. F. Baker); La Jolla (Bristol) (San Diego Museum).

Odostomia *orcia* Dall and Bartsch, 1909. Santa Rosa Island to San Diego. Type locality; Santa Rosa Island.

Collecting data; off Santa Monica in 5 fms.; off Malaga Cove in 10 fms.; off Redondo Beach in 25 fms. (Burch - Det. by A.H. Strong); off Catalina in 30-40 fms. (Strong); San Diego (Baker) (Kelsey); Pt. Loma (K. Stephens); La Jolla (Chaney); "with note in oel grass roots, Reef Pt., Orange Co., but scarce. There is some doubt about this identification as no typical specimens of orcia have been available for comparison (A.G. Smith).

Odostomia *pesa* Dall and Bartsch, 1909. Shuyak Strait, Afognak Island, Alaska (Eyerdam) to Kodiak Island. Type locality; Kodiak Island.

Odostomia *sanjavanensis* Bartsch, 1920. San Juan Islands, Gulf of Georgia. Collecting data; off Friday Harbor (Oldroyd).

Odostomia *satura* Carpenter, 1864. Noah Bay, Wash. to San Diego. Type locality; Noah Bay.

Collecting data; San Diego (Baker) (Gordon); Olga, Wash. (Engborg-Gregg); San Pedro and Catalina Island (Love).

Odostomia *sillana* Dall and Bartsch, 1909. Captain's Bay, Unalaska Island, Alaska.

Odostomia *subglobosa* Bartsch, 1912. San Diego and Coronado Islands in to/15 fms. (Gordon). Type locality; San Diego; Monterey 20ft (Burch). Det. Strong.

Odostomia *subtrivita* Dall and Bartsch, 1909. Santa Barbara, Calif. to Todos Santos Bay. Type locality; San Pedro.

Collecting data; Dredged off Santa Monica, Calif. in 10 fms. (Burch - Det. by A.H. Strong); San Diego (Gordon); La Jolla in 25 fms. (Gordon); White's Point, San Pedro and Point Loma, San Diego in grass-grown tide pools (Strong); off Coronado Hotel in 10 fms. (Baker); San Pedro (Baker) (Love). White's Point (Gragg).

Odostomia *talpa* Dall and Bartsch, 1909. Drier Bay, Knight Island and Raspberry Island, Alaska (Eyerdam) to Maple Bay, Vancouver Island, B.C. (Bartsch Nautilus, vol. 24, p. 114). Type locality; Mole Harbor, Alaska.

Collecting data; Departure Bay, B.C. (Oldroyd); Windfall Harbor, Alaska (K. Stephens); off Friday Harbor (T. Kincaid) (Burch).

Odostomia *washingtonia* Bartsch, 1920. (Odostomia washingtonia Bartsch, 1927-Proc. U.S.N.M. vol. 70, pp. 20-21, pl.4, f. 10). Type locality; off San Juan Islands, Gulf of Georgia.

Subgenus *Heida* Dall and Bartsch, 1904. Type (by original designation).

Syrnola *caloosaensis* Dall.

"Shell without axial or spiral sculpture beyond mere lines of growth and exceedingly fine spiral striations; peritreme continuous, aperture round." (Dall and Bartsch, 1909, p. 231).
Subgenus Odostoma s.s.
Odostoma farellae Dall and Bartsch, 1909. Off Long Beach, Calif.
Odostoma dinella Dall and Bartsch, 1909. Off Redondo, Calif.

Collecting data: off Redondo in 25 fms. (Burch)

Odostoma coronadoensis Dall and Bartsch, 1909. Off Coronado Beach, San Diego.
Odostoma obtusitri Bartsch, 1917. San Diego, Calif.

Additions and Corrections

Subgenus Menesthe

Genus Pyramidella
Subgenus Longaeus (Supplementing data on page 20 - this issue)
The following data from Mr. A.G. Smith.
Pyramidella (Longaeus) adamsii Carpenter - Monterey, Calif., a young specimen (B & S.). Dall and Bartsch say that this shell is smaller and more slender than the typical form and may prove to be a new species. This record has not subsequently been confirmed by dredging by Gordon, Hanna or myself.
Pyramidella (Longaeus) mexicanus Dall and Bartsch - Terminal Island, San Pedro (A.G. Smith); San Diego (T.S. Oldroyd).

Odostoma (Eveloa) pratona Dall and Bartsch - See p. 42 - this issue.
The following note from Mr. A.M. Strong was overlooked. "This seems to be plentiful in deep water. In the description it is said to sometimes have a faint umbilical chink but it is placed in the key as not umbilicated. In your series some specimens seem to have a distinct open umbilicus. The deeply sunken nucleus giving the shell a truncated appearance is distinctive."

A few of the more important references to consult in studying this group follow. The Dall and Bartsch and later the Bartsch papers contain many very fine keys to both genera and species.

Minutes of the Long Beach Shell Club May 1946 meeting

The Long Beach Shell Club was called to order by the president, Mr. Baker at 2:40 P.M., May 12, in the Children’s Room of the public library. The minutes were read and accepted. A member told of meeting Mr. Kanakoff, who has a new shell interest each may have a list.

Mr. Ulrich and Mr. Chace reported good collecting at Point Firing and Pt. Vicente—Gadinia reticulata, Acania seabra, Antigone forti and Astraea undosa. A very large specimen of Lottia gigantea was found too. Dr. Lloyd at the San Pedro museum is increasing that collection very greatly.

Program chairman, Mrs. Libby, graciously introduced Dr. Dunkle, who took the topic "Fossil Shells in the Long Beach Schools". He told how the study of shells was taken up in the elementary division by individual teachers, but that in the Junior and Senior High Schools there was no definite place for it, and the large amount of new material there, where interest might be aroused due to the age level, crowded out the subject. As a part of the work in Junior College—where a shell club and in the study of geology there is a definite place, but the fossil shells are the ones studied, showing the relationship of shells to the different life tracts and aiding in interpretation of changes in life. Among points brought out are the following: Mollusks and Brachiopods are found at life's beginning; with each emergence of earth from shallow seas, competition in life groups produced variations; large fossil Ammonites were present in abundance in the Jurassic times, good examples having been available at Friday Harbor. He reported that his science club has found Pleistocene fossils, 90% of them being modern shells; that representatives of the Cretaceous time are present in Silverado Canyon, and that a few Ammonites were located in the Santa Ana Hills, west of this canyon. Club members reported finding of fossil shark's tooth in Hilltop Quarry, San Pedro, and immense large Ammonites in Carmel, Utah.

We all appreciated Dr. Dunkle's talk, and found great pleasure in examining the large number of specimens so beautifully mounted. It might be of interest to others not present, that this group dyed the cotton background blue, which made the specimens show much better.

After announcing the talk by Mr. Bailey on "Collecting on the Great Barrier Reef," for next month, Mr. Baker adjourned the meeting.

Ruth E. Eaton, Secretary

The interesting monthly bulletin of the Auckland Museum Conchology Club is at hand for their March meeting. Our New Zealand friends are doing some very fine work.

With the notes of their meeting an interesting letter arrived from Mrs. Ida Worthy, Patumahoe, Auckland, New Zealand. Those interested in exchanges will find Mrs. Worthy a valuable correspondent.

The monthly bulletin for May of the Natural History Museum of San Diego is at hand. Among other interesting notes is one by Dr. Mayr who estimates the approximate number of known species as follows: Mollusks, 88,000; Mammals 3,500; Reptiles and Amphibians 5,500; Fishes, 18,000; Insects, 750,000; Crusta-
taceans, 25,000. We note with a bit of envy that Mr. Karl W. Kenyon with Woody Williams are on a trip down the coast for several months collecting in Kenyon's auxiliary powered sail boat "The Seven Sons."
These papers are published by a group of interested students for our own pleasure and financed by voluntary contributions of members and friends. It is not our intention to offer subscriptions and guarantee regular periodical publication. However, non-members of our club will be placed on our mailing list and receive all papers published for contributions to our fund of $2.50 per year or more.

We are now meeting the first Tuesday of each month at 7:30 P.M. at the Los Angeles Museum, Exposition Park, Los Angeles, Calif.

Please mail all news to your editor,

John Q. Burch,
4206 Halldale Ave.,
Los Angeles 37, Calif.
Phone Ax 2-7965

Turridae

We passed up this family group hoping to have Dr. Bartsch's monograph in hand by the time we had completed the other groups. Mr. Allyn G. Smith is preparing our report on the Amphineura. It seems that we may as well include our locality records and all data we have on the Turridae. There is no doubt but that Dr. Bartsch will make many changes in the nomenclature. It seems to be generally agreed that Dr. Dall's usage will have to be changed materially, probably by the addition of a great many more genera.

A few of the more important recent works on the Turridae follow:

Powell, A. W. B. "The New Zealand Recent and Fossil Mollusca of the Family Turridae", Bulletin of the Auckland Institute and Museum, No. 2. In this work Dr. Powell gives a list "Synopsis of Turrid Generic Names" in which he gives the type species and synonymy. His data will be freely used in this paper.

The following note from Dr. Paul Bartsch will be of interest: I have gone over your list and have put in a few notes (a very few). I am enclosing several small papers which will help you to partly understand the complexity of the problem. There are today close to 500 genera known in the family and most of the names for the larger groups have been terribly abused. I believe as I stated to you before, The thing is a complete mess which I hope my studies of the anatomic structures as far as available, will help to clear up. I have finished two of the three subfamilies and am deep in the third. The part fin- (cont.)
Partial Key to Genera and Subgenera of Turridae

(All northern and deep-water shells omitted)

Anal sulus very faint or absent

- Whorls angulated by a strong periphery cord or keel Kurtziella
- Whorls not angulated
 - Aperture longer than the spire Mitramorpha
 - Aperture not as long as the spire
 - Shell slender Hangelia
 - Shell stout ... Tshmula

Anal sulus distinct

- Posterior angle of aperture thin edged, without armor
 - Anal sulus at or near the suture
 - Anal sulus shallow, rounded
 - Aperture narrowing anteriorly to a short canal Knefastia
 - Aperture widening anteriorly, without canal Daphnella
 - Anal sulus deep
 - Periphery of whorls frilled Ancistrosyrinx
 - Periphery of whorls not frilled Fusiturricula
 - Anal sulus some distance below the suture
 - Anal sulus deep, on a spiral rib Polystira
 - Anal sulus shallow, triangular
 - A sculptured band between fasciole and suture Pseudomalata
 - A smooth band between fasciole and suture Moniliopsis

- Posterior angle of aperture thickened or armored
 - Antl fasciole present
 - Interior of outer lip smooth
 - Inner lip smooth, more or less erosed
 - Outer lip varicose
 - Varix extending around the sulus to the suture Agathotomia
 - Varix not reaching the suture ? Ithyctethara
 - Outer lip not varicose, anal sulus projecting Mannodiella
 - Inner lip ending posteriorly in a callus pile
 - Outer lip not varicose
 - Anal fasciole adjoining the suture
 - Spiral sculpture fine or absent, axial ribs strong

As observed above no two authors seem to agree on the nomenclature of this family. However, the following keys to genera and subgenera should be of some interest. They are taken from Mr. A.H. Strong's notebook.

...
Interspaces between ribs smooth Cymatosyrinx
Interspaces spirally striate
Back of last whorl swollen, without ribs
Shell large, over 25 mm. in length Elaeocyma
Shell small, less than 20 mm., in length Syntomodrillia
Axial ribs extending over the back of the whorls Clathrodrillia
Incised spiral lines cutting the ribs Kylax
Spiral keels riding over the weak axial ribs Carinodrillia
Anal fasciole separated from the suture by a sculptured band
Axial ribs strong, extending from fasciole to canal
Spiral sculpture of fine striae in interspaces Crassispirella
Spiral cords distinct, riding over the ribs
Whorls shouldered Brachyptoma
Whorls not shouldered Crassispirella
Axial sculpture weak or absent, spiral cords strong; Moniliopsis
Outer lip varicose, the edge thin Lioglyphostoma
Outer lip internally dentate
Canal very short, ill defined Clathurella
Canal distinct, slightly curved backwards Glyphostoma
Anal fasciole absent
Inner and outer lip smooth Errophodrillia
Inner and outer lip dentate or lirate Zetekia

Key to Genera and Subgenera of Turridae as Defined by Grant and Gale
Notch armed, with a callus pile at the top of the inner lip
Outer lip thickened and dentate in the adult Clathurella
Outer lip without denticles
Notch indistinct .. Bellaspira
Notch deep, rounded Clavus
Whorls with a conspicuous subsutural band (Crassispirella)
Whorls without a subsutural band (Brachyptoma)
Sculpture confined to a spiral row of nodes (Clavus s.s.)
Axial sculpture of elongated nodes or ribs (Clathrodrillia)
Spiral sculpture of strong cords (Cymatosyrinx)
Shell with a high spire and short canal (Cymatosyrinx)
Shell with a shorter spire and moderate canal (Brachyptoma)
Spiral sculpture of very fine lirae or none (Brachyptoma)
Axial ribs ten or more (Brachyptoma)
Axial ribs less than ten, very coarse (Drillia)

Notch unarmed
Notch on a peripheral angle or cord
Sculpture of incised, spiral lines and lines of growth only; Moniliopsis
Sculpture of spiral cords and lines of growth
Canal moderate to long Turris
Anal fasciole smooth (Turris s.s.)
Anal fasciole beaded (Gemmula)
Canal short but well defined (deep water) Pleurotomoides
Canal ill-defined .. Taranis
Notch separated from the suture by a sculptured band
Canal parallel sided, produced (Turricula s.s.)
Shell elongate, large (Pleurofuscus)
Shell fusiform, canal long (Pleurofuscus)
Canal short or indistinct (con.)
TABLE

<table>
<thead>
<tr>
<th>Classification</th>
<th>Characteristics</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scutum</td>
<td>Notch moderately deep, rounded</td>
<td>Olivatula</td>
</tr>
<tr>
<td>Subapertural</td>
<td>Band coarsely sculptured</td>
<td>(Olivatula s.s.)</td>
</tr>
<tr>
<td>Subapertural</td>
<td>Band moderately sculptured</td>
<td>(Knestia)</td>
</tr>
<tr>
<td>Subapertural</td>
<td>Band rather inconspicuous</td>
<td>(Torphylocheta)</td>
</tr>
<tr>
<td>Notch shallow</td>
<td>Triangular</td>
<td>Pseudomelatoma</td>
</tr>
<tr>
<td>Entire spire</td>
<td>Sculptured</td>
<td>(Pseudomelatoma s.s.)</td>
</tr>
<tr>
<td>Sculpture</td>
<td>On tip of spire only</td>
<td>(Laevitocentia)</td>
</tr>
<tr>
<td>Notch</td>
<td>At or near the suture, without sutural band</td>
<td></td>
</tr>
<tr>
<td>Sculpture</td>
<td>Of rounded nodes or faint or wanting</td>
<td></td>
</tr>
<tr>
<td>Aperture and canal</td>
<td>About $\frac{1}{3}$ length of shell</td>
<td>Surculites</td>
</tr>
<tr>
<td>Whorls</td>
<td>Sharply angulated, tabulate</td>
<td>(Surculites s.s.)</td>
</tr>
<tr>
<td>Whorls</td>
<td>Rounded or slightly turrited</td>
<td>(Megasurcula)</td>
</tr>
<tr>
<td>Aperture and canal</td>
<td>About one third length of shell</td>
<td>(Spirotropis)</td>
</tr>
<tr>
<td>Whorls</td>
<td>Sculptured with nodes on angulated shoulder</td>
<td>(Typhomangidia)</td>
</tr>
<tr>
<td>Whorls</td>
<td>Smooth except for lines of growth</td>
<td></td>
</tr>
<tr>
<td>Whorls</td>
<td>Rounded, often sinistral</td>
<td>(Antiplanes)</td>
</tr>
<tr>
<td>Whorls</td>
<td>Angulated at the shoulder</td>
<td></td>
</tr>
<tr>
<td>Columella</td>
<td>Gentle flexuous, without plaits</td>
<td>(Spirotropis s.s.)</td>
</tr>
<tr>
<td>Columella</td>
<td>Nearly straight, often plicate</td>
<td>(Borsonia)</td>
</tr>
<tr>
<td>Sculpture</td>
<td>Distinct</td>
<td></td>
</tr>
<tr>
<td>Shell</td>
<td>Medium to large, canal distinct</td>
<td></td>
</tr>
<tr>
<td>Periphery</td>
<td>Angulated, a nodose keel on the angle</td>
<td>(Ancistrosyrinx)</td>
</tr>
<tr>
<td>Whorls</td>
<td>Shouldered or keeled (abyssal)</td>
<td>(Leucosyrinx)</td>
</tr>
<tr>
<td>Axial sculpture</td>
<td>Present</td>
<td>(Surculina)</td>
</tr>
<tr>
<td>Axial sculpture</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td>Shoulder of whorls</td>
<td>Nodose</td>
<td>(Leucosyrinx s.s.)</td>
</tr>
<tr>
<td>Shoulder of whorls</td>
<td>Not nodose</td>
<td></td>
</tr>
<tr>
<td>Spiral sculpture</td>
<td>Of strong cords</td>
<td>(Steiraxis)</td>
</tr>
<tr>
<td>Spiral sculpture</td>
<td>Of fine striae</td>
<td></td>
</tr>
<tr>
<td>Notch</td>
<td>Near the suture</td>
<td>(Aforia)</td>
</tr>
<tr>
<td>Notch</td>
<td>Remote from the suture</td>
<td>(Suavoedrillia)</td>
</tr>
<tr>
<td>Shell</td>
<td>Medium to small, canal short or ill defined</td>
<td></td>
</tr>
<tr>
<td>Axial sculpture</td>
<td>Of lines of growth only, spiral cords</td>
<td>(Teres)</td>
</tr>
<tr>
<td>Axial sculpture of raised striae or ribs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axial and spiral sculpture</td>
<td>Of fine, equal striae</td>
<td>(Daphnella)</td>
</tr>
<tr>
<td>Axial sculpture of elongated nodes or ribs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Notch deep and rounded** | | *
| **Canal** | Short, curved, notched behind (abyssal) | *(Pleurotomoides)* |
| **Canal** | Short, straight, not notched (abyssal) | *(Borsonia)* |
| **Notch** | A narrow slit, or shallow or obsolete | |
| **Northern, or cold water species** | | *
| **Southern or temperate and warm water species** | | *
| **Notch obsolete at all stages, shell biconic** | | *(Mitromorpha)* | |
| **Notch shallow** | Rounded in the adult | *(Mangelia)* |
| **Axial ribs** | Few, distant | | *(Mangelia s.s.)* |
| **Axial ribs** | Closer, more irregular | | *(Bela)* |
| **Notch** | Deep, slit-like | |
| **Axial rib** | Wave-like, spirally grooved | *(Agathotoma)* |
| **Sculpture of axial ribs and spiral cords** | | *(Zetekia)* |
Genus Megasurcula Casey, 1904. (p. 147); Type (s. d. Grant and Gale, 1931, p. 485): Pleurotomella (Surcula) carpenteriana Gabb. Pliocene-Recent.

Dr. Dall in Bull. 112 used the generic name Cryptoconus von Koene, 1867 (p. 211). Type (s. d. Cassmann, 1889, p. 235): Pleurotomella filosa Lamarck. Eocene

Other authors have more recently been using the name Surculites Conrad, 1865 (p. 115). Type (monotypy): Surcula annosa Conrad. Eocene, N. J., New Jersey. Doubly Turrit according to Wrigley, 1939.

A synonymy of the various names applied to this group by different authors would be rather extensive.

Mr. A.M. Strong comments: "Megasurcula seems to be a good genus but restricted to our shells. They are so variable that I do not see how they can be divided into separate species or even varieties."

Dr. Joshua L. Bailey Jr. comments "You are quite right in using this name, but I do not think it should be made a genus. I shall continue to use Surculites until someone convinces me that this is undesirable. I agree with you in making many species of this group subspecies of carpenteriana."

Megasurcula carpenteriana (Gabb), 1865. Bodega Bay to Corona Island, Mexico. Type locality: not specified—advice of Dr. Keen.

A number of subspecies have been described almost entirely based on a difference in the nodulations. It is my opinion that we have but two distinct species on this coast, and that those nodulations will intergrade right down to the smooth form of carpenteriana in a large series. I think that I can show this in my collection after having collected them by the thousands." (Burch). The above comment was approved by Mr. E.P. Chase and other members.

Collecting data: Dredged in from 15 to 50 fms. off Redondo Beach, Santa Monica, San Pedro, and down to Todos Santos Bay. Seems to be in greatest numbers around 30 fms. Prefers mud bottom. Will commonly get in crab and lobster traps. (Burch); off Newport in 35 fms.; same from Drake's Bay (Love); Lower Calif. (Capt. Porter).

Megasurcula carpenteriana tryonianna (Gabb), 1866. Santa Monica Bay to San Martin Island. Type locality: Post-Pliocene of San Pedro. The majority are disposed to simply place all of these subspecies in the synonymy of the typical. However, we will give the names, collecting records and range for the convenience of those who disagree.

Collecting data: San Pedro from fishermen's nets; off Newport in 35 fms.; (Love); Lower Calif. (Capt. Porter).

Megasurcula carpenteriana trimorpha (Dall), 1911. Point Ane Nuevo, Calif. to Corona Island. Type locality: off San Pedro.

Collecting data: off Newport in 35 fms. from halibut nets (Love);

Dr. Bartsch described this species as a distinct species on the difference in nodulations, for this reason alone distinguishing it from M. carpenteriana, M. c. trimorpha etc. We commented on those above. The original description, however, follows:

In the synonymy Dr. Bartsch places: Pleurotomella (Centra) carpenteriana
Raymond, Nautilus, vol. 20, pl. 2, fig. 3.

"Shell very large, spindle-shaped, of dingy yellowish ground color with the spiral bands on the last whorl chestnut brown. Nuclear whorls about 2, small, well rounded, smooth. The early postnuclear whorls show the sinal depression. Beginning with about the third postnuclear whorl, the weak nodules at the anterior termination of the sinal area make their appearance. These extend over about 1.5 whorls, about 14 being present. On the succeeding turns
the nodulations disappear. The sinal area on the last whorl is concave and the rest of the whorl, base and columnella are convex. The outline of the base and columnella on the left side is concave. The last two whorls are marked by very fine spiral lirations on the sinal area and little coarser threads anterior to this which gradually become stronger on the base. Here the moderately strong spiral threads are separated by three or four more slender threads, the heavier ones corresponding to the dark lines. The axial sculpture consists of rather rough incremental lines. There is a strong basal fasciole, which is marked by more or less concentric rough rugations. Aperture large, ovate. Posterior sinal, of the outer lip broad and shallow. Anterior to the posterior sinus the outer lip is protracted. The inner lip shows decided resorption on the columnella which also extends up on the parietal wall."

"This species belongs to the nodulose group of Megasurcula, i.e. M. tryonius Gabb, M. cooperi Arnold, M. keebei Arnold, and M. tremperiana Dall. It differs from the last three in having the nodulations pronounced only on the early postnuclear whorls and absent on the last, and from tremperiana by its much larger size."

Grant and Gale, 1931, pp. 495-497 make an excellent case for Gabb's species. Range: Monterey, Calif. to Todos Santos Bay (Burch). Type locality: Pliocene, Tomales Bay.

Collecting data: Our experience has been to find this a distinct form easily distinguished from the forms of *carpetana*. It is much less common and it is interesting that we have always taken it from gravel bottom while the above species seems to prefer mud, or very fine sand. (Burch); off Redondo Beach in 25 fms.; off Santa Maria in 20 fms.; off Rocky Point in 40 fms.; off Ensenada, L.C. in 50 fms. (Burch); off Catalina in 30 fms. (Lawe); XXXX San Diego Bay, dredged (Gripp).

Grant and Gale considered this a subgenus of *leucosyrinx* Dall, 1899. However, this does not seem to have been generally accepted. Dr. Bartsch published a paper on the species of the west Pacific, reference below.

"This group has the shell of a typical *Pliurctoma*, but has no operculum; the typical species reaches three or four inches in length, is strongly carinated above the periphery, and the wide rather deep anal sulcus is nearer to the carina than to the suture." (Dall).

Africia circinata Dall, 1873. Bering Sea (lat. 62° 29'); to Fuca Strait.

Type locality: Nateekin Bay, Captain's Bay, Unalaska, Izhut Bay, Alaska (Eyerdam).

Genus Leucosyrinx Dall, 1889, (p. 75). Type (o.d.): Pl. verrilli Dall.

Recent, North Carolina to Gulf of Mexico 150-360 fathoms.

"Shell moderately large, thin, white or pale, with impervious axis, the sculpture chiefly of delicate spiral threading with feeble axial ribs at the shoulder; anal fasciole wide, shallow, next the suture; canal moderately long, distally flaring; th pillar thick, anteriorly obliquely truncate; operculum subovate, acute in front, with a medial thickened rib on the inner face, the area of attachment small, the nucleus apical." (Dall).

Leucosyrinx anycus Dall, 1919. Off Monterey in 381 fms.

Leucosyrinx persimilis Dall, 1889. Cortez Bank to Magellan Strait.

Dr. A.M. Keen advises on this species: "L. persimilis was described in 1889. No type locality was selected; localities in Chile and Ecuador were cited." Proc. U.S. N. M. 1889, p. 301, pl. 6, fig. 3.

Dall gives the range as: Abyssal, Eastern Pacific.

Leucosyrinx persimilis blanca Dall, 1919. Off Cape Blanco, Oregon in 1064 fms.

Leucosyrinx persimilis leonis Dall, 1908. Off Sealion Rock, Wash. to Cortez Bank, Calif. in deep water. Type locality: Off the coast of Washington in 877 fms.

Genus Irenosyrinx Dall, 1908. (p. 257). Type (o.d.): Pl. (Leuco-syrinx) goodell Dall. Grant and Gale, 1931, p. 508 make a very good case for their contention that this genus should be placed in the synonymy of Aforia.

"Shell large, thin, fusiform, white, with a keel at the shoulder; sculpture feeble, wholly spiral; anal sulcus wide, shallow, nearer the shoulder than the suture; axis pervious, aperture and canal longer than the spire; outer lip produced, thin, simple; canal elongate, pillar obliquely truncate; operculum in the young paucispiral, later the paucispiral nucleus is surrounded by concentric additions, leaving the nucleus subcentral, or a little anterior to the right, in an elliptical concentric operculum without internal rib, with a large area of adhesion, and an outline in general like the operculum of Buccinum." (Dall).

Irenosyrinx orebristriatum (Dall) 1908. Southwest of Sitka, Alaska in 1569 fms.

Described by Dr. Paul Bartsch in Nautilus 59:23, pl. 3, figs. 11-14, July, 1945. "The animal of the holotype is without eyes, is a male, and shows a huge verge (fig. 14). The radula consists of 5-cusped rachidian teeth (fig.) 12 and 2- cusped marginal teeth (fig. 13)."

"The light colored species, with an oily gloss, thin shells, and prominent riblets usually crossed by rather widely spaced spiral striations will take the new name of Elaeocyma Dall. This group appears to be peculiar to the Pacific coast of America."

Our west coast species in this genus have been rather generally called Cymatosyrinx Dall, 1889 (p. 95). Type (o.d.): Pleurotomaria lunata Lea. Liscome, Virginia. Figured by Grant and Gale, 1931, pl. 26, fig. 7. This was used by Dr. Dall in Dall 112, with Elaeocyma as a subgenus.

Grant and Gale were disposed to use the genus Clavus Montfort, 1810 (p. 434). Type (o.d.): C. flammulatus Montfort. Recent, West Africa. They then considered Cymatosyrinx a subgenus of Clavus.

Dr. A.M. Strong comments on this problem as follows: "I consider Cymatosyrinx a good genus, but do not think it contains any species from San Diego or north. Clavus might be used as a subfamily. The typical genus is can hardly be used for any west coast species. Elaeocyma Dall is a good"
Elaeocyma empyrosia (Dall) 1899. Off Redondo Beach (Burch) to Todos Santos Bay (Burch). Type locality: off San Pedro in deep water.

Collecting data: Dredged off Redondo Beach in 25-50 fms.; off Avalon Catalina Island in 25 fms.; off Todos Santos Islands in 50 fms. (Burch); off Catalina Island in 30 and 50 fms. (Love).

Elaeocyma hemphilli (Stearns) 1871. Santa Barbara to Gulf of California; Type locality: Todos Santos Bay.

Collecting data: We dredged a number of specimens apparently of this species off Redondo Beach and Mañana Cove. Mr. George Willett classified them as hemphilli var. aeolia Dall. However, aeolia is a southern form and I hesitate to add it to our list without further checking. Furthermore, I note that Mr. A.H. Strong considers aeolia a distinct species from the Gulf and Tres Marias Islands. Dall described it as Elaeocyma aeolia in Proc. U.S.N.M., no. 2288, vol. 56, p. 11, pl. 3, fig. 10 (Burch); typical specimens dredged in great abundance at the type locality in Todos Santos Bay in approximately 10-15 fms.; also taken littoral at low tide from the sand bars in the Estero below Ensenada; off Santa Monica, Calif., in 15 fms. (Burch); San Diego in 10 fms. (Kelsey); San Pedro in 10 fms.; Estero de Todos Santos Bay (Love); Escamón's Lagoon (Hemphill).

Elaeocyma halocyane Dall, 1919. San Pedro and the Santa Barbara Islands (Dall). Also off Redondo Beach (Burch). Type locality: off San Pedro.

Collecting data: off Redondo Beach in 25 fms. Gravel bottom; off Ensenada, Mexico in 50 fms. (Burch); San Pedro in 50 fms.; Catalina in 25 fms. (Love).

Genus Clathrodrillia Dall, 1918 (p. 317). Type (o.d.): Pleurotoma gibbosa Reeve = P. gibbosa Kiener. Recent, Indian Ocean.

For the generally brown or brownish clathrate species, a few of which are found in nearly every fauna, and of which Pleurotoma gibbosa Reeve may be specified as a typical example, the new name Clathrodrillia Dall may be used. (Dall). Grant and Gale, 1931, p. 579 considered this a subgenus of Clavus distinguishing it as follows: "Shell like that of the typical subgenus but sculptured with axial ribs instead of nodes and with prominent spiral cords overriding the ribs."

Mr. A.H. Strong comments: "I do not think Clathrodrillia is represented north of San Diego. C. renaudii Arnold does not seem to have been reported by any one as living except by Dall." Ropt. S. and San Clemente 40 fms. (Baker) Clathrodrillia renaudii Arnold, 1893. San Pedro, Calif. Also Pleistocene.

Genus Suryodrillia Dall, 1918. Type (o.d.): Drilliia kenniecotti Dall. Recent, Alaska.

Shell like that of Aforia, with a somewhat angular notch remote from the suture, but with a shorter anterior canal" (Grant & Gale, 1931, p. 509. (con.)
Grant and Gale, 1931 p 509 considered this a subgenus of Leucosyrinx. However, the majority of recent writers have been giving it generic standing.

Suavodrillia kenicottii Dall, 1871. Bering Strait south to the Aleutian Islands. Type Locality: North Harbor, Unga Island.

Suavodrillia willetti Dall, 1919. Forrester Island, Alaska.

Type (o.d.): *Ophioderma ophioderma* (Dall) - Pleurotoma ophioderma - Pleurotoma inermis Hinds 1844 not Bartsch 1843.

Dr. Dall placed these species under Clathrodillia and subgenus Moniliopsis. Other authors such as Grant and Gale, 1931 have been using as genus *Moniliopsis* Conrad, 1866 (p. 143). Type (monotypy), Pleurotoma elaborata Conrad. (Claibornian) Middle Eocene, Alabama. Dr. Joshua L. Daily Jr. comments on this: "Moniliopsis Conrad cannot be a subgenus of Clathrodillia as Dall made it in Bull, 112 because it is the older name. If the two are closely related, Clathrodillia must be the subgenus."

Mr. A.W. Strong comments as follows: "Ophioderma is probably a good genus. O. fancorae is figured as a young specimen of O. haleyi as Dall but has priority. O. rhines Dall is a new name for O. cancellata Carp."

Description of *Ophioderma* Bartsch follows:

"Shell rather large, regularly conic, with the first 2 nuclear whorls smooth and well rounded. The succeeding turns gradually develop the postnuclear sculpture. The postnuclear whorls bear axial riblets which assume a sigmoid trend (these vary materially in strength in the different species). In addition to this axial sculpture numerous fine incremental lines are present. The spiral sculpture consists of low cords and fine spiral striations. The base is usually marked with a little more intense sculpture, while on the columella it again becomes decidedly enfeebled. The columella bears a weak basal fasciole. The aperture is moderately long and moderately broad. The posterior sinus is moderately deeply incised, the deepest portion falling a little posterior to the middle of the turns. Anterior canal moderately long. The inner lip is sigmoid. The operculum is quite small, ovate, with apical nucleus and concentric lines of growth. The radula bears marginal teeth only which resemble a long slender curved awl."

"While superficially the species in the new genus resemble Moniliopsis other structures point to a wide separation. Moniliopsis has three smooth nuclear turns followed by axially ribbed stage which in turn is succeeded by the postnuclear sculpture. Also, the columella of Moniliopsis is straight, not sigmoid as in the present genus. These are good and sufficient characters for separation."

Type Locality: Monterey Bay at Sta. 3136, Albatross in 19 fms.

The original description follows: "Shell small, elongate-turreted, reddish horn colored with the inside of the outer lip a little paler. The nucleus consists of 2 small smooth turns which pass into the postnuclear sculpture. The postnuclear whorls are moderately rounded and marked by sigmoid axial ribs which are not quite as wide as the spaces that separate them, and the spiral threads about as wide as the axial ribs. The combination of these two elements lends to the whorls a somewhat fenestrated appearance. Periphery slightly angulated. Base moderately well rounded and marked like the spire. The columella is rather slender, sigmoid and marked by spiral cords which are more distantly spaced than those on the spire and base. Aporo-turre elongate pear-shaped with the deepest incision of the moderately profound (con.)
posterior sinus about two thirds of the distance between the suture and the suture, anterior to the summit. Anterior to the posterior sinus the outer lip is protracted. The inner lip is similiar and bears a shining resorption area on the columella, which also extends over the parietal wall.

"In its type of sculpture the species most nearly resembles O. halcyon but it differs from that in having much more numerous axial riblets and in being smaller."

? Ophioderina graffi (Dall), 1919. Malaga Cove (Burch) to San Diego. Type locality: San Diego.

Collecting data: This species probably does not belong in this genus but Dr. Dall had it grouped here. It seems quite different from the other species involved. Grant and Gale comment on it as follows: "This species is very interesting because it bridges the gap between Monilipus and Pseudomalatoma. The strength of the spiral sculpture and the more delicate construction of the shell place it here rather than in Pseudomalatoma." When we first collected this species from holdfasts of kelp in Santa Monica Bay it was a puzzle for all of us until Dr. A. Myra Keen compared the specimens with the type in Washington, D.C., and Mrs. E.P. Chase and Mr. and Mrs. Ralph Berman have collected a number of specimens at White's Point, San Pedro.

This species should not be confused with the species listed in Dall, 112 as Loxa grippi which is a very different thing.

- Other collecting records are Point Vincent (Lowe); Imperial Beach from kelp holdfasts (Randall).

Ophioderina incisa (Carpenter) 1854. Puget Sound to San Pedro, Calif. Dr. A. Myra Keen advises on this species: "The type locality of O. incisa is Noah Bay, according to the holotype label in the USNM. It is sometimes stated to be a synonym, but if so it is a secondary one. The name incisa is available if ever needed."

Collecting data: Dr. Poe Bay, Oregon; Crescent City, Calif.; dredged off Monterey in 20 fms. shale (Burch); Port Orchard, Wash. (Lowe). Ophioderina ophiderma (Dall) 1908. Baulins Bay, Calif. to Ballonas Lagoon, L.C. New name for Drilla incisa Hinds. Type Loc.: Magdalena Bay.

Collecting data: Our experience has been to find this a not uncommon littoral species from Monterey to Todos Santos Bay; dredged in shallow water 10 fms. off Santa Monica, Redondo Beach in 15-25 fms.; off Ensenada in 15 fms.; littoral on sand bars at Anaheim Landing, common; (Burch); San Pedro in 10 fms.; San Diego Bay: Alumitos Bay (Lowe). Ophioderina rhines (Dall), 1908. New name for O. cancellata Carpenter.

British Columbia to San Diego, Calif. Type locality: Puget Sound.

Collecting data: dredged in Puget Sound off San Juan Islands (T. Kincaid) (Burch); Departure Bay, B.C. in 25 fms.; off San Juan Islands in 25 fms. (Lowe). Ophioderina funchanea (Dall), 1905. (In syn. O. halcyon (Dall), 1908.) Furiosa Inlet south to Point Abreojos, L.C. Type locality: near Avalon, Catalina Island. Type Loc. of halcyon: off Coronado Beach, San Diego, Calif.

Collecting data: Dredged off Redondo Beach in 25 fms.; off Avalon, Catalina Island in 25 fms.; off Ensenada, Mexico in 25 fms.; (Burch); San Pedro in 8 fms.; Catalina Island in 30 fms. (Lowe).

"Shell Targe, turritid, covered by a strong periostracum. Nuclear whorls small (badly eroded in all our specimens). Postnuclear whorls with a concave sinal area which extends over the posterior third of the turns. (cont.)"
The anterior two-thirds are convex and crossed by strong, low, broad, retrac-
tively aluting axial ribs which ovansce on the base. The sinal area shows a
cfew incised spiral lines, while the entire rest of the surface bears feebly
rather distinctly spaced spiral threads which become intensified on the base of
the columnella. Suture well impressed. Base moderately rounded. Columnella
short and stout. The aperture is ovate. The outer lip with a deep posterior
V-shaped sinus below the summit; anterior canal rather broad; inner lip ref-
lected over the columnella and parietal wall as a heavy callus which may be
somewhat thickened at the posterior angle of the aperture. Operculum small,
oval, with a low ridge on the right side and apical nucleus, marked on the
outside by concentric lines of growth. Radula with Y-shaped marginals only.

Type: Burchia rodenseensis (Burch). (= Pseudomalatoma seminiglata
roondensis Burch).

Burchia rodenseensis (Burch), 1938. Off Redondo Beach to Newport Bay.
Type locality: Off Redondo Beach in 25 fms. Nautilus 52:21,22, text p. 2.
The description follows: "Shell brown under a black periostracum. Lon-
gitudinal sculpture consisting of 14 low, slightly oblique ribs, weaker
than on typical seminiglata and evanescent below the periphery of the penul-
minate whorl. Whorls of spire subangular just anterior to the suture. Spiral
sculpture more prominent on the base than on spire and consisting of sligh-
tly raised lines. Dimensions: alt. 45 mm; length of aperture, 13 mm.;
diameter of body whorl, 12 mm."

Genus Pseudomalatoma Pali, 1918. (p. 317). Type (c.d.): Pleurotoma
penicillata Carpenter.

"Shell fusiform, spire longer than the aperture, whorls longitudinally
ribbed or nodulose, aperture oblong-ovate; sinus shallow, outer lip thin,
inferior lip with thin coating of enamel; canal short and nearly straight.
Differs from Oclathothrilla in stronger structure and less prominent sinus"
(Oldroyd).

Mr. A.M. Strong comments on this genus: "Pseudomalatoma seems to be a
good genus. The species names have been used by different people for differ-
ent shells and the locality records all depend on the person who identif-
ied them. I think P. torosa Carp. should be confined to the Monterey area,
P. moesta Carp. and the worthless variety or color form aurantiA to southern
California and the northern part of Lower California while P. penicillata
Carpenter is to be found from Cerros Island and south to Cape San Lucas."

Pseudomalatoma moesta (Carpenter), 1864. Monterey, Calif. to Cerros Island,
L.C. (Tail). Type locality: Santa Barbara, Calif.
It is very doubtful if this species is found in the Monterey area.
Collecting data: San Pedro, Pt. Firmin, White's Pt.; Bird Rock, San Diego;
P. los Verdus; Pt. Vicente; Dana Pt., Orange Co.; Puntas Banda, L.C.; many share
localities, very abundant at San Onofre (Burch); San Pedro (Love).
Pseudomalatoma torosa (Carpenter), 1864. Monterey, Calif. "south to San
Ignacio Lagoon, L.C. (E. Jordan). Type locality: Monterey, and north.
As stated above we think this species is confined to the Monterey area.
Collecting data: Do Poo Bay, Oregon; Crescent City, Calif.; dredged of
Monterey in 10-40 fms. (Burch); Monterey and Cayucos (Love).
Pseudomalatoma torosa aurantiA (Carpenter), 1864. Dr. A.M. Ken a advises that
this type locality is San Pedro to San Diego. However, it seems obvious that
this is a color form of moesta and certainly not of torosa. (Burch).
Pleurotoma bocaii Wallischi. (in Kienor 1860-61).

Shell somewhat claviform, tuberculated; scarcely any anterior canal; internal lip with a thick posterior callus; external lip thick within (Tryon).

Dr. Dall and others have placed our species montereyensis Stearns in this genus. Grant and Gale consider it a subgenus of Clavus.

Bartsch and Rehder described a new subgenus in 1939 which seems to have been rather generally raised to generic standing and our species should be placed in it according to Dr. A.M. Strong. Grassispirella.

Genus Grassispirella Bartsch and Rehder, 1939, (p. 135). Type (o.d.); Turris rugitexta. Dall. Recent, Lower Calif. Figs. Dall, 1919 (pl. 7, tf. 6).

Grassispirella montereyensis (Stearns), 1871. Monterey, Calif. to Mazatlan.

Dr. Dall used Cryptogemma Dall, 1918 (p. 318). Type (o.d.); Gemmula benthina. Dall, 1908. Gulf of Panama to Ecuador in 812-1350 fms. Proposed as a subgenus of Gemmula. This is a synonym of Hemipleurotoma according to Grant and Gale.

Dr. A. Hyra Keen comments: "According to Bartsch, 1941 (and I think he is right), Pleurotomoides is a substitute for Defrancia and automatically takes the same type."

Grant and Gale figure Hemipleurotoma cosmimann, 1939 (pl. 26, f. 36).

Type (o.d.); Pleurotoma archimedes Bellardi. (Helvetician) Middle Eocene, Italy.

However, Dr. Bartsch has described a new genus Carinoturris designating one of these species a genotype and describing another species. Dr. Bartsch, however, advises (For. Comm. May, 1946) regarding the group of species listed by Dall under Cryptogemma "This is a mixture of a number of things which my HS straightens out."

Pleurotomoides pernodata (Dall), 1908. Tillamook, Oregon to Tehuantepec in deep water. Type locality: Albatross station 3414, southwest of Tehuantepec in the Pacific in 2,232 fathoms.

Pleurotomoides calypso (Dall), 1919. Off San Diego, Calif. in 822 fms.

Pleurotomoides herilda (Dall), 1908. Santa Barbara, Calif. to Panama in deep water. Type locality: Albatross station 3360, Gulf of Panama in 1,672 fathoms.

Pleurotomoides ephistoche (Dall), 1919. Santa Barbara Islands to San Diego, Calif. in deep water. Type locality: off San Diego, Calif. in 822 fms.

Pleurotomoides polyantha (Dall), 1919. Off Tillamook, Ore. in 736 fms. to Gulf of Calif. Type locality: off Tillamook, Ore. in 736 fms.

Pleurotomoides chrysothomis (Dall), 1919. Between Santa Catalina and San Clemente Islands in 704 fathoms and off North Coronado Island, in 656 fms. Type locality: between Catalina and San Clemente Islands.

Pleurotomoides eidoa (Dall), 1919. Off San Diego, Calif. in 312 to 822 fms.

Pleurotomoides oreonemmis (Dall), 1919. Off Tillamook, Ore. in 736 fms.

Type (o.d.): Carinoturris adrasta (Dall) — Cryptogemma adrasta Dall.

Carinoturris adrasta (Dall), 1908. Monterey to San Diego, Calif. in deep water. Type locality: Monterey Bay in 578 fathoms.

Type locality: Albatross Sta. 3137 off Point Sur, Calif. in 288 fathoms.

The original description follows: "Shell large, elongate-conic, covered with a grayish olivaceous periostracum. Nuclear whorls decollated. The postnuclear whorls have a weak median spiral cord. Anterior to this they curve convexly to the slightly shouldered summit. This area is marked by retractorily curved incremental lines only. The anterior half of the last whorl and base are inflated, strongly rounded, and marked by strong increments. The lines which vary in strength and almost give to the base an obscurely ribbed aspect. Columella rather stout, moderately long, twisted. The left outline of the base and columella is moderately concave. Aperture elongate pear-shaped with the anterior canal moderately long and rather broad. The posterior sinus is broad and extends from the summit to the median cord. Anterior to this the outer lip is protracted. The inner lip is obliquely truncate free for about two-fifths of its basal length. The posterior portion appears on the columella as a smooth resorption area which extends over the parietal wall."

It is easily distinguished from G. adrasta Dall by having a much longer aperture and the spiral keel much less developed.

Type (o.d.): Rectiplanes santarosana (Dall) — Pneurotoma (Antiplanes) santarosana Dall.

Inasmuch as santarosana is a dextral shell I suggested that perhaps Rectiplanes was described to include all of the dextral species grouped under Antiplanes by Dr. Dall and others; however, Dr. Bartsch advises me (Por. Comm. May, 1946) "Largely, not all. Some belong to another subfamily."

We will therefore simply list the one type species here and place all other species under Antiplanes until further notice.

Rectiplanes santarosana (Dall), 1902, Point Sur to San Diego.

Type locality: off Santa Rosa Island in 53 fathoms, Bull. 112, Pl. I, fig. 9.

Collecting data: Dredged off Redondo Beach in 75 fathoms mud bottom (Burch); off the south end of San Clemente Island in 40 fms. (Dr. Baker).

Genus Antiplanes Dall, 1902 (p. 513). Type (o.d.): Sucrula perverta Dall. Post-Hiocene to Recent, California.

Grant and Gale used the name Spirotropis C. O. Sars, 1879 (p. 242).

Type (monotype): S. carinata Philippi, Recent, Norway, to Azores. They used Spirotropis for the entire group and placed Antiplanes as one of the subgenera. However, this does not seem to have been generally accepted.

Antiplanes uhebarbarca Dall, 1919, Cape Martin to Cortez Bank, Calif.

Type locality: off Santa Rosa Island in 55 fathoms.

Antiplanes pycnochene Dall, 1919, Off Cape San Quintin in 359 fathoms.

Antiplanes amphitrite Dall, 1919, Off Santa Barbara Island in 638 fathoms.

Antiplanes amphitrite berce Dall, 1919, Off San Diego, Calif. in 822 fathoms.

Antiplanes antigone Dall, 1919, Off San Diego, Calif. in 822 fms.

Antiplanes savoyanus Dall, 1919, Monterey Bay, in 581 fathoms. (cont.)
August, 1946

Antiplanes beringi Aurivillius, 1885. Bering Sea south of St. Lawrence Island to the Lestutians and eastward to the Shumagin Islands.

Type locality: Dr. A. H. Keen advises "probably Lat. 60 39' N., Long. 177 5' W.

Antiplanes bisreis Dall, 1919. Drake's Bay to Coronado Islands.

Type locality: off Drake's Bay, Calif., in 30 fathoms.

Antiplanes catalinae Raymond, 1904. Esteros Bay to San Diego.

Type locality: off Catalina Island in 125 fms.

Antiplanes diaulax Dall, 1908. Off Coronado Islands.

Albatross Sta. 3186 off Point Sur, Calif., in 328 fathoms.

The description follows: "Shell moderately large, turritated, sinistral, covered with a thin olivaceous periostracum. Nuclear whorls eroded. The postnuclear whorls are inflated, strongly inflated rounded, slopingly shouldered, and marked by rather strong sinuous incremental lines which follow the outline of the posterior sinus. In addition to this, they are marked by weak, oblique, dendritic markings. Suture very strongly constricted. Base of the lastwhorl moderately rounded, moderately long. The columella is rather stout, moderately long, somewhat twisted, and marked by the continuation of the incremental lines. Aperture short, very broad and large. Outer lip thin with a broadly incised posterior sinus anterior to which it is protracted. The inner lip is sinuous and reflected over the columella as a thick callus. The anterior canal is short and broad.

This somewhat resembles Antiplanes profundicola but is ever so much larger."

Antiplanes hyperia Dall, 1919. Off Drake's Bay and the Coronado Islands.

Type locality: off Drake's Bay, Calif., in 30 fathoms.

Antiplanes kamchatica Dall, 1919. Southwestern Bering Sea in 48 to 100 fms.

Antiplanes litus Dall, 1919. Coast of Washington to Esteros Bay, Calif.

Type locality: off Esteros Bay, Calif., than 92 fathoms.

Collecting data; off Redondo Beach in 75-100 fathoms.

Type locality: Albatross Sta. 3172, off Bodega Head in 62 fms., lat. 38 23' 55" N., long. 123 14' W. on black sand bottom. The description follows: "Shell very large, elongate-turritated, covered by a reddish olivaceous thin periostracum. Interior of the aperture with a brownish flush which is intensified in a narrow band at the summit and another one at the insertion of the columella. In some specimens the entire aperture is brown. Nuclear whorls 2 small, smooth, forming a slightly expanded tip. The postnuclear whorls are slightly rounded, very narrowly shouldered at the summit and marked by rather strong incremental lines which are decidedly sigmoid and follow the outline of the posterior sinus. The channel and the region posterior to it are marked by inconspicuous, microscopic, spiral threads. In addition to this, fine oblique dendritic threads are present which radiate retroactively from the median portion to the posterior sinus. Anterior to the posterior sinus the whorls are marked by strong spiral threads which vary in size and spacing. Base rather long, marked by incremental lines and spiral threads which are stronger than those on the anterior portion of the whorls. Columella rather long marked like the base. Aperture elongate toer-shaped with the anterior channel rather long and broad. The posterior sinus is deep and the outer lip is protracted anterior to it. The inner lip is sinuous and marked as a smooth resorption area."

"This species can readily be distinguished from all other California Antiplanes by its huge size."
August, 1946

Antiplanes perversa Dall, 1865. Forrester Island, Alaska to San Diego and Cortes Bank. Type locality: Post Pliocene. Catalina Island in 60 fms.

Collecting data: Dredged off Redondo Beach, Calif., in 75 fms.; mud off Avalon, Catalina Island in 50 fms., (Burch); San Diego (Kelley); Catalina Island in 50 fms.; Santa Barbara channel in 200 fms.; San Diego in 150 fms. (Low). Victoria & Strait of Juan de Fuca (Eyedum).

Antiplanes profundicola Bartsch, 1946. Proc., Biol. Soc. Wash., vol. 57, pp. 57-58. Range: Off Point Sur Light to North Coronado Island in 556 fathoms. Type locality: Albatross Sta., 4352. off Point Loma Lighthouse, Calif., in 549 to 556 fathoms. The description follows: "Shell of medium size, rather stout in comparison to its height, sinistral, covered with a thin olivaceous periostracum, nuclear whorls eroded. The postnuclear whorls are inflated, strongly rounded, and marked by decidedly sigmoid incremental lines which follow the outline of the very deeply incised, broad posterior sinus. In addition to this, the whorls are marked by slender, retractively curved, dendritic threads which radiate obliquely, retractively from the middle of the turns both anteriorly and posteriorly. The anterior half of the whorls also bears, feebly incised spiral threads. Suture very strongly constricted. Base rather short, well rounded. Columella moderately long and stout. The base and coloumella are both marked by the continuations of the incremental lines and spiral threads, the latter become stronger on the columella. The right outline of the base and coloumella is decidedly concave. Aperture large. Anterior canal broad and short. Outer lip thin, protracted anterior to the sinus; inner lip decidedly sigmoid, reflected over and appressed to the base and coloumella."

"The short stout form will readily distinguish this species from the other members of the region."

Antiplanes rotula Dall, 1921. (smithi) Forrester Island, Alaska to San Diego, Calif. Type locality: San Pedro Pliocene. Bull. 112.

Collecting data: Dredged off Redondo Beach in 50 fathoms (Burch); off Catalina Island in 35 fms. (Low).

Antiplanes thalacea Dall, 1902. Unimak Pass, Aleutian Islands to San Diego, Calif. Type locality: off San Luis Obispo, Calif., in 282 fms.

Collecting data: Off Redondo Beach in 50 fms. (Burch); off Point Loma in 40 fms. (Kelley and Baker); off Redondo Beach in 35 fms. (Tremper).

Dr. A. D. Koon advises: "The figures of *A. thalacea* and *santaresa* were interchanged in Bull. 112 and copied by Mrs. Oldroyd. Correct references are: Bull. 112, pl. 1, fig. 8; Oldroyd, vol. 2, pt. 1, pl. 6, fig. 1, for *thalacea*."

Antiplanes vinosa Dall, 1874. Boring Sea to San Diego, Calif. Type locality: Kiska Harbor, Great Kiska Island, Alaska.

Genus Borsonella Dall, 1908 (p. 258). Type (c.d.): *Borsonia dalli* Arnold. Grant and Calk consider this a subspecies of *Spirotrupa*. This has not been generally accepted.

Borsonella angolana Hann, 1924. New name for *B. dalli* Arnold, 1909.

Truk's Bay, Calif., to Coronado Islands, Type locality: Pleistocene of San Pedro, Dennman's Island.

Borsonella barbarensis Dall, 1919. Off Santa Barbara Islands in 414 fathoms.

Collecting data: Dredged off San Pedro, Dennman's Island fossil.

Borsonella bartschi Arnold, 1909. Redondo Beach (Burch) to San Diego, Type locality: Lower San Pedro, Dennman's Island fossil.

Collecting data: Dredged off Redondo Beach, Calif., in 75 fms. (Burch).

Borsonella cavitans Dall, 1919. Off Point Loma, Calif., in deep water.

Borsonella coronaoides Dall, 1908. San Clemente Island, Calif., to the Coronado Islands. Type locality: off Los Coronado Islands.
Borsonella omphalo Dall, 1919. Off Point Loma, Calif. in deep water.
Off Point Pinos Lighthouse in 40-50 fathoms. The description follows:

Shell rather large, elongate-turrited, covered with a pale olivaceous seriolotrum. Nuclear whorls decollated in all our specimens. The post-
uclear whorls are moderately well rounded, appressed at the summit with
the posterior sinal area slightly impressed, extending from the summit to
about two thirds of the distance between the summit and the periphery. The
whorls are marked by irregularly developed, closely spaced incremental lines
which assume almost the strength of riblets. In addition to this, feeble
incised spiral lines are present which are best developed on the posterior
depto of the turns. There are also certain criss cross markings present. But
well rounded and marked like the spiro, Columella stout with a narrow unin-
incal chink at the posterior portion. The columella is marked by a continu-
ation of the axial sculpture. Aperture elongate pear-shaped. The posterior
sinus falls immediately below the summit and is broad and moderately deep.
Anterior to the posterior sinus the outer lip is protracted into a claw-
like element. The inner lip is thick and reflected over the columella and
bears an obscure fold a little anterior to its insertion. The parietal wall
is covered by a moderately thick callus.

This species seems to have been confused with Borsonella dalli Arnold
from the Pleistocene of Deadman's Island, but the strong angulation of the
whorls of dalli will readily distinguish it from the present species.

Borsonella rhodope Dall, 1919. Off Point Loma, Calif. in 101 fathoms.

59. Type (? ?)? Rhodopetoma rhodope (Dall) = Borsonella rhodope Dall.

Rhodopetoma rhodope Dall, 1919. Off Santa Rosa Island in 82 fathoms and off
San Diego in 633 fathoms. Type locality: off Santa Rosa Island.

Genus Lora Gistel, 1848. (p. 9). The status of this name is without
a doubt so questionable as to assure its abandonment at least for our shells.
Dr. Paul Bartsch, "The Nomenclatorial Status of Certain Northern Turritid
us a discussion of the matter with the description of a number of new genera.
In this paper we propose to allocate such species that have been mentioned
to Dr. Bartsch's new genera or elsewhere as advised, and then simply list
our collecting records for the remaining species under the name Lora with
"Lora" indicating that it is understood that sooner or later the species
will be placed elsewhere.

Grant and Cale attempted to make a case for Lora with type D. viridula
Fabricius, but this has been generally rejected.

Dr. Joshua L. Baily Jr. comments: "Lora Gistel. This name I would
abandon altogether in accordance with the decision of the A.M.U. Committee
on Nomenclature."

Dr. A.W. Strong comments: "I do not think that Bola, Lora or Malkia
can be used for any of our shells. Except where Bartsch has designated a
genus, I think that the only thing we can do is to list the various species as "Malkia" showing that we do not list them in any definite genus."

(cont.)
Dr. A. Myra Keen comments: "Bartsch’s 1941 paper cited above is our only modern clue to the nomenclature of "Lora" and its allies. Bartsch names a number of new genera and hints that other names are forthcoming. However, he lists several generic names and cites types that will cover at least a part of our species. I have taken the time to allocate only a few. Here they are, with locality ranges from our collections:"

Dr. L.G. Hertlein of the California Academy of Sciences has kindly sent us a list of the locality records of this group in their collection.

Genus Propsebela Iredale, 1918. (p. 32). Type (o.d.): Murex turricula Montagu. Recent, British Isles and Northern Europe. Figd. Forbes and Hanley 1861 (Pl. 111, figs. 7, 8, 9, 10, 11).

Propsebela nazanensis (Dall), 1919. Nazan Bay, Atka Island to Kodiak Island, Alaska. Type locality: Nazan Bay.
Collecting data: Kodiak Island (Stanford Coll.); Elrington Island, Pr. Wn., Sound, Alaska, 1924 (Eyerdam); Portage Bay, Alaska, midway between Cape Igyak and Unalashigvay, in 17 fms. (G.D. Hanna and E.W. Scott-Calif. Acad. of Sci.).

Propsebela nobilis (Muller), Arctic Ocean, Bering Sea, off Akutan Pass, in 50 fms. to Port Vita, Raspberry Island, Alaska in 10-20 fms., 1945 (Eyerdam). Type locality: off Akutan Pass.

Propsebela turricula (Montagu), 1803. Icy Cape, Arctic Ocean to Puget Sound, Bristol Channel, western end eastern parts of England and Wales, on all the Irish, Scotch and Icelandic coasts. Type Loc.: Sandwich, Kent.

Type (o.d.): Propsebela (Turritoma) exquisita Bartsch, 1941. Recent, Japan.

Type locality: Monterey Bay, Albatross Sta., 3670 in 581 fms.
The description follows: "Shell small, thin, yellowish white. Nuclear whorls decollated. The postnuclear whorls are strongly rounded with a decided angulation at the anterior limit of the posterior sinus. The postnuclear whorls are marked by strong, protractively slanting axial ribs which are about half as wide as the spaces that separate them. Of these ribs, 18 are present on the last turn and 16 on the preceding whorl. The spiral sculpture consists of fine incised lines on the shoulder of the turns, that is the sinal area. The shoulder is marked by a spiral cord that renders the axial ribs very strongly nodulose. Anterior to the shoulder the whorls are marked by strong spiral cords of which 2 are present on the first remaining turn, 3 on the second and 4 on the third and last turn. Base strongly rounded and marked by the feeble continuations of the axial ribs and 8 spiral threads which become slightly weaker toward the columella. The columella is slender, slightly concave on the left side, and marked by 17 spiral threads. The aperture is pear-shaped. The posterior sinus is moderately deep. Anterior to the posterior sinus the outer lip is protracted and slightly concave on the basal portion. The inner lip is appressed to the columella which it marks as a slight absorption area that extends over the parietal wall. It differs from P. (T.) montecarnis Dall in being much shorter, stouter with more angul-

The description follows: "Shell moderately large, elongate-ovate, yellowish white. Nuclear whorls decollected. The postnuclear whorls are well rounded and bear a moderately strong angulation at the anterior termination of the posterior sinal area. The last postnuclear whorl bears 14 broad, heavy axial ribs which are not quite as wide as the spaces that separate them. The preceding turn has 11 ribs. The spiral sculpture consists of 6 slender spiral threads in the sinal area, while the angulation of a heavier cord is present which renders the axial ribs nodulose. The space between the angulation and the suture bears 5 low spiral cords between which finer spiral threads are present. The base is moderately long, well rounded, and marked by the continuation of the axial ribs and 15 spiral threads, between which and on which finer spiral striations are present. The columella is moderately long and marked by feeble spiral threads. Aperture pear-shaped. The posterior sinus extends from the summit to the angulation and is shallow. Anterior to the posterior sinus the outer lip is protracted. The inner lip is reflected over the columella as a smooth area which extends over the parietal wall.

This species is much larger than Propobela (Turritoma) diomedae, with the axial ribs coarser, heavier and even more distantly spaced, while the nodulation of the shoulders of the whorls is much less strong."

The type, U.S.N.M. No. 274112, was dredged by the U.S. Bureau of Fisheries steamer Albatross at station 4538 in 871 fms. on gray sand and rock bottom, off Point Pinos Light. It has 4 whorls remaining and measures Height, 13.5 mm.; greater diameter, 6.2 mm.

Propobela (Turritoma) smithi Bartsch, 1944. Proc. Biol. Soc. Wash., vol. 57, p. 67. Type locality: Albatross Sta. 4598 in 293-306 fms., off Point Pinos Light, on mud bottom. Type has 5 whorls and measures: Height, 9.5 mm.; greater diameter, 4.3 mm. The description follows: "Shell moderately large, elongate-ovate, thin, yellowish white. Nuclear whorls decollected. The postnuclear whorls are well rounded. They are slightly channeled at the summit and rounded shouldered at the angulation, which is two-fifths of the distance between the summit and the suture, anterior to the summit. They are marked by slender, somewhat sinuous, protractively slanting, axial riblets which are best developed on the middle turns. On the last turn 1.5 turns they become gradually reduced and on the last portion of the last turn for more incremental lines. The rounded shoulder forming the sinal area bears 6 slender spiral threads. Anterior to this, the whorls are marked by 9 stronger spiral cords which are separated by spaces about as wide as the spiral cords. On the last turn the spiral sculpture also becomes much reduced; 16 threads are here indicated. Base well rounded and marked by incremental lines and spiral threads a third stronger than those on the spire. Columella moderately stout, slightly concave on the left side, and marked by spiral threads of about the same strength as those on the base on its posterior half. On the anterior half the spiral markings become very fine. Aperture ovate. Posterior sinus immediately below the summit, moderately deep and rounded. Anterior to the posterior sinus the outer lip is protracted. The inner lip is reflected over the columella as a thin callus which extends up on the parietal wall."

The fine axial ribs and fine spiral sculpture of the last 1.5 whorls will readily distinguish this species from the other here described."
Type (o.d.): Granotoma krausei (Dall); Bela krausei Dall (fig. 9).

Granotoma krausei (Dall), 1886. Port Etches, Alaska (Dall) and Shuyak Strait, Afognak Island, Alaska, 1924 (Eyerdam). Type Loc.: Port Etches
Granotoma excursata (Carpenter), 1865. Bristol Bay, Bering Sea to Puget Sound. Type locality: Puget Sound.
Collecting data: Akutan Island, Aleutians (I. Norberg) (Eyerdam);
Port Vita (Eyerdam); British Columbia (Stanford Collection); off San Juan Islands, Puget Sound (T. Kincaid).

Type (o.d.): Morch impressa (Beck) Morch (fig. 2).

Morch impressa (Beck) (Morch), 1869. Seahorse Islands, Arctic Ocean to Kodiak Island, Alaska. Circumboreal.
Type Loc.: Belasound (Kroyer).
Collecting data: Isfjord, Coles Bay, Norway, 1869 (Soot-Ryen)(Eyerdam).

Genus Oenopota Morch, 1862. Type (s.d. Dall, 1919, p. 40): Pleurotomaria pleurotomaria Courchouy. Bela pyramidalis Strom., considered a synonym of Pleurotomaria Courchouy by Grant and Gale, 1931, pd. Tryon 1884 (Pl. 28, fig. 10). Subfamily: Recent, Massachusetts Bay. Recommended as substit-
The above data from Powell (Ref. Abse.). Dr. Bartsch in his 1941 paper redescribes the genus, pp4, 5.

Oenopota pleurotomaria (Courchouy), 1838. Nunivak Island, Bering Sea to
Puget Sound. Also Atlantic. Type Loc.: Mass. Bay in deep water.
Collecting data: Drier Bay, Knight Island, Alaska, 1923 (Eyerdam);
British Columbia (Stanford Coll.); Tromsöfjord, Norway, 1875 (I. Norberg)
(Eyerdam);
Oenopota alaskensis (Dall), 1871. Bering Sea to Puget Sound. Type locality: Alaskan.
Collecting data: Izhut Bay, Afognak Isl., and Drier Bay, Knight Isl.,
Alaska (Eyerdam); British Columbia to Puget Sound (Stanford Coll.); Kanat-
Oenopota rosea (M. Sars), 1846. Simeonoff Island, Shumagins to San Juan
Islands, Puget Sound. Type locality: Arctic?
Collecting data: Izhut Bay, Afognak Island, Alaska (Eyerdam); Queen
Charlotte Islands (Stanford Coll.); Portage Bay, Alaska midway between Cape Igyak and Unalashigvak, in 17 fms. (G. D. Hanna, Calif. Acad. Sci.);
off San Juan Islands, Wash. (T. Kincaid).

Genus Bellaspira Conrad, 1866 (p. 133). Type (monotypy): Mangelia
virginiana Conrad. (Yorktown) Upper Miocene, Virginia.
This genus was discussed and figured by Bartsch and Rehder, 1939, Proc.
U.S.N.M., vol. 97, pp. 133, 134. There has been considerable discussion about
the generic allocation of our southern California species grippii Dall. It
was listed in Bull. 112 as Lora grippii, but it has been the almost unanimous
opinion of students that this species certainly does not belong here. It
has been placed in Bellaspira by a number of recent authors. We place it here tentatively.
Bellaspira grippii (Dall), 1908. Redondo Beach in 25 fms. (Burch), Catalina
The following species will be listed as "Lora".

Lora albrechti Krause, 1885. Flower Bay, Bering Strait to Port Etchells, Alaska. Type locality: Flower Bay.

Collecting data: Shuyak Strait, Afognak Island, 1924 (Eyerdam).
Collecting data: off Lees Cabin at mouth of Nomeas Creek, Wide Bay, Alaska in 6-13 fms. (G.D. Hanna, R.L. Tallant & C.E. Leach, C.A.S. Coll.).

Lora arctica A. Adams, 1855. Shumagin Islands to Chirikoff Id, Alaska.
Type locality: Arctic Seas. Coll., Data: Chirikoff Id. (Stanford Coll.).

Lora babylonia Dall, 1919. Off Tillamook, Oregon, in 786 fathoms.

Lora bechti Moller, 1842. Bernard Harbor, Arctic Coast to Drier Bay, Knight Island, Alaska (Eyerdam). Type Loc.: Arctic.
Collecting data: Tromso, Norway (T. Norberg) (Eyerdam).

Lora bicarinata Coutsby, 1853. Point Belcher, Arctic Ocean to Puget Sound, Circumboreal. Type Loc.: east of Nanik, from stomach of haddock.

Lora chiachiiana Dall, 1919. Arctic Ocean to Chiachia Islands and Port Althorpe, Alaska. Type Locality: Chiachia Islands, Aleutians.
Collecting data: Drier Bay, Knight Id., Alaska, 1923 (Eyerdam).

Lora colpatica Dall, 1919 (colpatica) Tillamook, Ore. in 786 fms.

Lora diegensis Dall, 1919. Off La Jolla, Calif. to Cape San Quentin, L.C.
Type locality: off San Diego.

Lora elegans Moller, 1842. Blighi Islands to St. Lawrence Island, Bering Sea. Type locality not known.
Collecting data: Hammero, Norway (Dr. Scott-Ryen) (Eyerdam).

Collecting data: Tromso, Norway (Dr. Scott-Ryen) (Eyerdam).

Mr. Eyerdam also lists a subspecies mitrillus from Tromso, Norway.

Lora exigera Haas, 1885. Listed as subspecies of bicarinata in some lists, Arctic Ocean, north of Bering Strait.

Lora galgana Dall, 1919. Unalaska, Aleutian Islands in 351 fathoms.

"Lora" harpularia Couthouy, 1838. Point Belcher, Arctic Ocean, to Puget Sound. Circumboreal. Type locality: from a cod taken off Phillips Pt., Lynn, Wash., Drier Bay, Knight Id. (Eyerdam); Tromsø Sound, Norway (I. Norberg).

"Lora" healyi Dall, 1919. Arctic Ocean north of Bering Sea. Type locality: Labrador.

"Lora" lawrenceana Dall, 1919. Point Belcher, Arctic Ocean to Pribilof Islands, Bering Sea. Type Loc.: bering Bay. Type Loc.: Queen Charlotte Islands, B.C. to San Diego.

"Lora" lotta Dall, 1919. Queen Charlotte Islands, B.C. to San Diego. Type Loc.: Queen Charlotte Islands.

"Lora" lutkeni Dall, 1919. Port Etches, Alaska. Type Loc.: Point Clarence, Bering Strait.

"Lora" lutkeniana Krause, 1885. St. Lawrence Bay, Bering Strait. Type Loc.: Point Clarence, Bering Strait.

"Lora" meaeli Dall and Bartsch, 1910. Barkley Sound, Vancouver Id., B.C. Type Loc.: Point Clarence, Bering Strait.

"Lora" metcalfsenis Krause, 1885. Metcalfsenis Bay, Bering Strait.

"Lora" mina Dall, 1919. Unalaska, Aleutian Islands, 1932 (Eyerdam) to Point Reyes, Calif. Type Loc.: Boca de Quarda, Alaska.

"Lora" mitrata Dall, 1919. Bering Strait to Shumagin Islands. Type Loc.: Point Clarence, Bering Strait.

"Lora" morrochiana Dall, 1919. Point Barrow, Arctic Ocean to Pribilof Islands, Bering Sea. Type Loc.: Cape Smythe, Arctic.

"Lora" nodulosa Krause, 1886. St. Lawrence Bay, Bering Strait to Aleutian and Cook's Inlet. Type Loc.: St. Lawrence Bay.

"Lora" pavlovaa Dall, 1919. Off Pribilof Islands, Bering Sea in 987 fms.

"Lora" pyramidalis Strom, 1786. It is likely that this species will be incorrectly placed. Grant and Cale were disposed to place both pleurotomaria (which we placed in Onopota and haliotropia Dall) in the synonymy of this species.

"Lora" pribilova Dall, 1919. Cape Lisburne, Arctic Ocean to Esteros Bay, Calif. Type Loc.: Cape Lisburne. Coll. data: San Juan Ids. (Kincaid); Chicago Id. (Norberg); Isut Bay, Afognak Id. (Eyerdam); British Co. (Stanford).
Type locality: Unalaska. Collecting data: off Friday Harbor, Wash. (Kimaid) Drier Bay, Knight Id. and Evans Id., Pr. Wm. Snd., Alaska (Eyerdam); Akutan Id., Aleutians, 1919 (T. Norberg) (Eyerdam); Kodiak to British Columbia (Stanford Coll.); Kodiak, Alaska in 6 to 10 fms. (G.D. Hanna & R.L. Tallant—CAS, Coll.).

Lora^ raussina Dall, 1919. Off Bristol Bay, Bering Sea.

Lora^ regularis Dall, 1919. Off Point Reyes, Calif. in 61 fms.

Lora^ rugulata Friese, 1886. Unalaska Island (Eyerdam) and Akutan Id. (T. Norberg) Tromsøsound, Norway (Dr. Soot-Ryen).

Lora^ rugulata spitzbergensis Friese, 1886. Plover Bay to Port Althorp, Alaska. Type locality: Magdalene Bay (Spitzbergen-Svarlbard), 40-50 fms.

Collecting data: Unalaska, Aleutian Islands (Eyerdam).

Lora^ reticulata Brown, 1827. See Grant and Gale, p. 522.

Circumboreal. In the Atlantic south to Great Britain and Massachusetts, in the Pacific to San Diego. Type locality: Greenock, Scotland. Grant and Gale place a number of species in the synonymy.

Lora^ simplex Middendorff, 1849. Point Barrow, Arctic Ocean to Pribilof Islands and the Okhotsk Sea. Type locality: Okhotsk Sea.

Lora^ sixta Dall, 1919. Off San Diego, Calif. in 640 fms.

Lora^ tenuecostata H. Sara, 1868. St. Lawrence and Nunivak Islands, Bering Sea to Sally Cove, Alaska. Also Atlantic. Type locality: Vadosa.

Lora^ texuissima Dall, 1891. Chernoffski Harbor, Unalaska Id. in 109 fms.

Lora^ villosa Michels and Adams, 1842. Sea Horse Islands, Arctic Ocean, to Bering Sea to Sitka, Alaska. Circumboreal. Type locality: Casco Bay, Maine.

Collecting data: Hammer, Norway (Dr. Soot-Ryen); Treurenburg Bay, Spitzbergen, 8-14 fms.; sand, 1861 (Eyerdam).
H. B. Woodland, Moller, 1848. White Island, Arctic Ocean to north of Bering Sea. Type locality: Arctic.

"Lora" sp. of kyskana Dall, 1913. We dredged a species off Redondo Beach, Calif. in 75 to 125 fms. that was identified by Mr. George Millett as "Lora" kyskana. Mr. Millett had a great deal of experience with this northern group but we hesitate to extend a range all the way to southern California without further study.

Genus Pleurotomella Verrill, 1873. (p. 15). Type (monotypy): P. pacifica Verrill. Recent, N.E. coast of U.S.A.

Pleurotomella thallasica Dall, 1919. Off Tillamook, Ore. in 786 fathoms. Pleurotomella horningae Dall, 1919. Off Catalina Island, Calif. in 354 to 600 fathoms.

Genus Clathurella Carpenter, 1857 (p. 399). Inasmuch as so many of our members have followed Grant and Gale in the use of this name it seems that we should discuss it here. My limited study of the matter seems to leave me disposed to think that we have more trouble on our hands with the use of the name Clathurella than we would have by simply retaining our old names until Dr. Fartsch or someone convinces us that we should use another. The data below is copied from Powell (Ref. above):

Grant and Gale (1951, p. 604) and Pilsbry and Love (1932, p. 55) endeavored to preserve Clathurella on the basis of Cossmann's designation (1896, p. 121) of the Recent Clavatacea rayana Hinds. As Defrancia was proposed with out a designated type, then Clathurella, published as a substitute name for Millet's Defrancia, must take its type from among the five original species mentioned by Millet, notwithstanding the fact that Carpenter included other species in proposing his substitute name. As Carpenter did not designate a type then his nov. nov. has to be treated strictly as such. Cossmann's designation is invalid because rayana was one of Carpenter's inclusions, not in Millet's list.

Mr. A. K. Strong comments on these species as follows: "In the species with the flaring or varicosed outer lip no one seems to make any distinction between those with a dentate lip and those with a smooth lip. Philibertia does not seem to be a valid name, at least on the coast. I am using the genera Clathurella and Glyphostoma, the first with the stubby shell and a short canal and the second with a slender shell and a long canal. In Clathurella, I am placing C. affinis, C. conradiana, C. confieldii and C. crystallina. I think the record of C. rayana from San Diego must be a mistake. In Glyphostoma, I am placing G. adrina, G. adria and G. cymodoce. However, whether these names can be retained as Dall used them or not I do not know, but until the dispute is more or less settled perhaps we had as well use the names we now have on our specimens.

August, 1946

Glyphostoma conradiana Gabb, 1869. Off Redondo Beach, Calif. in 25-50 fms. (Burch) and San Pedro, Calif. Also Pleistocene. Type locality: Post-Pliocene of Santa Barbara.

Collecting data: San Pedro; Redondo in 20 fms. (Lowe); also fossil from Tima's Point, Hilltop Quarry and other deposits, (Burch); Portuguese End. Glyphostoma adria Dall, 1919. San Pedro, Calif. to Acapulco, Mexico (Lowe).

Dr. A. Kyra Keen advises on this species "The description in Oldroyd is of another species. The type locality is Santa Maria Bay, Lower Calif."

This is a little odd because Oldroyd did give the correct reference:

Proc. USNM, 56:52; pl.17,fig.5. The original description follows:

"Shell small, slender, acute, pale brownish, or with still paler nebulosity; with three darker brown nuclear whorls, the first minute, the others regularly increasing with a deep suture; subsequent whorls seven, the first peripherally keeled, the periphery rather anterior; subsequent whorls with a broad spirally striated anal fasciole followed by 2 or 3 spiral cords strongest where they cross the ribs and feebler in the interspaces; on the last whorl the cords are less prominent, with about equal spirally striated interspaces, and the cords continue becoming more close set toward and upon the canal to the number of 15 or more; axial sculpture of (on the last whorl 10, excluding the terminal varix) protractively oblique ribs extending from in from of the anal fasciole stronger on the periphery and obsolete on the base of the whorl; terminal varix strong, the margin incurve smooth; the anal fasciole large, rounded; the lips callosus with minute denticulations; the channel short, deep, recurved, the aperture rather narrow. Height of shell, 10; of last whorl, 6; diameter, 4 mm."

Collecting data: Acapulco, Mexico in 20 fms.; Punta Penasco, Sonora in 10 fms.; Guaymas, Mex. in 20 fms.; Santa Maria Bay in 15 fms.; Concepcion Bay in 20 fms. (Lowe).

Glyphostoma cymodece Dall, 1919. Monterey to Redondo Beach, Calif. (Burch).

Type locality: Santa Barbara, Calif.

Collecting data: Dredged off Redondo Beach, Calif. in 75 fms. mud bottom (Burch); Cayucos (Lowe) (San Diego Museum).

Philbertia affinis Dall, 1871. San Luis Obispo (Oldroyd) to Tres Marias Islands, Mexico (Strong and Hanna). Type locality: Cape San Lucas, L.C.; both littoral (Burch);

Philbertia canfieldi Dall, 1871. Crescent City, Calif. to San Diego (Kelsey). Type locality: Monterey, Calif. Collected data: Cayucos, San Luis Obispo, Calif. (Burch);

Philbertia capeniola Dall, 1919. Off San Diego, Calif.

Philbertia castaingi Dall, 1919. Off Cape San Martin, Calif.

Philbertia crystallina Gabb, 1865. Off Catalina Island and off Redondo Beach in 50-100 fms. (Burch). Type locality: off Catalina in 50 fms.

Off Catalina in 35 fms. (Lowe) (San Diego Museum). Fossil in San Pedro Pleistocene (Burch); White's Landing; off Catalina (Strong).

Philbertia hesione Dall, 1919. Point Pinos to Point Loma, Calif. Type locality: off Santa Rosa Island, Calif.

Philbertia louisa Dall, 1919. Off San Luis Obispo, Calif.

Philbertia rea Palmis, 1842. Laguna Beach, Calif. to Gulf of Calif. (Dall) Type Loc.: Gulf of Nicoya, Central Amer. Mr. Strong thinks Calif. records error.

In any event it seems certain that the species grouped under this name by Dr. Dall in Pull. 112 will be allocated to a number of different genera. Dr. Paul Bartsh has described several new genera to take a number of the species in his recent papers referred to above.

Dr. Dall spelled this name Mangilia on the theory that the original spelling Mangoilia was a typographical error. However, it has been my understanding that unless the original spelling was such as to make the name fail to comply with the Rules, the original spelling must stand even though the author himself should attempt to correct it in later publications. This is an interesting point and I will appreciate being informed because Dr. Baily, our west coast authority on such matters, seems disposed to spell it Mangilia.

Dr. Joshua L. Baily Jr. comments on this problem as follows: (Per. Comm. May, 1946) "Mangilia (Leach MS) Risso, 1826. I would like to know whether in considering Mangilia striolata as the generitype you were following Grant and Gale, or whether you arrived at this conclusion independently. Grant and Gale reject Dall's claim that Bellardi designated M. costulata as type on the ground that Bellardi mentioned M. costulata only in the synonymy. But they do not say what he made it a synonym of, nor do they say what species if any he did designate as type. Until we consult Bellardi's work I do not believe we can make a choice between these two. I had prepared a letter to the International Commission about the spelling of this name, when it occurred to me that the question of the type should be settled too. When the International Commission places a name on the official list they give the type as well, and as long as there is doubt as to the type this must be cleared up before any other question can be settled. Consequently it would be very helpful to me to know on what ground you reject Bellardi's supposed designation."

Nitromorpha- This group is generally placed in the Mitridae. Grant and Gale make it a subgenus of Mangilia. They are undoubtedly correct in placing it here instead of the Mitridae, but I question them in making it a subgenus. They (and lots of others too) have made genera of shells not nearly so distinct as Nitromorpha."

In regard to the last, we discussed this genus and the species in it in our Minutes # 49, p. 33, 34, June, 1945. Our decision was to transfer Nitromorpha to the family Turridae but retain it as a distinct genus as suggested by Dr. Baily.

There seems to be little doubt but that the species placed under Mangilia by Dr. Dall will be allocated to a number of different genera. Dr. Bartsh in his 1944 papers described two new genera, Kurtzia and Kurtzina for certain species which will be discussed later. The other species we will simply list in alphabetical order as "Mangilia."

Furthermore, there is a general feeling that we have far too many names and that many of the described species should be placed in the synonymy of others.
Genus Kurtzia Bartsch, 1910. Vancouver Island to San Diego, Calif. Type Locality: Berkeley Sound, Vancouver Island.

Kurtzia arteaga Dall and Bartsch, 1910. Monterey to Cape San Lucas Type Locality: Monterey, Calif.

Collecting data: Dug in 20 fms. on shale; also 40 fms.; off Redondo Beach, Calif. in 25-50 fms. gravel and shell bottom; off Avalon Catalina Island in 25 fms.; off Ensenada, Todos Santos Bay, Lower Calif. in 20 fms. (Burch); off San Pedro in 10 fms. (White) (San Diego Museum).

Kurtzia gordonii Bartsch, 1910. Type Locality: off Santa Cruz, Calif. in 45-46 fms. on green mud bottom.

The description follows: Shell small, very elongate-ovate, wax colored. The nucleus consists of an initial stage of 1.5 smooth whorls followed by a fraction of a whorl that shows a couple of weak, rounded, flattened spiral threads. This is succeeded by two turns having strongly developed axial ribs which are protractively curved and narrower than the spaces that separate them, and 2 spiral cords, one of which forms the strong median angle, while the other is located half way between his and the suture. The postnuclear whorls are strongly angulated in the middle with the gently sloping shoulder posterior to this. They are marked by almost vertical axial ribs, of which 9 are present on the penultimate and the last turn. These ribs are very strong and about half as wide as the spaces that separate them. The spiral sculpture consists of a strong cord on the middle of the turns which marks the angulation, and a lesser cord midway between this and the periphery, the periphery being marked by another strong cord. Between the summit and median angulation, 13 slender rounded spiral threads are present, 3 additional ones occurring on the cord at the angle while the space between the cord anterior to it is marked by 7 similar threads; the cord itself also bears 3 threads and the space between this and the subural cord bears 5 spiral threads with 3 additional threads on the peripheral cord. These cords are rendered minutely nodulose by the axial threads which are about as wide as the spaces that separate them. The nodules are very regular and rounded and give to the surface of the whorls a finely granulated appearance. Base rather long and marked by 4 spiral cords about half as strong as those on the spire between which finely granulose spiral threads are present. Of these, 6 are present between the periphery and first cord, 5 between that and the second cord, and 4 between that and the third cord. The columella is slender, slightly twisted and bears spiral cords which become consecutively weaker from the insertion to the tip of the columella. Nine of these spiral cords are present, and between them finely granulose threads. The finest nodules of spire, base, and columella are of similar strength and give that finer sculpture a quite uniform aspect. Aperture elongate-ovate. The outer lip with the posterior sinus between the summit and the median angulation. This is rather deep and rounded. Anterior to the sinus the outer lip is protractedly and rendered simuous by the heavier axial sculpture. Anterior canal moderately broad and moderately long. The inner lip appears on the columella as a resorption area which extends upward on the parietal wall. The operculum is thin, oval with apical nucleus and concentric lines of growth. The radula bears a dagger-shaped marginal only. Type has 7 postnuclear whorls- Ht. 10 mm.; greater diam. 3.5

(con.)
This species was referred to *Mangelia artega ropori* Dall by Dall, but is sufficiently distinct to merit specific separation. It is much larger than *ropori* with a much more acutely sloping shoulder and much shorter aperture.

Type (♂;♀); *Kurtzia beata* (Dall) (= *Mangelia* (Kurtziella) beata Dall.)

Dr. Bartsch states that there are a number of west coast species in this genus ranging from California to the Gulf of California but does not state what species. They will therefore be contained in our list of *Mangelia*.

Mangelia alesidonta Dall, 1919. Catalina Island, Calif.

Mangelia alcautica Dall, 1871. Cape Sabine, Arctic Ocean to Fuca Strait.

Type locality: Unga Island, off the Shumagin Group in the North Barke.

Mangelia althorpi Dall, 1919. Granite Cove, Port Salthor, Alaska (Type Loc.), and Craig, Pr. of Wales Id. and Chicagog Id., Alaska (I. Norberg) (Eyerdam).

Mangelia barbarensis Oldroyd, 1927. New name for *M. angulata* Carp, 1865.

Type locality: Santa Barbara, Calif.

Many of us have been following Mr. George Willett in placing this species in the synonymy of *variegata* Carpenter.

Mangelia beta Dall, 1919. Point Arena Nuevo, Calif. in 67 fms.

We identified specimens as this species from our dredgings off Santa Monica, Calif. in 15-25 fms, and also off Palos Verdes in 25-50 fms., but were convinced by Mr. Willett's specimens that beta should be placed in the synonymy of *variegata* Carpenter (Eurch).

Mangelia carlottae Dall, 1919. Off Queen Charlotte Islands, British Columbia in 876 fathoms.

Mangelia costata Dall, 1919. Monterey to San Pedro to San Diego (White).

Type locality: San Pedro. Coll. Data: San Pedro (Lowe); Cayucos, Calif. (Eurch); Pt. Loma (White).

Mangelia cetolaca Dall, 1908. Lower Calif. to Salina Cruz, Mexico.

This species is probably not found in our recent fauna although common enough in many of our Pleistocone deposits. Grant and Gale placed it in the synonymy of *perrotta* Dall, 1805. However, Mr. George Willett in his Baldwin Hills paper, *Trans. San Diego Soc. Nat. Hist.*, 1937, p. 395 took issue with this and held cetolaca to be distinct.

Mangelia consticta Gabb, 1865. Catalina Island in 80 fms.

Collecting data: Victoria, B.C. (Eyerdam).

Mangelia criopes Dall, 1919. Forrester Island, Alaska and the Queen Charlotte Islands. Type locality: Férrester Island.

Grant and Gale place this species in the synonymy of *Lora* alaskinsis (Dall).?

Mangelia ephyrile Dall, 1919. Off Esteros Bay, Calif. to Coronado Islands. Type locality: off Santa Rosa Island.

Mangelia evadne Dall, 1919. Off Santa Rosa Island, Calif. in 53 fms.

to Panama. Dr. Dall states that the type specimen resembles a fossil such as found in the Santa Barbara Pleistocene. In any event this species seems to be greatly misunderstood. Mr. Wm. K. Emerson of San Diego sent me some specimens that he had been collecting alive on sponges on the pilings in Mission Bay and identifying as this species. The shells were the same species we have been labelling M. morita Hinds. Dr. Dall stated that the type of hamata resembles a Cytherilla. Grant and Gale suggest that it may be identical with Philbertia canfieldi. Dr. A.M. Keen listed it as a member of our Recent fauna on the Eric Jordan reference, but in the light of the above comments perhaps we should first find out what it really is.

1 Mangelia" hooveri Arnold, 1903. San Pedro to San Diego, Calif. Type locality: San Pedro Pleistocene.

Mangelia interirata Stearns, 1871. Monterey to San Martin Island (Baker). Type locality: Monterey.

Grant and Gale place costa Dall, 1919 in the synonymy.

Collecting data: Dredged off Monterey and also Pacific Grove in 15-20 fms. (Burch); San Diego (Gripp); San Clemente Island (Lowe).

Mangelia" frembakori Pillsbury, 1932. Nautilus 45:124,125. This species is a Lower Californian species and not reported from our fauna. Dr. A.M. Keen advises as follows: "For M. lineolata read M. frembakori Pillsbury 1932. (Nautilus 45, p. 124, pl.11, fig.11). Type locality: San Hipolito Pt., Lower California. As Pillsbury shows the true lineolata of Reeve is not our west coast shell."

Addition and Correction-
Anachis (Chuvetia) lineolata (Gray in Reeve), 1846. Reeve, Conch. Icon. vol. 1, Pleuritoma, pl.37, fig. 337. Grant and Gale, 1931, p. 686, pl.26, figs. 31,32. discuss this species.

Range: Catalina Island to Panama and the Galapagos Islands (Dall). Grant and Gale describe it more fully. This species was overlooked in our discussions of Anachis. Minutes 51:122,23.

Mangelia levidensis Carpenter, 1864. Boring Strait to Monterey, Calif. Type locality: (advice of Dr. A.M. Keen) " The type locality of M. levidensis Carpenter, 1864 is Puget Sound- Vancouver Island."

Collecting data: dredged off San Juan Islands, 1940 (T. Kincaid); Monterey; Puget Sound (Oldroyd); Unalaska, A cutian Islands (Eyerdam).

Mangelia" nowcombii Dall, 1919. Vancouver Island to Drake's Bay, Calif. Type locality: Clayoquot Sound, Vancouver Island.

Grant and Gale place nowcombii in the synonymy of crebriocosta Carp.
Hangelia" pulchrior Dall, 1919. New name for H. nitens Carpenter, 1864.

It has been my policy to place pulchrior = nitens in the synonymy of variegata following George Willett and also Grant and Gale on this.

However, there is a difference of opinion. We have shells labelled pulchrior from Alyn G. Smith collected at Pacific Grove, Calif. However, see the discussion of variegata. Dr. A.H. Keen in Abridged Check List gives nitens Carp. with pulchrior apparently in synonymy.

Hangelia" oldroydi Arnold, 1905. This species was later renamed H. cotonaca. We mention it because it was listed by Dall in Bull. 112 giving only Pleistocene of San Pedro. However, Mr. George Willett in one of his early papers, Neutilus 5:21 reports it from Forrester Island, Alaska.

As discussed above Grant and Gale followed by others have placed cotonaca in the synonymy of perattenuata Dall, but this has not been fully accepted.

Hangelia" oceana Dall, 1919. San Pedro, San Diego to Gulf of Calif. (Dall).

Type Loc.: San Pedro, Calif.

This species is placed in the synonymy of variegata by both George Willett and Grant and Gale. We have been following them.

Hangelia" painei Arnold, 1905. San Pedro to San Diego (Dall).

Type Loc.: Pleistocene of San Pedro.

Grant and Gale made this a subspecies of marita which we will discuss under Cyclarilla. However, we have no recent records of the species, and Dall's range seems to be the only basis for retaining it in our fauna under any name.

Hangelia" perattenuata Dall, 1905. Monterey, Calif. (Dall).

See discussion under cotonaca. Also Grant and Gale, 1931, p. 591.

Hangelia" philodice Dall, 1919. Point Arena, Nueva, Calif. to Coronado Islands. Type locality: off Pt. Pinos Light, Monterey.

Hangelia" rhysa Dall, 1919. La Jolla, Calif. to Gulf of California.

Dr. A.H. Keen advises "Type locality of H. rhysa is according to the holotype label Gulf of California.

Collecting data: La Jolla, Calif. (Scott) (Beckwith) (Bristol).

Hangelia" sculpturata Dall, 1866. Chi Chi Islands to Port Etches, Alaska (Dall). to Monterey (Berry) and to San Diego (Gripp).

Type locality: Aleutian Islands. Eyerdam reports it from Queen Charlotte Islands, B.C. The accuracy of the Monterey and the San Diego records may well be questioned.

Hangelia" tersa Dall, 1919. San Diego, Calif.

Range: Monterey to Gulf of California. Type Loc.: Santa Barbara.

Mr. George Willett in his Baldwin Hills paper referred to above gives the following: "Hangelia (Beta) variegata Carpenter. Syn. M. angulata Cramer not Rowe (Arnold, 1903; Dall, 1921); H. oceana Dall, H. pulchrior Dall, H. beta Dall (Dall, 1921; Oldroyd, 1927); H. barbarensis Oldroyd (1927), "H. Rocetan Dall, and Bartsch" (Grant and Gale, 1931). (1800). Our specimens of this species exhibit every variation between typical variegata (con.).

Cytharella aculea Dall, 1918. San Diego, Calif. to Cape San Lucas. Type Locality: San Diego, Calif.

Cytharella brevleri Arnold, 1903. San Pedro to San Diego, Pleistocene. Recent to Panama. Type Locality: San Pedro Pleistocene.

Grant and Gale place this in the synonymy of *Hexagona* Gabb.

Stanford University collection collection has sets from San Pedro and San Diego collected by Gripp. to Todos Santos Bay (Burch). *Cytharella hexagona* (Gabb), 1865. Monterey to San Diego, Panama (Dall)? Type Locality. One specimen from Catalina Island, 40 fms. another from the beach at Monterey.

Grant and Gale consider this *Mangelia s.s.*

Collecting data: dredged off Monterey in 20 fms. shale; off Redondo beach in 15-25 fms., common; off Avalon, Catalina Island in 25 fms.; off Malaga Cove in 15 fms.; off Ensenada, Mexico in 15 fms. (Burch); Catalina Island in 50 fms. (Lowe); South Coronado Island in 10 fms. (Baker).

Collecting data: San Juan del Sur, Nicaragua (Lowe); San Hipolito Pt., L. C. (Lowe).

Cytharella lousiana Dall, 1919. San Luis Obispo, Calif. Reported from Cayucos, Calif.; San Luis Obispo Co. (Lowe) (San Diego Mus.

Cytharella merita (Hinde), 1845. Monterey, Calif. to Mazatlan, Mexico (Lowe) to Central America. Type Locality: Gulf of Nicoya, Central America.

Grant and Gale consider this *Mangelia s.s.*

Collecting data: San Simeon, Calif.; Cayucos, Calif.; Dana Pt., Orange Co., Calif.; Bird Rock, San Diego Co.; Mission Bay, San Diego Co.; Punt Banda, Lower Calif. (Burch); Mazatlan, Mexico; Tepoca Bay, Sonora (Lowe).

Cytharella densilineata Dall, 1921. San Pedro to Gulf of California (Dall).
Dr. A. Kyra Kurochkinvises regarding the type locality of this species as follows: "The date for C. densilineata Dall is 1921. The type locality is presumably that of the specimen Arnold figured, which should be Pleistocene of Signal Hill (San Pedro series of Los Carritos). Dall bestowed a new name without selecting a type specimen. Before the species is an

firm footing someone must select a lectotype from among Arnold's specimens which are at Stanford."

Grant and Gale, 1931, p. 590 place this species in the synonymy of variegata Carpenter, placing it under "Mangelia" (Bota).

Collecting data: The San Diego Museum has a set labelled by Lowe as this species from off San Pedro in 15 fms.

Cytharella fuscoligata Carpenter, 1864. Laguna Beach, Calif., to Gulf of California. Type locality: Cape San Lucas, L.C.

Cytharella junea Dall, 1919. San Diego, Calif. to Catalina Island (Lowe).

Type locality: San Diego, Calif.

Collecting data: off Catalina Island in 30 fms. (Lowe).

Cytharella pomaria Dall, 1919. San Pedro, Calif. (Lowe).

Dr. A. N. Strong comments on the species placed here by Dr. Dall in Bull. 112 as follows: "Bartsch states that "Daphnella" clathrata Cabb belongs in the genus Endaphana Bartsch. I do not know what D. fuscoligata Dall is but I do not think it belongs here."

"Daphnella" clathrata Cabb, 1866. San Miguel Island to San Diego and Cortez Bank, Calif. Redondo Beach, Calif. (Burch). Type locality: Catalina Island in 60 fathoms.

Collecting data: Off Redondo Beach in 100 fms. (Burch); off Catalina Island in 30 fms. (Lowe); off Newport in 30 fms. (Lowe).

"Daphnella" fuscoligata Dall, 1871. Monterey to San Diego, Calif.

Type locality: Monterey, Calif.

Grant and Gale named this species Mangelia crassaspera (1931, p. 599). They placed the species in Mitromorpha which they considered a subgenus of Mangelia making the name Fuscoligata preoccupied by rigid fuscoligata Carpenter. However, this procedure has not been accepted generally.

Collecting data: Dredged off Monterey in 20 fms. on shale; also off Redondo Beach in 50 fms.; off Maga Cove, La., Co., in 40 fms. (Burch); Laguna and Long Beach (Lowe).

Dr. Paul Bartsch in Nautilus 57:107, 1944, in the notes states that it may become necessary to take Taranis out of the Turridae and make Taranida a separate family. Soft parts do not fit the Turridae etc.

Type locality: San Pedro Pleistocene. Collecting data: Dredged off Redondo Beach, Calif., in 100 fms. mud bottom (Burch); Alaska (Lowe Collection).
The following keys and data are taken from Mr. A. E. Strong’s notebook.

Genus Turricula
Fasciole broad, concave, canal moderate to long • Turricula
- Shell elongate, with nodes or short ribs below the fasciole (Turricula s.s.)
- Spiral sculpture of slender cords
 - Axial ribs about 8 .. nigricans
 - Axial ribs about 12 nautica (crusospira)
- Spiral sculpture of fine striae only
- Axial ribs short, curved, protractice libya
- Axial ribs reduced to small, sharp nodes maculosa
- Shell fusiform, axial ribs indistinct (Plourosusia)
- Periphery with two spiral cords
 - Peripheral spiral cords nodulous fusinella
 - Peripheral spiral cords smooth dolenta
- Posterior peripheral cord stronger than anterior armilla
- Periphery angulated with a single spiral cord
- Shell yellowish to light brown lavina
- Periphereal keel with regular brown spots arcuata

Genus Clavus
Spiral sculpture of cords or raised threads (Clathrodrillia)
- Whorls rounded, with distinct axial ribs
 - Spire with 4 or 5, body whorl with 1x spiral cords pardiana (sulina)
 - Spire with 4, body whorl with about 20 spiral cords nautica
 - Spire with 7, body whorl with about 25 spiral cords callionira
- Whorls angulated, with the spiral cords predominating
 - Spire with 1, body whorl with 9 spiral cords
 - Anal fasciole spirally striate halis
 - Anal fasciole smooth .. soror
 - Spire with 1 or 2, body whorl with 6 or 7 spiral cords thestis
 - Spire with 2, body whorl with 8 spiral cords jconomum
 - Spire with 2 or 3, body whorl with about 12 major spiral cords aloestis
 - Spire with 3, body whorl with 6 spiral cords holiplexa
 - Spire with 2 major and 2 minor spirals, body whorl with 15 adonis

Clavus panthea Dall of G. & G., p. 580, is described as without a callus and for this reason and others does not belong here.
Clavatula halis Dall of G. & G., p. 485, is described as not mature and nothing is said about the presence or absence of a callus. In other ways it clearly belongs in the group with Clathrodrillia.

Whorls with a distinct subsutural band (Crassispina)
- Axis of last whorl set at an angle with that of the spire
 - Body whorl with a single spiral row of small tuberces luctuosa
 - Body whorl with about 8 nodulous spiral cords luctospira
 - Body whorl with a spiral row of nodules on each side of fasciole rudis
 - Body whorl with axial ribs ... oxcentrica
- Shell uniform turrited or biconic
- Axial sculpture faint or wanting
 - Sutural band with a smooth carina
 - Shell uniformly black or dark brown
 - Body whorl with a row of nodules and 2 rows of granules, aterrima (con.)
August 1946

Body whorl with many rows of nodules cerithoidea
Body whorl with 4 or 5 spiral cords, upper one undulated and uniform black grandimaculata
Body whorl with elongated peripheral nodes and 8 cords, fonsecana
Shell dark with a subtranslucent band above the nodules, melchersi
Shell dark, raised sculpture banded white or yellow
Body whorl with a keel and 3 rows of granules collaris
Body whorl with 2 dark and 2 light keels zonulata
Periphery with sharp tubercles, base with distant spirals, albonodosa
Body whorl with about 12 spiral cords, peripheral ones paired, nephila
Shell yellow
Spire with a fine beaded cord between 2 rounded keels, cincta
Axial sculpture faint or wanting
Sutural band weakly lobed or granular carina
Shell uniformly black monteroyensis
Shell marbled with brown and white amathoa
Shell dark, the raised sculpture banded yellow or white
Periphery with 2 rows of nodes curconodosa
Periphery with a single row of elongate nodes
Peripheral nodules 16 monilifera
Peripheral nodules 12 nephila
Axial sculpture distinct
Sutural band with several small spiral cords
Shell uniformly livid purple tapocana
Shell dark with paler spots or bands
Last whorl with about 14 spiral cords rugitexta
Body whorl with 6 tuberculate spiral cords trimariana
Sutural with a weakly lobed or granular carina incrasata
Sutural band with a smooth keel
Shell uniformly dark brown or blackish
Axial ribs 6 bridosi
Axial ribs 8 or 10
Spiral sculpture granulated granulata
Spiral sculpture distinct on the base only rustica
Axial ribs 12 or more
Axial ribs distinct on the periphery only
Axial ribs oblique, sharp caclata
Axial ribs vertical, fine discors
Axial sculpture distinct
Sutural band with a smooth keel
Shell uniformly dark brown or blackish
Axial ribs 12 or more
Axial ribs extending over the base
Entire surface finely spirally striate hanloyi
Ribs small, numerous, somewhat numerous callosa
Spire with 3, body whorl with 21 spiral cords solitaria
Spire with 4, body whorl with 15 spiral cords hermanita
Shell with the raised sculpture banded yellow or white
Axial ribs 8 to 10
Spiral striations only axial ribs with 2 basal nodules, flavonodosa
Spire with fifth spiral stripe, 3 cords on the base eurynome
Spire with 2, body whorl with 7 spiral cords bacchia

con
Axial ribs 12 or more
- Posteriorly with irregular, tuberculate spiral cords. *appressa*
- Spire with 3, body whorl with 10 tuberculate spiral cords. *biclor*
- Sutural band nodulous
- Shell uniformly dark brown or black
- Axial ribs 8 to 10
- Axial ribs 14 or more
- Body whorl with fine spiral striae only. *eobus*
- Body whorl with strong spiral cords
- Ribs fading out below the periphery. *martinonis*
- Ribs reaching the canal. *savoryd*
- Shell dark with the raised sculpture banded with white
- Axial ribs 12, base with 4 tuberculate spiral cords. *pluto*
- Axial ribs 14 or more
- Ribs showing as double or triple nodes on the shoulder. *aristico*
- Spire finely spirally striate, 4 low cords on base. *adansiana*

Genus Clavus con.

Whorls without a sutural band (Brachytoma)
- Spiral sculpture of strong cords
- Shell with a short spire and moderate canal
- More or less nodulous spiral cords on the spire
- Spire with 1, body whorl with 5 spiral cords. *trimarianta*
- Spire with 3, body whorl with 4 or 5 spiral cords. *candace*
- Spire with 3, body whorl with 8 spiral cords. *discoregrandinaculata* see Grassispira
- Nodulous spiral cords confined to the base
- Axial sculpture of 9 oval nodes. *eurytyone*
- Axial sculpture of 7 or 8 short ribs. *erigone*
- Axial sculpture of 12 ribs. *abdera*

Genus Clavus

Axial sculpture of ribs extending from suture to suture
- Spiral sculpture confined to the canal
- Axial ribs nearly continuous up the spire.
- Axial ribs 8 or 9 pinkish white, polished
- 8 x 3 mm. Gulf of Calif. *Lalage*

 Proc. 56, p 7, pl. 20, fig. 3
- Axial ribs 10 to 11
- White, polished 9 x 3.5 mm. Panama Bay, 51 fms. *hospesara*

 Proc. 56, p 6, pl. 20, fig. 2
- Light brown, brilliantly polished 9.5 x 4 mm. Head of Gulf of California *palmeri*

 Proc. 56, p 9, pl. 19, fig 7
- Pinkish white or flesh color, polished
- 14 x 6 mm. Panama Bay, 153 fms. *platicella*

 Bull. Mus. Comp. Zool. 43-289; Proc. 56, pl. 20, fig. 4
- Axial ribs not continuous over the suture
- Axial ribs 8 to 9 7 x 2.5 mm. Panama Bay, 51 fms. *elissa*

 Proc. 56, p 6, pl. 20, fig. 4
#62 p 35

August, 1946

... Axial ribs 12-14

... White-base yellowish 14.2 x 5 mm. Pt. San Firmin, L.C. ... rawiana
 Proc. 56:17 pl.3:4

... Yellowish, a dark spot on back of body whorl - 14 x 5 mm
 Acapulco to Central America pudica

... Axial ribs 14

... White, polished 8.5 x 3 mm near Mazatlan attiliana
 Proc. 56:10 pl.18:7

... Spiral sculpture confined to the spaces between the ribs

... Close incised spiral lines on lower part of body whorl.

... Brownish, polished, 6.5 x 2.25 mm. Todos Santos Bay ... hemphilli
 Oldroyd vol. 2, pl.69

6 to 7 incised spiral lines on body whorl followed by 3 cords

... Brownish, glistering, ribs lighter 13.7 x 5 mm Scammons Lago ... aruba
 Proc. 56:10, pl.4:3

... 10 to 11 incised spiral lines on last whorl

... Pinkish brown, brilliantly polished - 7 x 2.5 mm. Gulf Calif ... aeolia
 Proc. 56:11, pl.3, fig.1

... 11 mm. Papagayo quisqualis

... Spiral sculpture crossing the axial ribs

... Spiral lines or threads between the sutures 3 (Clathrodrillia)

... Intersection of axial and spiral sculpture slightly nodulous

... White 10 x 4.5 mm Cape San Martin, 218 fms. castiana
 Proc. 56:15, pl.2:1

... Intersection of axial and spiral sculpture strongly nodulous

... Whitish with a brown periostracum 16.5 x 8.6 mm La Paz ... andromeda
 Proc. 56:16, pl.2:2

... Spiral lines between the sutures 4 to 6

... Axial ribs 7

... Pale pinkish brown 23.5 x 7.3 mm Gulf of Calif ... pilsbryi
 Lowe p 23, pl.4, fig.2

... Axial ribs 10 to 14

... Fasciole narrow, slightly contracted

... Ribs narrow, shap edged

... Whitish 16 x 6 mm. Gulf of Calif ... aerope
 Proc. 56:13, pl.1, fig.3

... Ribs wide, strong

... White, polished, with touches of brown 17 x 6.5 mm
 Gulf of Calif ianthiana
 Proc. 56:19, pl.4:6

... Fasciole strongly constricted

... Shell pale olivaceous 13 x 5 mm. Gulf of Calif ... paziana
 Proc. 56:14, pl.5:1

... Shell whitish or gray 22 x 3 mm. Acapulco to Panama ... pallida

... Axial ribs 13

... Purplish brown with a yellowish white glaze 16 x 6 mm
 Proc. 56:11, pl.4 San Pedro halocydne

... Axial ribs about 35

... Warm yellow brown 7 x 3.5 mm. Gulf of Calif ... limans
 Proc. 56:14, pl.13:3

... Spiral lines 10

... Flesh color, periphery with pinkish spots on the ribs
 Lowe p 23, pl.4, fig.1 17 x 7 mm Gulf of Calif ... acapulcana
Entire surface with fine spiral threads

Rosaceous 11 x 4.5 mm, Gulf of Calif., Proc. 56:9, pl. 120:9, *hucuba*

Axial sculpture of axially elongated nodes at the periphery (Elaeocyma)

Peripheral nodes 8

Base with smooth spiral cords

Porcelain white, back of last whorl brown 50 x 0.5 mm, Gulf of Calif., *unimaculata*

Base with 4 spiral rows of nodes

Dull waxen, darker behind the aperture - 15 x 6 mm - Panama Bay

Proc. 56:12, pl. 4:5

Peripheral nodes 10 to 11

Yellowish, later whorls brownish with a pale peripheral band

31 x 10 mm, San Pedro to San Diego, Proc. 56, pl. 4, fig. 1, *empyrosoa*

Brownish, paler on the upper whorls 13 x 1.8 mm, Gulf of Calif.

Proc. 56:12, pl. 4:2

Peripheral nodes 13

Cream color, nodes brownish 49 x 17.3 mm, Gulf of Calif., *pembertonii*

Lowe, p. 22, pl. 3, fig. 6

Spiral sculpture of strong cords crossing the low axial ribs

Whorls angulated with one or more peripheral (Corinodrillia)

With a single cord between the surral cords

Surface with microscopic spiral striae - yellowish white-

20 x 7 mm, La Paz, Proc. 56:17, pl. 15:4, *haliata*

Surface smooth 14 x 5 mm, Guaymas, Py1, p. 45, pl. 2, f. 4, *scoror*

With two peripheral cords

Lower peripheral cord the strongest

Base with 12 spiral threads, last whorl keeled - Pale greenish brown

30 x 8 mm, Proc. 56:18, pl. 5:6, Gulf of Calif., *aloestis*

Last whorl with 8 cords, followed by spiral threads

Fasciole wide, smooth Pale brown 27 x 8 mm, Gulf of Calif., *haliplexa*

Proc. 56:19, pl. 5, fig. 5

Fasciole axially threaded Fawn colored 15 x 5.1 mm, Acapulco, *paziana*

Manzanillo, P & L, p. 45, pl. 2, fig. 3, *calancula*

Upper peripheral cord the stronger

Pale brownish, clouded on a yellowish ground 30 x 3 mm

Proc. 56:18, pl. 5:3, Gulf of Calif., *thesia*

Peripheral cords equal, close spaced, Acapulco to Panama, *duplicata*

With two major and two minor spiral cords on the spine. Cinnamon brown, summit of ribs whitish, 17 x 5.6 mm, Py1 45, pl. 2, f. 2, Manzanillo, *adonis*

With three weak cords on the spine. Greenish white above the periphery, brown below 14.4 x 5.4, Manzanillo, P&L p. 46, pl. 2, f. 5, *dichroma*

Whorls not angulated, spine with 4 or 5 cords

Base with 10 spiral cords 13 x 5 mm, Proc. 56:14, pl. 5:1, La Paz, *paziana*

Whorls shouldered

Base with 15 spiral cords 18 x 6.6 mm, P&L 44, pl. 12, f. 1, Acapulco, *nutica*

Last whorl with 25 spiral cords, Pale brownish 16 x 5.5 mm

Proc. 56:16, pl. 5:2, Lower Calif., *calianira*

aconome Dall, Proc. 56, p. 15, no fig., Gulf of Calif.

aconome Dall, Proc. 56, p. 19, no fig., Acapulco

alocynae Dall, Proc. 56, pl. 2, fig. 3, Gulf of Calif.

albicostata Sby., Rve. 8, fig. 62, Galapagos

clavata Sby., Rve. pl. 15, fig. 132, West Colombia

rosa Sby., Rve. fig. 43, Central America

rugiforma Sby., Rve. pl. 15, fig. 127

splendida Sby., Rve. pl. 18, fig. 60, Galapagos

sclpae Rve., Rve. pl. 18, fig. 154, Panama.
Genus Clavus (\textit{Crassispira})

Axial sculpture of strong growth lines only
- Two spiral cords on the spire, five on the body whorl.
- \textit{Crassispirella}
 - Dark brown, cords lighter. 23.5 x 8.5 mm. Panama.....\textit{dirceu}

\textit{Proc. 56:22, p.63.}
- grandimaculata C.B. Adams. \textit{fife Love}

Axial sculpture of elongate nodes on the body whorl
- Paraperticular series of nodes, 5 smaller on base
 - \textit{Crassispirella}
 - Dark brown, with a whitish peripheral band 10 x 3 mm.
 - \textit{Proc. 56:21, p.7:5. Acapulco} \textit{curynome}
- Eight peripheral tubercles, rest of sculpture faint. Black, tubercles lighter. Obs. Cat. 466 12.5 x 4.25 mm. Mazatlan \textit{albonodosa}

- Fasciole separated from the suture by a smooth cord
 - A nodulous cord on the periphery, 5 on the base. Dark, the cords yellowish
 \textit{P&L. p.52, pl.5, f.3} 12 x 4.5 Nicaragua \textit{looxospira}
 - Two cords on the periphery, 7 on the base. Slate gray with yellowish projections. \textit{Proc. 56:26, p.6, f.1, 14.5 x 5.5 La Paz} \textit{bacchia}
 - Two nodulous cords on the periphery, 10 on the base. Black, projecting sculpture yellow. \textit{Proc. 56:23, p.7, f.1, 13x5mm Panama} \textit{neophole}
 - Eight equal cords on spiro and base. Uniformly black. 15.7x6 mm.
 \textit{P&L p.50, pl.13, fig, 11 Gulf of Fonseca} \textit{fonseca}
 - Nodulously keeled on the periphery, \textit{a few spirals on base.} Very dark chocolate. 15 x mm. \textit{Reeve pl.12, f.100 Gulf of Calif. to Ecuador}

\textit{Brachytona} \textit{aterrima}

- Similar, many nodulous spirals on base. \textit{Brachytona}
 - 16 x 6.5 mm. Mazatlan. Haz. Cat. 462 \textit{corithoides}
 - A peripheral row of granules, similar rows on the base. Black, granules and keel yellow. \textit{Reve pl.15, f.10, Ecuador} \textit{collaris}
 - A single row of peripheral tubercles, faint on body whorl. Uniformly black.
 \textit{Reve pl.13, f.149. 15 x 5 mm. Magdalena Bay to Peru} \textit{luctuosa}

- Fasciole separated from the suture by a lobed or waved cord
 - A tuberculate peripheral cord, 5 cords on base. Black with projecting sculpture orange. Haz. Cat. 464 16 x 6.75mm Gulf of Calif. to Panama \textit{monilifera}

- Fasciole separated from the suture by a nodulous cord.
 - A peripheral row of tubercles, five cords on base. Tan green with orange.
 \textit{P&L p.51, pl.10, f.11, 17 x 6.2 mm. La Paz} \textit{nymphia}
 - Periphery with two headed cords. Black, cords yellow
 \textit{Reeve p. 16 fig.39. Ecuador} \textit{zonulata}

Axial sculpture on body whorl of short ribs
- Fasciole separated from the suture by a fine thread
 - Entire surface with fine spiral striae. Dark purple brownish, ribs whitish
 \textit{Oldroyd v.2, pl.1, p.71, 17x6mm. Monterey \textit{Crassispirella} \textit{montereyensis}}
 - Fine spiral threads above the periphery, nodose cords on the base. Olive brown, aperture purplish. \textit{Proc.56:21, p.7:6, 20x9mm Panama \textit{origono}}
 - Nine equal spirals above the periphery, 16 on the base. Livid purple under the olivaceous epidermis. \textit{Proc.56:25, pl.16:5, 19x8mm Cape Tepoca, topocana}
 - Series of nodes on periphery, 5 cords on base. Black with nodes yellowish.
 \textit{P&L p.52, pl.7:8, 11x9mm Tres Marias Islands} \textit{trimariana}
 - Two peripheral cords, 2-3 on base. Pale purple with touches of brown.
 \textit{Proc.56:22, pl.11, f.186, 17x6mm Gulf of Calif. \textit{Crassispirella} \textit{candace}}
 - Two or 3 peripheral cords, 5 on base. Black or very dark brown. 9x3.5 mm.
 \textit{Proc. 56:24, pl.28, 17f. Panama Bay} \textit{epicaesta

Ribs small, numerous, and somewhat obsolete. Brownish... callosa (Rve. 12:104)

Fasciole separated from the suture by a rugose band.

Spiral sculpture absent. 2 series of basal tubercles. Black, ribs and tubercles yellow, fasciole bluish. 11.2x5.2mm. Corinto: flavenodosa (P.&L p.51)

Ribs crossed by very finely granulated lines. Light brown. Crassispirella

Réveo pl.11, fig. 90. Panama

Fasciole separated from the suture by a smooth cord.

Two peripheral cords, 4 on base. Grayish (probably bleached). 11x5mm. Panama: Crassispirella... bridgesi

About 15 spiral cords on the body whorl. Dull brownish black. Crassispirella

Réveo pl.42, p.7:7; Panama

About 20 spiral cords on the body whorl. Brownish black. Crassispirella

Réveo p.53, pl.3:5; Mazatlán

With a prominent lump or varix. Blackish brown. Brachytona

Réveo pl.6:38; Panama

Entire surface finely spirally striated. Black, epidermids blackish brown.

9.5 x 3.75mm. Mazatlán. Maz. Cat. ?/63;... hanleyi

Strong spiral cords on the base. Dark chestnut or chocolate. 50 x mm. Kienor p.93; Gulf of Calif. to Peru

Ribs numerous, sharp. Brownish black. Gulf Calif. to Ecuador: Rustica (Rve. pl.91)

Fasciole separated from the suture by 4-5 cords.

Body whorl with about 14 spiral cords. Dark reddish brown with a pale peripherial band. 30.5 x 10 mm. Proc. 56; San Bartolome Bay: rugotata

Fasciole separated from the suture by a waved or lobed cord.

One peripheral series of nodes, 3 on base. Marbled with brown and white.

Proc. 56; pl.6:12; Acapulco: Crassispirella: anathoa (?)

Two peripheral cords, 3 on base. Black with a peripheral series of orange tubercles. P.&L p.50; pl.3:2; Gulf of Calif., Acapulco

Ribs grained and crossed by raised lines. Blackish. 40mm. Panama

Réveo pl.9, fig. 76;... incassata ss

Ribs transversely ridged. Brown. Rve. pl.7:58; Galapagos:... eccentricus

Fasciole separated from the suture by a nodose cord.

Entire surface with fine, equal spiral striae. Brownish black. 24.2x9mm. P.&L p.49; pl.2:10; Corinto:... orbicus ss

Body whorl with fine striae, a few larger. Dark reddish ribs paler. 7.5 x 3 mm. Cape San Lucas:... Crassispirella:... appressa

Body whorl with about 15 small cords. Black with lighter spots on summit of ribs. P.&L p.48; pl.2:11. 30.3x13.2mm. Panama:... adamsiana ss

Body whorl with 12 rounded spiral cords (brownish). Crassispirella

Proc. 56:27, pl.13:6; 18x3mm. Cape San Martin, Gulf of Calif.:... martensis (?)

Two or 3 peripheral cords, 4 or 5 on base. Dark brown with paler projections. Proc. 56:26; pl.6; 17x7.5mm. Bartolome Bay: Crassispirella: arsinco

One spiral cord on the periphery, 4 on base. Black with an interrupted yellow band. P.&L p.49; pl.2:12; 18.6x8.6mm. Gulf of Calif.:... pluto

Entire surface minutely spirally striated, 2 prominent on base. A narrow horn colored band above the tubercles. 18x6mm. Maz. Cat. ?/61; Brachytona

Gulf of Calif. to Panama:... mecliorsi

Whorls tuberculate, ribs crossed by coarse lines. Chocolate brown with a white band above the periphery. 30mm. Réveo pl.7, p.50; Crassispirella

Gulf of Calif. to Peru:... rudis

Ribs decussated. Brown, aperture blackish purple. Rve. errata fig. 29

Central America:... poweryi

Spiral sculpture absent. Pale brownish black. Panama. Rve. pl.11:92;... unicolor

Ribs tuberculxated. Blackish brown; ribs yellow. 20mm. Panama:... bicolore (Rve. 6:40)
Genus Clathurella

Notch armored
- Outer lip thickened and dentate in the adult
- Axial ribs indistinct on the body whorl
- Whorls angulated, with a spiral keel on one angle
- Spiral keel prominent...crystallina
- Spiral keel not prominent...canfieldii
- Whorls not angulated
- Spire with from 2 to 4 major spiral cords
- Intersections of axial ribs and spiral cords nodulous
- Axial ribs nearly vertical...adria
- Axial ribs protractively oblique...adina
- Intersection of axial ribs and spiral cords not nodulous...cymodoce
- Spire with 5 or 6 spiral cords...thalassoma
- Axial ribs strong, reaching to the canal
- Spiral sculpture confined to the base
- Axial ribs 12, spiral threads 13...partefilosa
- Spiral sculpture on all whorls...candia
- Canal distinct
- Axial ribs 9...sirena
- Axial ribs 12 to 14...immaculata
- Canal very short
- Sculpture deeply pitted, axial ribs sharp...trichodes
- Sculpture not pitted, axial ribs rounded...rava
- Axial ribs 15 or more...affinis

Genus Mangelia

Notch obsolete at all stages, shell biconic...(Mitromerpha)
- Axial sculpture absent...filosa
- Axial sculpture on early whorls only...fracilior
- Axial sculpture present on all whorls
- 2 or 3 spirals on spire, 6 or 7 on body whorl
- Aperture about ½ length of shell...crassaspera
- Aperture about one third length of shell...thyosa
- 2 or 3 spirals on spire, 10 on body whorl...aspera
- 4 to 6 spirals on spire, about 22 on body whorl...interfossa
- Notch shallow, rounded in the adult
- Ribs closer, more irregular...(Bela)
- Whorls rounded or slightly shouldered
- Entire surface with fine spiral striae
- Axial ribs 9 to 12
- Spiral striae on spire about 10...variegata
- Spiral striae nearly obsolete, shell glossy...pulchrior...nitens
- Spiral striae crowded, indistinct...striosa
- Axial ribs 15 or more
- Shell white, with 2 darker spiral lines...oenoa
- Shell pale lead color, with horn colored bands...plumbea
- Spiral sculpture of grooves showing between the ribs
- Shell uniformly dark reddish brown...interlirata
- Shell white, with widely spaced brown lines...costa
- Spiral sculpture of small raised cords
- Axial ribs about 12...bella
- Axial ribs about 15...tetolca
Whorls obtuse angulated

Axial ribs 7 or 8

Spiral striate distinct, flattened

Spiral striate rather indistinct

Axial ribs 10 to 12

Spiral sculpture of fine, equal striate

Spiral sculpture fine more or less alternating

Body whorl with about 12 spiral threads

Axial ribs 15 or more

Spiral sculpture fine, uniform

Spiral sculpture nearly obsolete

Whorls sharply angulated with a cord on the angle

Axial ribs about 7

Axial ribs 9 or 10

Body whorl with 10\' major spiral cords

Body whorl with 7 major spiral cords

Notch deep, slit-like

Axial ribs waved-like, spiral sculpture fine

Axial ribs 5 or 6

Spiral sculpture absent or microscopic

Spiral sculpture on spire fading out on base

Spiral sculpture of numerous grooves

Shell purple brown, banded with white

Shell horn yellow

Spiral sculpture of numerous equal threads

Spiral sculpture of somewhat unequal threads

Axial ribs irregular, more numerous toward the apex

Axial ribs sharp, vertical

Axial ribs with every 3rd or 4th thread larger

Axial ribs 7 or 8

Spiral sculpture absent or microscopic

Spiral sculpture of a median and several anterior threads

Spiral threads on the anterior half of whorls stronger

Spiral sculpture on body whorl of 4 strong threads

Spiral sculpture on body whorl of 7 obscure threads

Spiral sculpture of fine, equal threads

Whorls shouldered

Shell fusiform, short, stout

Shell subcylindrical, turrited

Shell slender, acute

Whorls not shouldered

Shell stout, blunt, white, brown banded

Shell slender, waxen white

Axial ribs 10 or more

Spiral sculpture of fine, equal threads

Shell subdiaphanous, tinted reddish brown

Shell pinkish with cinnamon axial dashes

Spiral sculpture of 12 grooves on base and canal

Spiral sculpture fine, with 3 or 5 major cords

Intersection of major cords and ribs nodulous

Intersection of major cords and ribs swollen

Intersection of major cords and ribs smooth
The following are species listed by Mr. A.K. Strong in his notebook:

Genus *Turricula*

T. (Turricula) arcuata Reeve

T. (Turricula) ibiby Dall.

T. (Turricula) maculosa Sowerby

T. (Turricula) maura Sowerby

T. (Turricula) nigricans Dall.

T. (Pleurofuscus) armilla Dall.

T. (Pleurofuscus) dolenta Dall.

T. (Pleurofuscus) fusinella Dall.

Clavus militaris Hinds

T. (Turricula) lavina Dall.

Genus *Surculites*

S. (Surculites) carpenterianus Gabb

var. tryonianus Gabb

Surculites remondii Fossil

S. (Surculites) stearnsianus Raymond

Genus *Turris*

T. (Turris) nobilis Hinds

T. (Turris) oxytrops Sowerby

T. (Turris) plota (Beck) Reeve

T. (Gemmula) gemmata Hinds

T. (?) rombergii Horn.

Genus *Ancistroyrinx*

A. ccoo-nulli Reeve

Genus *Leucosyrinx*

L. (Afora) persimilla Dall.

L. (Stiraxia) argenta Dall.

L. (Stiraxia) aulacea Dall.

L. (Stiraxia) castanea Dall.

L. (Stiraxia) cinctulata Dall.

L. (Stiraxia) clarinda Dall.

L. (Surculina) blanda Dall.

L. (Surculina) calapagnana Dall.

L. (?) ciliata Dall.

L. (?) percella Dall.

L. (?) surculina Dall.

Genus *Pleurotomidae*

P. calypso Dall.

P. cinerea Dall.

P. erosina Dall.

P. esilda Dall.

P. esuriens Dall.

P. exulans Dall.

P. herida Dall.

P. isagogia Dall.

P. jenneria Dall.

P. mollacea Dall.

P. alysiina Dall.

P. alysiina Dall.

P. geryibia Dall.
Genus Lora

Lora brachia Dall. Galapagos 622 f. Proc. 56:41, pl.1;3
Lora elegans Dall. Norwegian Coast. Tryon vol.6:219, pl.23:50
Lora levadensis Cpr. Vancouver to San Diego. Proc. 56, pl.21:1
Lora reticulata Brown. Scotland. Recorr.pl.19, fig.159.
Luga Dall. San Diego 112 f. Proc. 56:46, pl.16:10
Lora subulata Gould. Ecuador. Tryon vol.6, pl.32, fig.122, fig.18.

Cunningham Smith Patagonia.

Genus Daphinella

Dall, Dall. Panama Bay. Proc. 79,art.15, p.5.

Genus Spirotropis

S. (Spirotropis) cymotochae Dall. San Diego 822 f. Proc. 56:31, pl.9:5.
S. (Spirotropis) evanida Dall. (in Hancali) Sta. Rosa Id. 53f. 56:69, pl.23:2.
S. (Spirotropis) polycasta Dall. Tillamook Bay 786 f. Proc. 56:50, pl.9:4-7.
S. (Pythiongus) renaudi Arnold. Fossil.

S. (Borsonella) abarbera Dall. Sta. Rosa Id. 55f. Pr. 56:35, pl.9:5.(Antiplanes).
S. (Borsonella) agassizi Dall. Panama 1471 f. Bull MCZ 43:275, pl.1:5.
S. (Borsonella) barbaren Dall. Sta. Barbara Id. 502-614f. 56:37, pl.12:6.
dalli Arnold (not V & S.) Type loc. fossil.
angelana Hanna. New name for dalli Arnold.
S. (Borsonella) saccoi Dall. Panama Bay. Bull. MCZ 43:277, pl. 322 f.
S. (Borsonella) suffusa Dall. Galapagos 634 f. 43:282, pl.14:10.

August 1946
August, 1946

C. (Carinodrilia) alecitis Dall. Guaymas. Proc. 56:16, pl. 5:6
C. (?) bicanifera Sby. Central Amer. Rve. pl. 12:103
C. (Carinodrilia) duplicata Sby. Central Amer. P2S 1833.
C. (Clathrodrillia) haliplexa Dall. La Paz. Proc. 56:19, pl. 5:5.
C. (Clathrodrillia) panthea Dall. Panama. Proc. 56:14, pl. 1:5.
C. (Crassispirula) albonodosa Pr. Mazatlan. Maz. Cat. # 466.
C. (Crassispirula) granulosa Sby. Panama. Rve. pl. 11, fig. 90.
C. (Crassispirula) hartsfordiana Reeve.
C. (Crassispirula) incrassata Sby. Panama. Rve. pl. 9:76.
C. (Crassispirula) incroce Dall vide Love, not Befrae.
C. (Crassispirula) lucuta Hinds. Magdalena Bay. Rve. pl. 18:149.
C. (Crassispirula) melchersi Menke. sec aterrima.
C. (Crassispirula) nephale Dall. Panama. Proc. 56:23, pl. 7:1.
C. (Crassispirula) tepocana Dall. Cape Tepoca. Proc. 56:25, pl. 6:5.
C. (Crassispirula) tiarella Eiener. Type loc. ?
C. (Crassispirula) trimariana P. & L. Maria Madre Id. Pr. Ac Nat Sci. 84:52.
Genus Bellaspira Conrad, 1866.

E. grippi Dall. San Diego. Oldroyd v. 1, p. 72, pl. 11:15.

brenneri Arnold. Fossil

quentimensis Fossil

... (Bela) angiola Dall. Panama. Proc. 56:61, pl. 20:3.
... (Bela) antiochrea Dall. & L. Panama. Ac. N.S. p. 56, pl. 5:8.
... (Bela) antitoda Dall. & Magellan Str. Proc. 56:41, pl. 19:1.
... (Bela) antiplayrus P. & L. Acapulco. Ac. N.S. p. 57, pl. 3:12.
... voorvayi Dall. Monterey. Proc. 56:64, pl. 22:5.

H. (Bela) carpenteri de Folin. Panama.
H. (Bela) costa Dall/ San Pedro. Pr. 56:71, pl. 21:7.
H. (Bela) cyrenae Dall. La Paz. Proc. 56:62, pl. 21:5.
H. (Bela) godfroidi de Folin. Panama.

barbaraeis Oldroyd. new name for angulata.

B. (*Agatha*) angulata Dall. Magdalena Bay. 56:58, pl. 18:8.

O. (*Agatha*) nobile Dall. Panama. Proc. 56:77, pl. 23:4-5.

U. (*Agatha*) quadriseriata Dall. Gulf Calif. Pr. 56:75, pl. 24:3.

W. (*Agatha*) subdiaephan Dall. Cape San Lucas. Proc. 56:73, pl. 24:4-

Z. Genus Chathurella.

C. *adelia* Dall. Sta Maria Bay. Proc. 56:52, pl. 17:5.

F. *hacemi* Sby. Central Amer. Rve. 12, fig. 103.

G. plus *articulata* Sby. vide Tomlin.

L. *cribata* Hicks. Veragua.

Q. *crystallinae* Cpr. Panama. PZS 1856, p. 162.

C. neglecta Hinds. Nicoya. Reeve pl.25:12
C. parvula Hinds. Nicoya. Reeve, pl.231:96
C. rigida Hinds. Panama. Reeve, pl.25:12
C. serrata Cpr. Panama. PZS 1856, p. 163.
C. strongyloides Sy &. Panama, Reeve.
C. trichoxydes Dall. new name. Proc. 56:62, pl.19:3.
hiraxum de Folin (not Bellardi). Panama. Tryon v.6:270, pl.30:75.
C. (Hannodilera) fraternalis Dall. Cape San Lucas. Proc. 56:60, pl.20:5
C. (Hannodilera) nana Dall. Cacachitas. Proc. 56:49

Genus Enotellina
M. diumex Dall. Coronado Isl. Proc. 34:227
M. gippoi Dall. San Diego. Proc. 56:27, pl.8:2.
M. cancellata Cpr. not Sowerby. Puget Sound.
M. rhinesi Dall. New name for cancellata. Proc. 56:28, pl.8:5.
M. ophioderma Dall. Proc. 56:28, pl.12:5.
M. interna Hinds (not Bartessch). Magdalena Bay.
M. punctata of authors.
Genus Hemileptecta
M. beithima Dall. Panama 1270 f. Bull. MCZ 43:267,pl.1:7
M. vicellia Dall. Panama 1270 f. Bull MCZ 43:268, pl.14:5
Genus Taranis
Taranis strong Arnold. Fossil. Grant & Gedc p.572, pl.26:37
Genus Teres
T. panope Dall. Ecuador 401 f. Proc. 56:31, pl.9:2
Genus Burchia
Genus Burchia
Burchia clionella Dall. Gulf of Panama.

The following comments are made by Mr. A.M. Strong in his notebook and
many of them are of interest to us.

Dall uses the genus Turricula and places under it as subgenera Krefastia
and Surcula. Woodring makes Krefastia a good genus and at least for some of
the shells placed by Dall in Surcula suggests the new genus Fusiturricula. He

(Con.)
also states that both Turricula and Surcula are oriental groups and need not be considered in the West Indies.

Grant and Gale use the genus Clavatula and under it Knefastia as a subgenus for the west coast shells. They also include Carinodrillia as a section stating that the type is like Turricula the other species placed in the genus by Dall are distinct. The specimen figured by Dall shows a partly formed lip, but in the description Dall states that the anal sulcus is deep and rounded which does not agree with the figure. Evidently their conclusions are based on the figure only and the section does not belong here. They also use the genus Turricula with Pleurofususia as a subgenus for shells similar to those placed by Woodring in the genus Fusiturricula. The question of the character of the nuclear whorls as stated by Woodring and Grant and Gale is one that we hardly need consider. My idea is to consider Knefastia and Fusiturricula as good genera, with a number of species.

Knefastia Dall, type Pleurotoma olivacea Sowerby, not Reeve. We have specimens of three very similar forms which evidently represent olivacea Sowerby, funiculata Val. and tuberculifera Brod. & Sby. The various figures and quoted synonymy make it difficult to say which really belongs to which name. Dall and others list Pleurotoma duplicata Sowerby as belonging here. Reeve's figure is imperfect and does not show the notch or canal. Also there is no sign of the two spiral cords for which the name is given which is mentioned in both Sowerby's and Reeve's description. Tryon copies several other figures of the species, none of which look anything like Reeve's figure.

Pilsbry and Lowe identify an entirely different shell, very close to Carinodrillia alcestis Dall as duplicata Sowerby. I do not think that duplicata belongs here. Knefastia nigricans Dall certainly belongs here. Turricula maura Sowerby as I have identified it is very similar if not identical. To these I would add Turricula maculosa Sowerby. These shells are slender with a moderately long canal, the notch rather shallow, rounded, unarmed, close to the suture. The sculpture consists of short axial ribs or axially elongated nodes and a number of fine spiral threads. Turricula libya may belong here the canal is somewhat shorter and the spiral sculpture is absent. Turricula (Surcula) laysanica Dall is a northern shell and probably does not belong here at all. Turricula (Surcula) pantheca Dall has a different notch and different sculpture and can hardly be placed here. I have a note that Drillia punctatostriata Carpenter may belong here. This is described in P.Z.S. for 1856, p.164. It has never been figured and I do not have the description. 1. This gives us the following: Knefastia dalli Batesch., funiculata Val., maculosa Sowerby, maura Sowerby, nigricans Dall, olivacea Sowerby, tuberculifera Broderip & Sowerby, ? libya Dall, ? and punctatostriata Carpenter.

Genus Fusiturricula Woodring. Type, Turris (Surcula) fusinella Dall.

The three species described by Dall, fusinella, armilda, and dolenta are closely related and perhaps intergrade. Only one was figured and I am not sure of the identification. The shell we have identified as arcuata Reeve seems to belong here. There is some doubt if we can use this name for a west coast shell, see Tomlin, Proc. Mal. Soc. vol.21, p.33. Lavinia Dall seems to be a very similar shell but larger and with shorter canal. Woodring gives a good description of the genus. We would have the following species: 2. Fusiturricula arcuata Reeve, armilda Dall, dolenta Dall, fusinella Dall, lucinia Dall.

Woodring describes a new genus Polystira and says that it is the American tropical representative of the Indo-Pacific Turris. He states that the west coast picta Reeve and albicarinata Sowerby belong to a subgenus under Polystira. He suggests no name for this subgenus. Grant and Gale use the name Turris for west coast shells and place picta and oxytropis Sowerby in Turris spp.
Bartsch in Smithsonian Misc. Coll. vol. 61, no. 2, p. 8 shows that the type for Polystira as given by Woodring cannot be used and designates another species as the type. This does not seem to affect the generic characters as he describes and figures a new species from the West Indies very similar to oxtropis under Polystira. Woodring gives a good description of Polystira, but the type according to Bartsch should be Murex virgo Wood, not Pleurotomaria albida Perry as stated by Woodring. There seems to be but four specific names applied to west coast shells which are very similar and considered identical by Tryon and others. albicarinata Sowerby, 1870 seems to be identical with oxtropis Sowerby, 1855. Turris rombergi Horsch is also a synonym. I recognize three species as follows: Polystira nobilis Hinds, oxtropis Sowerby, and picta Beck in Reeve.

Carpenter lists Pleurotomaria gemmata Hinds from Magdalena Bay but this locality is very doubtful. Grant and Gale give it under Gemmula which they make a subgenus of Turris. The various species described by Dall as Gemmula seem to belong elsewhere. The deep water and cold water shells listed by Dall under Gemmula, Leucosyrinx and Irenosyrinx and by Grant and Gale under Leuco-syrinx and various subgenera are not represented in our collections.

The genus Ancistrosyrrinx seems to be recognized generally. Woodring and Grant and Gale both describe it. We have but one species on the coast, usually listed as Ancistrosyrrinx ceco-nuilli Reeve. There is some question as to the type locality for this name. Tryon gives it as Japan. It is not unlikely that our shell needs a new name. The genus is very distinct and species from various localities are quite similar.

The genus Loru, as used by Grant and Gale and at least in part by Dall seems to be restricted to a northern group. Grant and Gale's statement as to type is not correct as has been shown by Pilsbry and as a result their conclusions will have to be revised.

The genera Borsonia and Spiratropis with various subgenera as used by Grant and Gale seem to be a general mixture and should be separated into several genera. The group with application on the columella for which Dall uses the name Borsonella should stand, if for convenience in classification only. Also the left and right handed species they place in a subgenus Anti-planes should be separated in some way.

There seems to be some question about the use of the genus Pleurotomoids Bor. Dall uses the name Pleurotomella Verrill, and describes a number of west coast species, all from 400 to 1000 fathoms or more.

Grant and Gale use the genus hemipleurotoma Cossmann, type from the Eocene of Italy. They make the genus Cryptocerami Dall a synonym, stating that except for the type the various species described by Dall under that name belong in Spiratropis etc. This is probably another case of basing definite conclusions on a figure only. All are deep water shells.

Genus Pseudomelatoma Dall. Type Drillia penicillata Carpenter.

There has been much confusion in regard to the names in this genus, due to failure to recognize the small differences. P. torosa Carpenter is the northern, knobby form found at Monterey and that general district. I doubt if it comes south of Point Conception. P. moesta Carpenter is a much smoother shell found in southern California and at least as far south as Todos Santos Bay. P. aurantia Carpenter is a very smooth color form of this found in southern California. The Mazatlan record probably is a misidentification. Grant and Gale list a subgenus Leavitectum Dall. The only mention I can find of this is the one given by them where Dall lists a ? Clathrodrillia (Leavitectum) oburnea Carpenter. This would hardly seem to be enough to establish a subgenus.
The shell figured by Dall as *oburnea* looks very much like specimens of *aurantia*, and is said to be pinnish white. *P. penicillata* is a larger shell with different sculpture from the others. The Gulf of Calif. record is very doubtful. *Drillia digitata* E. & Smith is placed in this group by Tryon. It is unfigured and I have not seen the description.

The shells of this group form a small group ranging from Puget Sound to the outer coast of Lower California. Dall places them tentatively in *Moniliopsis* which he places as a subgenus of the much later described genus *Clathrodrillia*. Grant and Gale also use the name but place it as a distinct genus. It is very doubtful if the name should be used for our shells, but I find no suggestion of a name that might take its place. We have the following, all of which range south of San Diego or are reported from San Diego only: *M. brisesi* Dall. *Dall described this as *Antiplanes* but it seems to fit here better. *M. diculax* Dall. Unfigured and described as *Antiplanes*. Grant and Gale place it here. *M. grippi* Dall. *M. fancherianae* Dall. Described as *Mangelia* but later listed by *Dall* *Moniliopsis*. According to Willett the type is a rather poor, half grown specimen of the later described *M. halcyoniana*. Dall. *M. incisa* Carpenter. Described as *Drillia* not of Reeve. *M. ophtoderma* Dall. *Surcula ophtoderma* Dall., new name for *Pleurotoma inermis* Hinds1843, not of *Pleurotoma* 1842. Usually considered a shore variety of the deeper water incisa. *M. quentinensis* Dall. Described as *Cryptogemma* but placed here by Grant and Gale. The figure indicates that it probably was correctly placed by Dall. *M. rhines* Dall. *Surcula rhines Dall., new name for Pleurotoma cancellata* Carpenter, 1865, hot J. Sowerby, 1827.

Genus *Daphnella* Hinds. Grant and Gale state that the position of the genus in the family Turridae is uncertain. Woodring uses family Daphnellinae. *Bartsch described a new genus Eudaphne*, Proc. U.S.N.M., vol. 79, art. 10, p. 3. *Type Eudaphne allemani* Bartsch. This genus name was afterwards changed to *Eudaphne*, Nautilus, vol. 47, 1976. Grant and Gale state that *Daphnella clathrata* Gabb is very similar to *D. lymnaeiformis* Kner, the type of *Daphnella*. Bartsch states that *D. clathrata* Gabb belongs in his new genus *Eudaphne*. Pilsbry and Lowe, p. 61, discuss this but do not state definite conclusions. They however retain *Daphnella* for the two species they describe.

In this group we have listed the following: *Daphnella allemani* Bartsch, *D. bartschi* Dall, *D. clathrata* Gabb, *D. mazzatlanica* Pils. & Lowe, *D. panamica* Pilsbry and Lowe.

Genus *Mitromorpha* Adams in Carpenter. *Type*, *M. filosa* Carp. Only two species definitely placed in this genus are reported from the Lower California coast. *M. filosa* Carpenter and *M. gracillor* Hanphill. Grant and Gale place *Mangelia* (Clathromangelia) *myssa* here. It is very unlikely that *Clathromangelia* *amorosato* is represented on the coast. It looks like one of the species which stands all by itself the a good series of live specimen might show differences not shown in Dall's figure. *Clathrodrillia* *limans* Dall, also mentioned by Grant and Gale, probably is not a Turrid. It has been suggested that *Daphnella casta* Hinds can be placed here but the canal is quite distinct and quite different from *Daphnella*. It seems to be another species that stands all by itself.

Atigust, 1945

E. (H)angelia

Grant and Gale list a large series under it and if it is confined to rather slender shells with low, rounded axial ribs, the aperture narrow, the sinus indistinct, lip and columella smooth there will be formed a fairly distinct group as follows: Bela costa (Mangelia), B. octolae Dall (Mangelia—equals Aesopus oldroydii Arnold), B. densilinata Dall (Cytharella), B. hovore Arnold (Hangelia), B. Interlirata Stearns (Hangelia), B. ocnod Dall (Mangelia), B. perattenuata Dall (Mangelia), B. pulchrior Dall or Variegata Carp. (Mangelia), B. Plumbae Hinds (Baphellia).

Grant and Gale list a section Ishnula Clark in Gray. They place a few species in it and state that they are more angulated and relatively shorter and broader than Bela sp. The species area follows: Bilocetace Dall and Bartson (Hangelia), B. barbarensis Oldroyd (Hangelia angulata Cpr Not Recei. ? Lora antipoda Dall.

Grant and Gale lists a few species which they consider to belong to Mangelia sp. as follows: M. amatula Dall, M. hexagona Cabb, M. quentinensis Dall (Cytharella), M. p.salida Dall (Cytharella), M. merita Hinds (Clavatula), M. painei Arnold.

Grant and Gale use Agathotoma as a subgenus of Mangelia while Dall uses it as a subgenus of Cytharella, an indeterminate name. The species placed by Grant and Gale in Agathotoma can be divided into at least two distinct groups. There seems to be no description of Agathotoma as a restricted genus or group. As used by Dall it can be described as follows: Shell small, rather slender, sculpture with a few strong axial ribs and fine spiral threads, the aperture narrow, the outer lip variega, the anal sinus distinct, rounded, the varix extending around the sulus to a junction with the body whorl, canal short or slightly differentiated. A. camarina Dall, carissima Pils. & Lowe, curvula Dall, fitinima P&L, hastula P&L, andis PaL, pendolo Dall, phryne Dall, pyrrhula Dall, strissa C.B. Adams, taeniomata P&L, ? Haedrepleura melita Dall.

Cytharella as used by Dall is very similar to Agathotoma but is usually stouter, with more numerous axial ribs and stronger spiral sculpture. The anal sulcus is at the suture and the variose lipes not extend to the junction with the body whorl. Pilabry and Lowe use Cytharella for the shells Dall calls Agathotoma. Woodring described a new genus Ithycytherea, type Mangelia pustula Bush and designates a type for Cytharella, Iurex costatus Donovan. Recent of Europe, while Dall uses a different type. The nuclear whorls, here described by Dall, are more like those of Woodring’s new species than of Cytharella as defined by his new type. It looks like Ithy-cytherea Woodring would be well used for one or both of these groups.

Philbertia as described by Dall is stated to have the outer lip dentate but with the exception of two or three species all the species described by Dall from his west coast are without denticles on the outer lip. Woodring does not recognize Philbertia in the Bowdon fauna but mentions that the type is a European shell. Grant and Gale make Philbertia Dall, in part, a synonym of Mangelia, subgenus Agathotoma. I see no reason for not combining the species described by Dall as Cytharella and Philbertia in a single genus. The list would be as follows: acula Dall (Cytharella), aestra Dall (Philbertia), cymatias Pils. & Lowe (”Mangelia”), diotyna Dall (Philbertia), doris Dall (Philbertia), electra Dall (Cytharella), ? formica Sowerby (Pleurotoma), fusonotata Carp. (Cytherea), helena Dall (Philbertia), hiloria Dall (Philbertia), hippolita Dall (Cytharella), louisa Dall (Cytharella), ? mida Dall (Cytharella), ? megala C.B. Adams (Pleurotoma), nebe Dall (Cytharella), phaethusa Dall (Cytharella),

#62 p 51 August, 1946
August, 1946

Genus Adolocysthara Woodring is described with only one species in the Bowden fauna, the apertural armature more reduced than in Dthycthara, the outer lip with a single denticle immediately below the notch. The figure of Philbertia aegialoa Dall seems to show a similar denticle (not mentioned in the description) and is otherwise a very similar shell.

Mangelia melanostricta Pilsbry and Lowe is the type of Stieronepion Pilsbry & Lowe. The statement is made that this species is closely akin to Mangelia (Clathromangelia) lincoluta Reeve, of west coast conchologists. This latter has been renamed by Pilsbry as fredbakori and placed with Anachis. Grant and Gale place it in Chauvetia.

Dall describes a genus Zetekia, type Z. denticulata Dall. Lowe considers this species to be identical with Pliurotomina gomulosa C. B. Adams. This to be a good genus with but two species known from the coast. The shell is similar in size and shape to Mitromorpha but there is a distinct, rounded sinus. The second species is Zetekia curta and is unfigured.

Genus Cymatosyrinx Dall, type Pliurotomina lunata Lea, as figured by Grant and Gale has distinct axial ribs but is without spiral sculpture. Most but not all of the species described by Dall in the genus are smooth bottomed, the axial ribs and the genus can well be confined to such species.

Genus Elaeocysta Dall. Type, Drillia empyrosia Dall. Dall does not seem to have described this other than to designate the type. There is a small group similar to the type. They are large shells, over 80 mm, in length with the axial ribs and aperture similar to Cymatosyrinx but with fine, more or less indistinct spiral sculpture present. The main distinguishing character is that the back of the last whorl is smooth, more or less humped and frequently of a darker color than the rest of the shell.

Clathurella Carpenter. Type Clayatula raya Hinds. While there has been considerable question as to the validity of this name it seems to have been accepted by Woodring, Grant and Gale, and Pilsbry and Lowe. Grant and Gale's description of the genus and the synonymy of the species is not correct. Pilsbry and Lowe state that the type has not been figured on a sufficiently large scale to show all the characters and give a good figure of a typical shell. They also state that the group seems generally separable from Glyphostoma by the short, sidesiphonal sinus and the small number of transverse ridges on the columella, also the less impressed anal fasciole without the numerous subsutural folds. Their revised description of the type states that the lip is preceded by a strong varix and has a series of teeth within. The canal is very short and there is no trace of a strombid notch.

Glyphostoma Gabb. Type, Glyphostoma dentiformum Gabb. Grant and Gale consider this to be a synonym of Clathurella but both Woodring and Pilsbry and Lowe consider it to be a good genus.

There seems to be a great deal of difference of opinion as to what weight can be placed on the presence or absence of teeth on the inner or outer lip or both. Grant and Gale give almost no weight to it. Pilsbry and Lowe in Glyphostoma do not seem to consider low denticles on the type as important as the species they list here do not seem to have them, Bartsch in placing Glyphostomops without a denticle as a subgenus of Glyphostoma with denticles also does not seem to consider the presence of the denticles to be a generic character. It would help greatly if the character of the denticles could be considered as definite generic or subgeneric characters.
MINUTES OF THE CONCHOCLOGICAL CLUB OF SOUTHERN CALIFORNIA

September 1946

These papers are published by a group of interested students for our own pleasure. It is not our intention to offer subscriptions and guarantee regular periodical publication. However, any person or institution will receive all papers published by our club by contributing $2.50 per year or more to our fund. Expenses are defrayed by voluntary contributions of members and friends.

We are now meeting the first Tuesday of every month at 7:30 P.M. at the Los Angeles Museum, Exposition Park, Los Angeles, Calif. All interested persons are cordially invited.

Please mail all news about shells to your editor,

John Q. Burch,
4206 Halldale Ave.
Los Angeles 37, Calif.

This issue is being mailed a little early because it is probable that the editor will be called east on a business trip in September.

The editor and a few friends have been investigating the idea of doing some dredging and collecting. We have no boat of our own and a very limited amount of tackle, dredges, trawls etc. The expense of chartering a boat and equipping an expedition with proper tools is considerable. We have been thinking about offering shares in the catch on a fair pro rata basis to anyone who might care to take a chance on a part of the dredgings. It would seem fair to allow those of us who do all of the work and use the tackle, sort the shells etc., to get our share for the effort and divide the catch among those who financed the fee charged for the boat. The details have not been worked out. If interested let the editor know. We had an idea of working it out so that anyone interested could get a share for a contribution to the expenses.

More collectors should buy the "Tide Tables Pacific Ocean and Indian Ocean", Serial No. 874, U.S. Department of Commerce, Coast and Geodetic Survey, Washington, D.C.

This book is published annually, contains over 400 pages and gives the tides from Cape Horn to the Arctic on this coast as well as elsewhere. There is a similar book for the Atlantic Ocean. The cost is a mere 25¢ and about as well spent as any two bits a shell collector ever spent.

We are now working on a complete index to our papers to date. This will cover the Pelecypoda, Scaphopoda, Gastropoda, Amphineura. It is suggested that you bind this up after receipt of the index. This will probably be late this fall.

Our next project will be to cover the freshwater fauna.

Introduction

Chitons are mollusks with an articulated shelly armature consisting
of eight parts, or valves, imbedded or held in place by a girdle of tough
muscular tissue. They are grouped in the Class Amphineura. Dall, in Bull.
112, places them as a subclass of the Class Gastropoda. Whether this was
by design or otherwise is not known as most other authors give the Amphini-
neura a status equal to the other four molluscan Classes (Pelecypoda,
Scaphopoda, Gastropoda, and Cephalopoda), which is the arrangement believed
to be the proper one to follow.

The Class Amphineura is divided into two orders- the Polyplacophora,
or chitons, and the Aplacophora, which are worm-like, shellless, and gen-
erally live at considerable depths.

The Order Polyplacophora is well known to West Coast collectors for
the interesting variety of genera and species that live between the tides
or at moderate depths from which in some localities they may be dredged in
quantity. In a paper presented in 1939 before the Sixth Pacific Science
Congress, Taki states that the chitons in the Pacific Ocean area number
about 650 species, divided into 7 families and 92 genera.

The name Polyplacophora is not universally accepted, Iredale and Hull
2, in their monograph of the Australian chitons, refer them to the Order
Loricata and call them loricates. They date the use of Loricata to Schu-
maker's 1877 and present their case for the use of this terminology in
the opening paragraphs of their monograph. The case for the use of Poly-
placophora is presented by Dr. S.s. Berry in a recent instructive paper
"Chitons", Their Collection and Preservation in the December issue
of 'Mollusca', published by Paul H. Reed of Tavares, Florida. Thiele, in
his 'Handbuch' published beginning in 1929, uses the Class Loricata,
which he divides into the Orders Lepidopleurida and Chitonida.

Classification

As may already have been surmised from the above, the classification
of the chitons is still in an extremely plastic state, not only with res-
pect to the major divisions but also to the remaining subdivisions from
Families down to Subgenera and Sections. Nearly every'student of them has
proposed an improved system, dating from Carpenter's MS., which he left
unfinished at the time of his death. Dall had access to this and used it
extensively in an important report on the limpets and chitons of Alaska 6,
which was published in 1879. Pilsbry in the Manual of Conchology 7, put
the group in good working order in 1892 and 1893. Both Dall and Pilsbry
validated many of Carpenter's MS. names and descriptions, but unfortunately
for the careful work Carpenter had done, under the existing Rules of
Nomenclature these must be attributed and dated in accordance with the
authors who subsequently gave them valid standing.

Working with the radula of chitons as a principal basis, Thiele made
some changes in Pilsbry's arrangement in the Manual and to some extent
these are reflected in Dall's classification in Bull. 112. Subsequently,
beginning in 1923, Iredale and Hull in their work on the Australian chitons
made several additional changes but as they consider the Australian forms
unique in a large number of instances, their arrangement is of little ass-
istance in the classification of West Coast species. While it is not the
intention here to present a systematic arrangement that is particularly different from the one used by Dall in all. 112, several changes have been suggested by Dr. S. S. Berry, of Redlands, California, whose detailed knowledge of the group has been justly recognized, where changes are made in Dall's classification the reasons for them will be stated.

Those interested in the history of the classification of the chitons will find most of it in Volume 14 of the Manual of Conchology, pages xiv-xxvi. An up-to-date classification is given by Thiele in his "Handbuch der Systematischen Weichtierkunde", Volume 1.

The Shell of Chitons

In discussing or describing chitons a special terminology had to be developed in order to call attention to the peculiarities of their shell forms and structure. Explanation of the terms more commonly used appear in a number of papers or monographs, the principal ones being as follows:

4. Iredale and Hull; A Monograph of the Australian Loricates- Australian Zoologist, 3(#):187-189, figs. 1-4. Figures excellent showing sculptural variations in both shell and girdle.

The following definitions, taken principally from Berry, may be found helpful:

Valve (or Plate)- One of the eight "shells" of a chiton.

Head Valve- The anterior valve.

Tail Valve- The posterior valve.

Intermediate (or Median) Valves- The six valves between the head and tail valves, numbered 2 to 6, inclusive, from the head valve.

Girdle- Leathery muscular tissue, variously ornamented or plain, in which the valves may be slightly, partially, or wholly imbedded, and which holds them in place.

Tegmentum- The outer, usually softer surface layer of a valve.

Articulamentum- The inner, usually hard, semi-porcellaneous shell layer, which projects past the tegument on the sides and front of the valves to form the sutural laminae and the insertion plates.

Lateral Area- That portion of the tegument of an intermediate valve, often triangular in shape, lying at the side and toward the anterior, usually sculptured diagonally and set off from the central area by a diagonal ridge.

Central Area- That portion of the tegument of an intermediate valve lying centrally and usually differing in sculpture from the lateral areas.

Terminal Areas- Tegmentum surface of head and tail valves.

Jugum- The longitudinal ridge of a valve, when present.

Jugal Tract- The surface of the tegument adjacent to the jugum.

Floral Areas- Side slopes of valves, not including the jugal tracts.
Lateral Dorsal Areas—The entire region of the clefts of the latero-dorsal area of valves, in some species the boundaries between the jugal and lateral areas are more distinctly separated than those of the lateral areas (i.e., the sculpture of the plural areas is much the same throughout).

Banks—A posterior angular projection of an intermediate valve at the jugum. When this exists, the valves are said to be mucronate.

False Banks—A similar forward projection of the eaves between the sutural laminae.

Eaves—Portions of the eaves just over the points where the insertion plates push forward.

Jugal Tissue—Character of the shell tissue of the "little cliffs" that form the eaves. It is sometimes porous or "spongy."

Insertion Plate—Narrow marginal extension of the articulamentum of a valve projecting into the girdle.

Sutural Laminae—Sharp, plate-like projections of the articulamentum from either side of intermediate and tail valves, which are overlapped by the preceding valve when in normal position.

Jugal Sinus—The "bay" or depression between the sutural laminae. Sometimes called the sutural sinus.

Posterior Sinus—The embayment in the anterior median line of a tail valve. It is formed by the tegument and sometimes also by the articulamentum.

Slits—Abrupt indentations in insertion plates.

Teeth—Portions of the articulamentum between the slits, usually most prominent in the tail valves.

Slit Rays—Slight grooves, or rows of pores that run from the slits toward the apex of a valve.

The surface of the girdle may be ornamented with scales (which may be flat or rounded, dull, or polished, smooth or striated, and spaced regularly or irregularly); with calcareous spines (which may be uniform, irregular, straight, or curved); with spicules; with hairy or bristly processes (which may be widely spaced and set in pores or closely set and bushy, simple or branching); or with a combination of such ornamentation. In the genera having a posterior sinus in the tail valve, the girdle has a corresponding sinus or slit.

The slitting of the insertion plates and the covering of the girdle, as well as certain important radial and other internal characters, form the principal bases upon which chiton genera are founded. In determining species, it is therefore desirable to disarticulate specimens of a species that is difficult to determine. Valves may be carefully slipped out of the girdle and mounted in sequence, on narrow glass slides with a small drop of clear cement, which permits them to be studied in detail. Smaller specimens, when so treated, may be protected by placing them in glass vials or glass-topped boxes. In preparing mounts of this sort, no amount of care should be spared to keep from chipping the insertion plates, sutural laminae, or other delicate parts of the valves. As recommended by Berry, the girdle and the remaining part of the animal should be preserved in alcohol and labelled so that the valve-mount may be associated with the rest of the chiton from which it came.
REFERENCES

8. Iredale and Hull - See No. 3 above. The complete monograph was published in successive parts of Volumes 3 and 4 of The Australian Zoologist, from 1923 to 1926.

Shell Structure of Chitons

After Dall
Diagram of Chiton Showing Parts (Iredale and Hull)
The chitons will be continued in our next issue.

There are several fine papers in this issue. One very interesting report is by A. Wrigley on the structure of lamellibranch shells. Two long papers by L.R. Cox dealing with English fossil genera and species. A paper on the genotypes of Plotis and Ampulla by R. Winckworth. Three new species of Pleurobranchidae are described by K.M. White.

Fishes and Shells of the Pacific World by John T. Nichols and Paul Partsch. The Infantry Journal. This interesting little book is the one written for use by the U.S. military forces. The part on shells is from page 115 to 192 with 16 plates.

Fish Bulletin No. 63, The Commercial Fish Catch of California for the Years 1943 and 1944, Division of Fish and Game, California. The amounts of shell fish reported from California is somewhat amazing. For an example in the year 1944 alone they report 1,630,402 pounds of Abalone. Other items are equally surprisingly large.

Holiday, July, 1946 contains a write up on shells which may be of interest to those concerned with articles written for the public.

Mollusca, vol. 1, no. 9, June 1, 1946. There are several papers in this issue well worth comment. "Insect Pests of Conchological Collections" by Gordon E. MacMillan should be read by all collectors. "Stage Growth of Family Coccidae" by Athleen Underwood is interesting. Two articles on collecting in New Zealand, one by A.G. Stevenson and one by Arthur Richardson. Mr. C.L. Blakeslee gives an account of collecting in the Niagara River.

F.E. Shafer, R.R. 1, Trenton, Ohio. Mr. Shafer writes that he is now getting well over his war damages and hopes to be able to return to the Philippines by the coming September. He is still very much interested in getting conchological literature. He invites correspondence from other collectors.

Dr. Alexander Comfort, 20 Honor Oak Road, Forest Hill, London, SE 23, England. "Can you put me in touch with someone in your area who would exchange local freshwater, land, and marine shells. I need specimens of these for research I am doing?" The above letter was written to Mr. Kenneth Rexroth, 692 Wisconsin Avenue, San Francisco who asked Dr. Hanna of the California Academy of Science. Mr. Rexroth says "I gather that Dr. Comfort wants shells from all over the USA and that the research is medical-zoological rather than strictly conchological, but about the latter point, I am not so sure."

Mr. A. Sorensen, 247 Granite St., Pacific Grove, Calif. The editor and Mrs. Burch were recent visitors again to Andy's city and again enjoyed his hospitality. He made another four weeks trip to Guaymas, Mexico and as usual brought back some rather amazing things. Besides large numbers of very fine marine shells he had some specimens of a barnacle labelled Alopas rex. These barnacles have long stems perhaps a foot in length, and Mr. Sorensen said that he found them anchored as deep as 2 inches in the flesh of large black marlin. They were vicious looking things and it was difficult to imagine a barnacle being so destructive. We understand that this species is quite rare even in the larger museums. Andy seemed to have a number of them in case there are those interested in this group particularly. He also took a large number of barnacles from the large green turtle.
Soptc!mbcr,1946

Fyrgolampros) Bartsch) "ci.

The following are shells not included in the above lists.

Diadrea inaequalis inaequalis sewerby - Talara, Peru. Extension of range about 300 miles southward from Manta, Ecuador.

Corithoidea stjohnosso Bartsch, 1909- Shuyak Strait, Afognak Island, Alaska.

Extension of range northward from Port Frederick.

Bittium eschrichtii Issendorff, 1849, Drier Bay, Knight Island, Alaska.

Extension of range northward from Sitka, Alaska.

Neptunea saturna Martyn, 1784- At mouth of Yukon River, Arctic Ocean-Norden- skjold Expedition, 1873- Voyage of the Vega- Extension of range about 3,000 miles westward from Bering Strait.

Lora althorpsensis Dall, 1919, Shuyak Strait (1924), Afognak Island, Alaska.

Extension of range W.N. from Granite Cove, Port Althorp, Chicago Island, S.E. Alaska.

Lora miona Dall- Unalaska, Aloultian Islands, 1932. Extension of range westward from Boca de Quadra, Alaska.

Lora alitakensis Dall, 1919, Shuyak Strait, Afognak Island, 1924. Extension of range about 75 miles eastward.

Lora pyramidalis Strom- Akutan Island, Aloultian Islands, also Tromso, Norway. New to Alaska.

Lora reticulata Tr- Akutan Island, Aloultian Islands, New to Alaska.

Turbonilla (Pyrgolampros) eschscholzii Dall & Bartsch, 1909- Izuit Bay, Afognak Island, 1922. Extension of range N.W. from Port Simpson, B.C.

Odostomia chinocki Bartsch- Hud Bay, Thurston Co., Wash. (on Ostrea lurida) Extension of range northward from Columbia River, Oregon.

Haliotis wallalonesia- Mr. Andrew Soronson reports the following records either of which are extensions of the published range- South of Monterey, Calif, in 100 ft. and off Pt. Buchon, San Luis Obispo County, Calif.

Lyonia californica haroldi Dall- We published the range of this species as being from Morro Bay north to San Francisco Bay. However, on a recent collecting trip with Mr. Allyn Smith I was informed by Allyn that this form is very common in Tomales Bay, and just to prove it I stopped and collected several typical specimens as well as a handful of Corithoidea California Haldeman as this is the farthest north this species has been reported. The specimens seemed typical. We also did a little land shell collecting that afternoon. Perhaps the most interesting catch in this line were the Holmington Glypta nicliniana awania (Bartsch) and H. arosa, miwokas (Bartsch) from Point Reyes on June 15, 1946. The only thing of any particular note about this excursion was that Allyn and I parked the car comfortably in the lee side of the point leaving Mrs. J.Q. Buchon there. We then after getting permission from the lighthouse officer in charge went down the ocean face of that cliff on narrow little trails with the wind just short of a hurricane. After risking life and limb we collected perhaps 40 (con.)
smalls and proudly returned to the car only to have Dr. Burch calmly show us specimens of the same species which she had taken from the forms within a few feet of the parked car. We also took a few specimens of Haplotrema minima at the same locality.

Dr. Joshua L. Baily Jr. (Personal Comm. June 12, 1946) makes some very interesting comments on several species and problems on the Haliotidae. This is a peculiar family. Most modern taxonomists are splitters in every other family but lumpers in this one. To me it seems foolish to recognize so many species among the small shells like the Pyramidellidae which look so much alike, while ignoring such forms as Mrs. Williamson's Haliotis splendida which to my mind is a thoroughly good species because it is so unlike any other species. Of course, it may be that the shells that we call H. splendida are really something else— but in any case what we have is the most plentiful of all species of this genus on the coast—and quite distinct so that whatever its name is, it should not be ignored. Another thing— it seems to be fashionable today to write Haliotis cracherosii Holznori and H. c. lusus—but again they are widely different. We have the types of Holznori and they are pathological specimens— all of them. The specimen which Mr. Kelsey wrote up in the Nautilus the year before Haniphill described holznori was an altogether different thing. I was in Holznor's store when he found this shell in a shipment of shells from Baja California and gave it to Mr. Kelsey. I was the first person to see this shell after Mr. Holznor and Mr. Kelsey. It was a very different thing—perfectly normal which had no indication whatever of over having had holes. It is probably a good variety, but could be easily considered a species, and the form which Orectt called bona is a very interesting form because it is physio-

logical.

The best collection of abalones I have ever seen is that which was made by Mr. Cass and which now belongs to me. When I got it out of storage I hope I can add to it and obtain some of the forms which I do not have—t the form of H. fulgens without holes — the form with two parallel rows of holes— the true "green abalone", etc. Eventually I shall have some of these photographed, and perhaps write an article about them at that time.

Article 19 of the code reads "The original orthography of a name is to be preserved unless an error of transcription, a lapsus calami, or a typographical error is present." Inasmuch as Hangelia was named for Hangel I assume that a lapsus calami is evident. Furthermore Opinion 26 authorizes the correction of Cypsilurus to Cypseluris because the former is an obvious typographical error, and Opinion 27 corrects Rupella and Rupellia both to Rupellia not by suspension of the rules under the plenary power which the commission holds but by application of the rules.

Of course, Petit named a common species of Polinices after Reclus, but he called it reclusiana instead of reclusiana because he felt that the letter "a" had no place in Latin and should be used only in words of Greek origin. Some later writers have assumed that this was a typographical error and have spelled the name accordingly, but there is no justification for this. In the case of Hangelia, the spelling with the "o" is no more or less acceptable as Latin, but as the man whom it was named for was called Hangel I have accepted the corresponding spelling.
As for adopting binomially, it is quite rare, probably not over half a dozen copies in the U.S. and no two of these agree in all respects. Perhaps it should be suppressed for that reason. But it seems likely that the differences between them may be due to the omission from one copy of material that is included in another, and not to contradicting statements made in material common to two copies. Personally I do not think a work should be rejected because it is not consistently binomial. We already have a rule that names which are not binomial are not available, therefore acceptance of Martyn means acceptance only of his binomial names; I can see no objection to that.

Suppose a writer prepares a treatise dealing with a limited number of forms in which he uses the binomial system. Suppose he then prepares a similar treatise in which he does not use the binomial system, dealing with a limited number of closely related forms. These two are sent to a periodical for publication. Seeing that they are dealing with closely related forms the editor units them into a single document and publishes them. Then since about half of the names used are not binomial the work is discarded by those who hold that works which are not consistently binomial must be rejected.

Now suppose that the editor instead of publishing the two documents as one, puts them in different issues of his periodical. The one will be accepted, the other rejected. Yet the one that was accepted does not differ in any way from the form which it had under the first hypothesis—so the futility of deciding what works are not consistently binomial is demonstrated. The Conchylion Cabinet of Martini and Chemnitz is in this category. Some of the volumes have been accepted as consistently binomial—some have been rejected as not. But doubtless the rejected volumes contained some names that were as good as those in the accepted volumes—and thus they were rejected therefore as the result of the incident, if not the accident of binding. If all the volumes had been accepted, the non-binomial names would have been eliminated by application of the rule that requires all names to be binomial; by rejecting entire volumes the baby is thrown out with the bath water.

If the International Commission should reject Martyn in the same way as it has already rejected Humphrey and Bohadach and should have rejected Bolten, the question as to whether Martyn's names should be used will be settled automatically, but when such action is taken it will have to be by suspension of the rules. Therefore until such time I think we must use those of Martyn's names which are good. Probably what will happen will be that Dr. Koon or someone like her who has access to Martyn's work, will as the International Commission for a decision (I would not think of doing so, since I do not have opportunity to examine the work) and the International Commission will then reproduce some sample pages of Martyn in the Bulletin of Zoological Nomenclature, so that people like you and me can examine them and express our opinions to the Commission, who will then weigh all the opinions they receive and from them formulate their own, which will then determine the matter.

The rejection of Martyn's names will cause a great deal of confusion so would their acceptance. I think the most satisfactory solution would be to list Martyn's names and by popular vote reject some and accept others by plenary suspension of the rules.

Dr. Thomas A. Burch, National Institute of Health, Bethesda, Maryland.

The above is Tom's address at this time.

"Similar to SOLARIELLA VARISCOA High, and Adx., but whorls carinated instead of rounded, varices lower (15 instead of about 20), and inside of wide umbilicus spirally striate. Body whorl with two strong keels at the periphery, another at the summit, and a much fainter one a little in front of the suture. Whorls on the spire with a single keel at the summit. Varices continuous from spire to umbilicus, except for interruption by the double keel at the periphery of the body whorl; the strong keel at the summit is crossed and rendered nodulous by the varices. Base flattened, with about 17 fine, spiral cords. Operculum normal for the genus. Color of outside dusky with greenish sheen between the varices. Aperture subcircular, obtusely angulated on the outer lip by the peripheral keels and on the inner lip by the umbilical keel. The penultimate whorl is somewhat like that in the illustration of CÁDRÍNA CARLOTTÁ (U. S. Nat. Mus. Bull. 112, pl. 38, fig. 4), but the base and aperture are very different and the varices cross the keel at the summit.

The type, a dead specimen, No. 1084, Los Angeles Museum, was collected by Mr. and Mrs. Fred E. Lewis in 15 fathoms, at Spiridon, Kodiak Island, Alaska; a young, living specimen was dredged in 15 fathoms at Galena Bay. The type has 4 3/4 whorls, and measures: Diameter, 6.1; alt. 5 mm."
The following index covers the Minutes of the Conchological Club of Southern California numbers 1 to 65 inclusive in which the Pelecypoda, Scaphopoda, and Gastropoda are discussed. A separate index will be prepared for later numbers dealing with the Amphineura and other groups.

abarbarea, Antiplana 62:13
abarbarea, Borsouella 62:42
aberrans, Cadocalin 46:14,15,17, pl.1
abnormale, Elephantulum 54:40
abreojosensis, Balsis 53:8
abreojosensis, Cerithiopsis 54:15
abrecinta, Caisidea 54:5
abyssicola, Halrella 53:14
abyssicola, Oyosida 58:15
ACANTHINA FISHER: DE WALDHEIM, 1827
52:8
angelica Oldreyd 14:2-52:6
brevidentata Javne 52:8
calaear Martyn 52:2
grandis (Gray) Sowerby 52:8
lugubris Sowerby 14:2-52:6
mariscus (Gray) Broderip 52:8
paucilirata (Stearns) 52:8,9
pirata (Bainville) 52:9
pirata aurantia Dall 52:9
pirata punctulata (Sowerby) 52:9
taberculata Gray 52:1
ACANTHOCYLLA COX, 1867
32:9
ACANTHOCYLLA GRAY. 30:6
acapulcana, Cymatosyrinx 52:32,43
acapulcana, Hindsia 51:10
acapulcanum, Epitonium 52:23
ACAR FLX, 1847, 54:5,6
acicula, Mitrella, 51:14
acicula, Nazatlania 50:2
aciculiger, Purpura nuttalli 51:43,44
castrensis Hinds 33:8-34:45:3
ACIRIA MARCH, 1857, 52:7
ACITANA LAMK, 1799 52:40
fulida Fer. 46:36
ACITATHUS HONTFORT, 1810 52:40
ACITUS LOVEN, 1846 53:17
CALIFORNICA BARTSCH, 1877 53:17
CYGILUFORMIS (Carpenter), 1857 53:17
OCEANICDENTATA (Hemphill), 1894 53:17
Shepherdiana (Dall), 1912 53:17
TURRITA (Carpenter), 1864 53:17
TUMENOS (Carpenter), 1857 63:17
ACIAEA ESCHSCHOLTZ IN KOTZEBOEU, 1830
57:6
Albesseana Philippi, 1846 56:35
Acretica Dall, 1927 57:7
Arcuata D'Orbigny, 1841 56:35
Arretica Hiddendorff, 1849 57:11
Atretacea Carpenter, 1864 57:15,58:34-60:11
Beardiana C. Adams, 1852 56:8
Ceciliana D'Orbigny, 1861 56:35
Clypeata Lesson, 56:35
Coffee (Reeve), 1855 56:35
Conus Test, 1845 60:11-57:13,15
Dalliana Pillsbury, 56:35
Dopita (Hinds), 1842 57:7
Digitalis Eschscholtz, 1853 57:13
Digitalis umbonata Reeve, 1855 57:13
Digitalis bicornuta Gould, 1846 57:13
Discors Philippi, 1864 56:34
Fascicularis Menke, 1861 56:34
Fumaria Dall, 1914 57:7,8
Fenestrata (Reeve), 1855 57:3-60:10
Fenestrata cibaria Carpenter, 1866 57:9
Filosa Carpenter, 1865 56:35
Fonseca Pilsbry, 1892 56:35
Funiculata (Carpenter), 1854 57:6
Hybridca Hemphill, 1857 57:39
Hemphillia (Hinds), 1842 57:39
Instabilis (Gould), 1845 57:11
Limatula Carpenter, 1866 57:14-60:11
Limatula merghi Dall, 1872 57:14
Mitella Menke, 1847 56:35
Nitra Eschscholtz, 1833 57:6
Nonicola Carpenter, 1866 57:10
Nucleoloides Dall, 1871 57:10
Ochreaca Dall, 1871 57:12-60:11
Olympica Dall, 1814 57:10
Orbignyana Dall, 1903 56:35
Palaeo clada, 1853 57:9-60:10
Patina Esch., 1853 57:8
Pediculus Philippi, 56:34
Pella Esch., 1853 57:10
Perama bilis Dall, 1879 57:12
Perso a Esch., 1843 57:8
Person a Strigatella, 57:9,10
Person a Strigatella Carpenter, 1864 57:10
Lamark - pl.II, 87

ACBEDAE 56:34 57:5-16
ACBEDAE HARTMANN, 1821 56:17
ACBEDAE HARTMANN, 1821
California (Pfeiffer), 1857 56:7
California guadalupensis Pils, 56:8
stimpsoni (Stearns), 1872 56:7
truncata Hartmann 56:7.
ACBEDAE 42:25
acosmica Polinices 56:25, 29
acosinus, Colus 50:19
acra, Turbonilla 61:21
acreeus, Helicopsis 48:12
acrostephanus, Epitonium 52:32
ACTECEINA GRAY, 1847 47:2,10-15.
anguispor Baker & Hanna, 1927 47:15
carinata Carp., 17:7, 8, 47:
cerealis Gould 47:12
culicita (Gould) 49:29 17:8
47:11, 12, 15, 30, pl.II, fig. 8
incurta Gould 17:7 47:11, 14, 15,
30, pl.II, fig. 14
eximia (Baard), 1865 47:11, 13, 30
pl.II, figs. 11, 12
infrequens (Q.B. Adams), 1852 47:11
intermedia Willett, 1928 47:11, 13,
30, pl.II, figs. 9, 10 17:8
magdalenensis Dall, 1919 47:11, 14, 30
pl.II, fig. 13
oldroydi Dall, 1925 47:14
planata (Carp.), 1865 47:11, 15, 30
pl.II, fig. 14 17:7
smirna Dall, 1919 47:11, 13, 30 pl.II
fig. 15
wetherilli Lea 47:12
ACTECEINIDAE 47:11-20
ACTEON Montfort, 1810 42:24, 28 46:24
47:9
broviculus 49: back page
coronadoensis 47:10
curtulus Dall 47:10
painei Dall, 1864 47:10, 30, pl.II, fig. 7
panamensis Dall, 1908 47:10
punctoocelata (Carp.), 1866 17:8
47:9 48:28
schencki Berry 49: back page
tornatillus Linnaeus 47:9
traski Stearns, 1898 47:9
vancouverensis Oldroyd, 47:10
venustus d'Orb., 47:10
ACTEONIDAE 47:9, 10
aculea, Cytherella 62:30
aculea, Magnolia 62:39, 46
aculeata, Crepidula 56:14, 15
acuminata, Volutharpa ampullacea 50:27
acuta, Barlocia 55:21
acuta, Bulina 55:16
acuta, Marinula 48:14
acuta, Nautilus 39:19, 10
acuticostata, Arna 57:24, 25, 26
acuticostata, Cytherella 62:32, 46
acuticostata, Vorticordia 39:8
acuticostatus, Margarites 58:10
acutilinata, Incina 40:7
acutelirata, Alumia 54:34
adairona, Cymatium 54:7
adamsina, Balcis 53:8
adamsi, Cythinopsis 54:14
adamsi, Cyclostrema 58:18
adamsi, Pyramidella 16:1, 2 61:20, 47
adamsi, Rissoina 56:2, 3, 4
adamsi, Triphora 54:11
adamsiana, Crassispire 62:32, 44
adamsiana, Persicula 49:25
adamsianus, Mytilus 61:23 16:2 36:10, 11
adana, Ultharella 62:39, 46
adorna, Brachytoma 62:45
ADELOCYTHARA Woodring 62:61
ADELOMELON Dall, 1906 49:27
ancilla (Solander) 49:27.
angellana (Lam), 1811 49:27
ADMETE KROYER IN MOLLER, 1842 49:10, 14
couthouyi (Jay), 1839 49:14, 47
couthouyi laevior Lecomte, 1876 49:15
couthouyi undata Lecomte, 1876 49:15
crispa Moller 49:14
gracilis Carpenter 17:8
middendorffiana Dall, 1884 49:15
rhysa Dall 17:8
regina Dall, 1911 49:15
adonis, Colus 50:19
adonsonii, Posaenus 55:16
galapagonsic
•
alvarutlia
altina^Odostonia
althorpsensis,
althorpsensis, 56:10
althorps,Margarites 56:10
althorps,Mangelia 62:27
altina,Bicornella agonia 62:42
altina,Odostonia 61:40
altus,Polinics 56:31

ALVANIA (LEACH) RISSO,1826 55:28 47:3
euctilirata Carpenter,1866 55:34
eoglusculpta, Koep,1887 55:32
alaskana Dall,1886
albolirata Carpenter,1864 55:30
almo Bartsch,1911 55:33
aurivillia Dall,1886 55:33
bokari Bartsch,1910 55:33
bartolomensis Bartsch,1917 55:30
bicolor Bartsch,55:30
burrardensis Bartsch,1921 55:34
californica Bartsch,1911 55:33
carpentori Weinkauff,1885 55:33
castanella Dall,1886
clarionensis Bartsch,1912 55:30
compacta Carpenter,1864 55:34
corporis Hordam 55:30
cosina Bartsch,1911 55:32
dalli Bartsch,1927 55:33
dinora Bartsch,1917 55:33
duncani Bartsch,55:30
electrina Carpenter,1864 55:30
excurvata Carpenter,1866 55:30
filosip Carpenter,1865 55:33
fromosilla Riss 55:123
galapgonic Bartsch,1912 55:30
gallagoci B.H. & S.,1930 55:30
granti Strong 55:30
halia Bartsch,1912 55:30
horrorsae B.H. & S.,1930 55:30
hoodensis Bartsch,1912 55:30
ina Bartsch,1912 55:30
keene Gordon,1939 55:30,31
kyzkensis Bartsch,1917 55:32
lara Bartsch,55:30
lirata Carpenter,1856 55:30
lucasana B.H. & S.,1930 55:30
liululikensis Bartsch,1611 55:32
microlypta, Haas,1943 55:31
monsorretensis B.H. & S.,1930 55:30
monterocynosis Bartsch,1911,55:31
nemo Bartsch,1912 55:30
olivocole Bartsch,1911 55:34
pedroana Bartsch,1911 55:33
perlata Murch,1868 55:30

peruviana d'Orbigny 55:30
profundicola Bartsch,1912 55:30
purpurea Dall,1901 55:34
rosana Bartsch,1911 55:33
sanjuanensis Bartsch,1920
supranitida Wood 55:17 (Aclis)
trachisma Bartsch,1911 55:33
tumida Carpenter,1886 55:30
tavernonensis Strong & Hertlein 55:30
colvucus, Polinics 56:26
amabilis,Lyonia 38:7 46:9
AMALTHEA SCHULZLER (see HIPPOHIX) 56:9
amathoa, Crassipera 62:32,33
amathula,Mangelia 62:39,45
amutula,Cytherella 62:30
AMURA GEYER,1837 61:44
AMILA MOLLER,1842 61:44
AMUROPSIS MURCH,1887 56:33
purpurea Dall,1871 56:33
amblia,Huculana 33:9
ambustus,Fusinus 50:7
ambustus,Turbonilla 61:33
anchitka,Odostonia 61:49
american,Odostonia 61:39
AMERICARDIL STEWART,1930 41:19,25 45:14
amianta,Neptuna 46:12 61:30 50:21
amianta,Odostonia 61:39
AMINTUS CARPENTER,1865 42:6 45:15
callosa (Conrad),1857 39:17 42:6,7
43:22,34 45:18
amiata,Lora 62:20
amiata,Huculana 33:11
amiantis,Mitra 51:14,15,16
amicus,Cymatium 54:7
amilla,Odostonia 61:40
ammonia,Torellia 57:4
AMONITELLINAE 15:3
anosi,Detula 50:27
AMPHIDESILA acuata Conrad,1843 (Aligona)
40:21,23
AMPHINEURA 62:2-7 42:28,26,28,29
AMPHIPERAS MEUSCHEN,1781 52:20
AMPHIPERATIDAE (OVULIDAE) 53:20-25, 37:30 55:7,38
AMPHISSA E. & A. Adams,1852 51:25 30:2
bicolor Dall,1892 51:27 17:3
columbiana Dall,1916 51:25,63 30:2
cymata Dall,1916 51:26 55:7
Criculata Dall,1916 51:30,33 51:26,63
undata (Carpenter) 1864 51:27 17:3
versicolor Dall,1871 17:8 51:26,65
versicolor incisa Dall,1916 17:7 51:26
versicolor lineata Stearns,1872 51:26
AMPHITHALAMUS CARPENTER,1865 47:3 55:26
inclusus Carpenter, 1865 55:26
iacumatus Carpenter, 1866 55:26
stephanos Carpenter 55:26
tenuis Bartsch, 1871 55:26
tructi Strong & Hertlein 55:26
ampitrite, antiplana 62:13,43
amplo, Panomya 50:33 44:30,31
amploctens, Teinostoma 58:18
ampulla, Vesica (Bulla) 48:2
ampullacea, Volutharpa 56:26
AMPULOTROCHUS HINTEROSADO 53:5
AMUSICA 42:30
amycola, Mangelia 62:39,46
amygus, Antiplanas 62:13,42
amygus, Leucocyrix 62:7
amygus, Spirotropsis 62:42
AMYGDALUS Magnorhe von Hahfeld, 1811
45:3 42:14 36:14,5
arborescens Dillwyn 36:14
ANANASFRUENFELD, 1867 52:25
constabulata (Fruenfeld) 55:25
murci Bartsch & Rehder, 1830
55:25,34
ANACHAS H. & A. ADAMS, 1853 30:2 51:17
albopoda Carpenter, 1857 51:21
atra marginata (Sowerby), 1844 51:21
bartschii Dall, 18121
candidissimus Philip, 30:2
carnes Filsoby & Lowe, 1932 51:21
conspicua (C.B. Adams) 1852 51:21
coronata (Sowerby), 1832 51:21
costellata R. & S. 30:2 51:21
crinita (Morch), 1861 51:21
decemdentata Filsoby & Lowe, 1932 51:21
dalli Bartsch, 1831 51:22
diminuta (C.B. Adams) 1852 51:21
elegansia (Morch) 51:21
flucenta (Sowerby) 51:22
frechbarkeri Filsoby 51:21
fulva (Sowerby), 1832 51:21
fuscocrinita Carpenter, 1864 51:21
fuscidentes Dall, 1903 51:21
glava (Hanke) 51:21
gracilis (C.B. Adams), 1852 51:21
gracilis Carpenter & Hertlein 51:21
hilli Filsoby & Lowe, 1932 30:2 51:21
humerosa Carpenter, 1865 51:21
inserta (Steart), 1892 51:21
lentiginosa (Hinds), 1844 51:21
lineolata (Gray in Reeve), 1846 62:28
lyrata (Sowerby), 1832 51:21
milinda Dall, 51:21
moesta (C.B. Adams), 1852 51:21
nigrigans (Sowerby), 1832 51:21
nigrofuscus (Carpenter), 1857 51:21
nigropunctata (Sowerby), 1832 51:21
pachydermatata (Carpenter), 1867 51:21
punctillata Carpenter, 1865 51:22
pneuma Dall, 1919 51:22
pygmaea (Sowerby), 1832 51:21
reedi Bartsch, 1823 51:22
rufuscarina Carpenter, 51:21
rugosa (Sowerby), 1832 51:21
rugulosa (Sowerby), 51:22
sangifelipensis Lowe, 1835 51:21
scalarina (Sowerby), 1832 51:20 51:21
scrobiculata (Carpenter), 1867 51:21
similis Strong & Hertlein 51:21
spadica (Philippi), 1846 51:21
strongi Bartsch, 1823 51:28
subturrita Carpenter, 1866 51:23
suffusa (Sowerby) 51:21
tabagensis Bartsch, 1851 51:22
taeniata (Philippi) 51:21
torpschon: (see A. lyrata 51:21
trina Carpenter, 1864 51:21
treva D.L. & S. 51:22
varia (Sowerby), 1832 51:21
vian (Sowerby), 1832 51:21
varicosa (Gaskoin), 1852 51:21
vexillum (Reeve) 51:21
whitei Bartsch, 1838 51:22
ANADARA Gray, 1847
34:7
anatis, Cerithiopsis 54:13
anai. This canaliculata 52:5
ANAPLACUS borealis Dall 56:5
ANATINA SUNNACHER, 1817 44:3,38 45:18
amplechisensis (Gray), 1825 44:3
petia Schumacher 44:3
undulata (Gould), 1861 44:3
anatoides, Poromya 38:11
anazora, Olivella 49:17
angilla, Adelomelon 49:27
ANCISTROCHRISTA cedo-nullii Reeve 62:11,49
ANGISTROLEPIS DALL, 1894 50:15
anisotomus Dall, 1919 50:15
cañonicensis Dall, 1919 50:15
eucosmus (Dall), 1891 50:14
eucosmus bicuscinus Dall, 1919 50:15
magnus Dall, 1895 50:15
andersoni, Pecten 35:14
angelina, Pataloconchus 55:14
angelina, Borsonella 62:22
angelina, B. cinnamomea 62:23
angelina, Olivella bispina 49:19
angioles, Fossarum 53:18
angustatus, Pessarbus 55:18
angulata, Protostomia 62:40
angulata, Strombida 61:29
angulata, Gonidia 43:21
angulatus, Pessarbus 62:18
angulatus, Pediculus 48:11
angulifera, Rissoidellae 56:6
angulosa, Buccinum 50:25
angulostiatus, Nasarius 51:5
ANGULUS NEGERLE, 1881 43:5, 6, 15 45:16
angusta, Dissurella 50:6
angustior, Acteocina 47:15
ANTIODONTA DESHAYES, 1858 40:9, 10, 12, 24 45:14
complanatum Deshayes, 1858 40:24
pellucida Dall, 1916 40:24 45:14
annulata, Circulus 58:18
annulata, Lucinoma 40:9, 17
annulata, Lucina 45:12
annulata, denselineata Dall, 1919 40:7
annulaturn, Calliostoma 60:46 58:4
: 17:6, 10
annulaturn, SpiroglYPHUS 54:44
ANTIODONTA 42:26, 27, 30
ANTIODONTA LII, 1807 40:6, 5
cilia Link 40:15
: cidentaloides 40:6
annulata, Coburaria 50:27
annulata, Iselica 55:16
annulata, Hastia 50:27
ANOMALODESYCATA 42:27 45:8
ANOMALODIFIHO- Bautzenberg & Fischer, 1912, 50:19
annulaturn, Gymantia 54:7
: ANOMALIAE, 1758 36:3, 4, 7 45:7
ephilium Linnaeus 36:13
peruviana d’Orbigny, 1846 36:3, 4 45:7
: neulandica Grey 56:3
ANOMALIDAE 36:3, 45:7
antarctica, Spiratella 47:5
antarctica, Corithiopsis 54:17
antarctica, Tuborhina 51:30
antarctica, Tuborhine 61:30
antarctica, Cysticola 49:25
antarctica, Corithiopsis 54:17
ANTIOMA SCHUMACHER, 1817 42:3 45:15
forida (Yates), 1890 42:6, 14 45:15
lambillii Schumacher, 1817 42:3
rugosa (Gmelin) 42:8
antigone, Antiplanes 62:13, 43
anticam, Neptunia #7
anticochroa, Mangelia 62:39, 45
antiquata, Arca 34:5
antiquata, Cardita 39:10, 23
antiquatus, Cardita 39:24
ANTIPLANES DALL, 1902 62:15, 43, 45:9
abarbaren Dall, 1919 62:13
agamoda Dall, 1919 62:13
amphitrite Dall 62:43, 43
amphitrite herce Dall, 1919 62:13
amicus Dall, 1919 62:13
antigone Dall, 1919 62:13
boringi Aurivillius, 1885 62:14
brisians Dall, 1919 62:14
bulimoides Dall, 1919 62:14
caitlinae Raymond, 62:43, 44
diaculax Dall, 1908 62:14
: diomedia Bartsch, 1944 62:14
: hyperia Dall, 1919 62:14, 43
: kanaokata Dall, 1919 62:14
: litus Dall, 1919 62:14
: major Bartsch 46:22 62:14
: pedroana Arnold 62:43
: perversa Gabb 62:45, 15
: profundeola Bartsch, 1944 62:15
: rotula Dall, 1921 62:15, 43
: santarosa Dall 62:43
: smith-Arnold (see rotula Dall, 1919)
: thalea Dall, 1902 62:15, 43
: vinosa Dall, 1874 62:14, 43
: voyi Gabb 62:43
: antipoda Mangelia 62:39, 45
: antipyrgus, Mangelia 62:39, 45
: antiquatus, Hippionyx 56:10, 11
: antoni, Calliostoma 56:3
: aperta, Bulla (see Philine
: aperta, Venikora 56:34
: apertura, Piodora 60:25
: apertus, Bullus 56:33
: aphelus, Colus 51:63 50:20
: AMETHA, & A. DALL, 1856 49:2, 12
: aphrogenia, Coburaria 50:27
: apiculum, Epitonium 52:27
: APHTA, COPORTA 63:2
: apodes, Cuspidaria 33:12 39:5 45:10
: APOLLYNIS SALISBURY, 1829 43:24 46:16
: biangulata (Carpe), 1856 43:4, 9
: 46:back page 46:16
: apolyonis, Trophonopsis 51:59
: appressa, Crassispina 62:32, 44
: appressisostatum, Epitonium 52:27
: approximata, Lucina 40:9, 6 41:20 45:12
: APTIXIS Troschel, 1868 50:10
: aquaria, Balanomarinae 46:20
: aquilliratus, Cantharus 50:12
: AQUILIMARIA DALL, 1886 55:15
: turneri, Dall, 1886 55:15, 16
: aragoni, Turbonilla 61:30 17:7
: arata, Cardita 39:10
ARTOCAGNANELIA, 62:39, 45
ARTOCAGNAROPLI, 52:82:39
ARTOCAGNUS PRIMORDIUS, 51:49
ASAPHIDAE ROEDING, 44:23
ASCENSIONIS, 39:4
ASCENSIONIS, Theais 39:4
Asinina, HALLOTIS 60:17
Aspera, NAMANIA 17:8
Asm, Acantha 57:11
ASPELLA MARCH, 1877-51:36
Asicus Broderip, 1852 51:33
Auboliscus A. Adams 51:38
Aspera, Clathurella 62:59, 46
Aspera, Diapora 60:26, 46
Aspera, Littorina 55:10
Aspera, Littonoma 49:23
Aspera, Oconebra lurida 51:45
Aspera, Terebra 48:19, 20
Asperella, Fissurella 58:24-27
Asperor, Diapora 55:24-27
ASPERGILLUS 167
ASPERISCALA DE BOURY, 1909 58:22
Aspera, Helix 52:1 15:5
Asperum, Littium 54:33
ASPIDOSARIINA 42:25
Asc, Cingula 58:28
Asc, Turbonilla 61:24
Assimillata, Scilla 54:20
Assimilis, Halotis 60:22
ASSIMINEA Fleming, 1823 (Synega Gray 56:8
Assinine (Carpenter), 1862 56:8
ASSININEA (Syncereidae) 56:8
ASTRORTE SOWERBY, 1816 39:5, 7 45:10
Astartes Dall, 1863 39:5, 6 45:11
arctica Gray, 1824 39:5, 6 45:11 47:26
bennettii Dally, 1803 45:11 39:6
borcalis Schumacher, 1817 39:6 45:11
Compacta Carpenter, 1864 39:6 45:10
Crossidium Broderip et Sby, 39:7
Esquimalt Baird, 1863 39:7 45:11
Fabula Reeve, 1855 39:6 45:11
Globosa Mollere, 1842 39:7 45:11
Lurida Sowerby, 1816 39:5, 6
Polaris Dall, 1900 39:6 45:10
Rollandi Bernard, 1858 39:6 45:10
Rollandi Loca Dall, 1902 39:6 45:11
Aulacata (DA COSTA) 39:5
Vornicea Dall, 1903 39:7 45:11
Willettii Dall, 1917 39:5, 6, 45:10
ASTRITIDAE 39:5 45:10
Astoricola, Stilifer 53:18
Astoriaphila, Cythnia 53:14
ASTRIONTAERUS CARPENTER, 1864 37:17, 10
Viliocius Carpenter, 1863 37:14, 10
ASTRABA ROEDING, 1796 57:16
Babelis Fischer, 1874 57:20, 21
Barberonisus Dall, 1917 57:20, 22
Beavisinus Lamarck, 1822 57:20, 21
Bushii Philippi, 1844 57:20, 21
Gibbosa Dall, 60:39
Gibbosa Dillwyn, 1817 57:21, 22
Gibbosa montereyensis Oldroyd, 1827 57:22
Gibbosa pacifica (see gibbosa 57:22
Inoculis Hartvyn (see gibbosa 17:6, 10 52:38 57:21, 22
Magdalenensis Dall, 1910 57:20, 21
Mannereyensis Oldroyd, 60:39
Olivaus Wood, 1823 57:20, 21
Pacifica 60:39
SPIRATA DALL, 1919 57:20, 21
Turbineus Dall, 1910 57:20, 21
Undosa (Wood), 1823 57:19-20 60:39
Anguis Wood, 1828 57:20, 21
Astracta, Odostomia 61:36
ASTRIS H. & A. Adams, 1853 51:15 50:11
Atanahlaps, Cythnia 47:25
Atar, Mytilus 56:9
Atella, Nassarius 51:10
Atkana, Littorina 55:11, 56
ATLANTA LESUEUR, 1817 53:19
Brunnea Gray, 1850 53:20
Cunicula Gould, 1852 53:20
Depressa Gray, 1850 53:20
Gauchichi Gray, 1850 53:20
Helicecardia Gray, 1850 53:20
Inclinata Gray, 1850 53:20
Involuta Gray, 1850 53:19
Poroni Lesueur, 1817 53:19
Quoyii Gray, 1850 53:20
ATLANTIDAE 53:19, 20
Atlantica, Callocardia (see Vesicocarp 41:27
ATLANTOLIMAX DALL, 1916 57:2
Atossa, Odostomia 61:40
Atrea, Tagula 57:32
Atramentaria, Anachis 51:22
Atromontesa, Crassifora 63:32, 44
Atracta, Acantha 57:15 56:34-56:11
Atracta, Fossarum 55:18
ATRIMITRALLA DALL, 1918 49:28
ATRINA GRAY, 1843 34:7 45:5
Oldroydii Dall, 1901 32:7, 8 45:5
ataior, Grassispira (see Astomorina) 62:44
atropurpurca, Ocenebra interfossa 61:49 55:18
attallia, Cymatocyrinx 62:32,43
attenuata, Mitra 49:28
attenuatum, Bittium 54:30 55:8
attenuatus, Veintopstis 50:13
attenua, Cylindula 17:6,8 47:24,25, 30, pl. II, fig. 31
attenuata, Lima 53:14R
attenuata, Lithophaga 37:7 45:8
attrita, Turbofulla 61:24,25
AULACOFUSUS DALL, 1918 61:18
aulaca, Haliotis 62:20
aurantia, Acanthina 52:9
aurantia, Cypraea 1613
aurantia, Pseudomacta terosa 62:11
aurantia, Turbofulla 61:27
aurantiaca, Lacuna unifasciata 56:15
aurantica, Mitrella 51:14,15,16,30
aurica, Corithiopsis 56:13
aurica, Clathurella 62:39,46
auronodosa, Grassispira 62:32,44
auroentata, Tagula 57:38
aurovilli, Alvania 55:33
auricosta, Turbofulla 61:30
AURICULA
aurica (Potit), 1842 48:11
auricosta (Potit), 1842 48:14
auricosta Sowerby 48:14
stagnalis d’Orbigny, 1835 48:14
auricosta, Clathurella (see C. aurica) 62:39,46
aurita, Area 54:5
austrina, Nuculana 33:10
australis, Opalia 52:16
australis, Rochefortia 40:14
AUSTROFUSUS
alternatus Philippi, 1841 50:27
fontainei d’Orbigny, 1841 50:27
AUSTROFUSUS DALI, 1902 51:55
aulocosmis, Boreotrophon 51:57
auloidea, Odostomia 61:45
auloidea, Turbicula 48:14
AVULCA BRUGUIER, 1792 34:8
porudiens Reeve 34:8
avaria, Helminthoglypta nakeliana 63:11
AXIMACTIS MORCH, 1861 34:1
AXINAED FOUL, 1791 34:12
AXINOPSIS G.O. SARS, 1878 39:21,22 45:12
orbiculatus Sars 33:21
sericosus Carpenter, 1862 39:22 45:12
viridis Dall, 1901 39:22 40:24 45:12
AXINULUS Verrill & Bush, 1898 41:20 46:12
AXINUS flexuosus Cooper (see also
Thyasirina barberonensis) 39:21
azonus, Megalomphalus 56:33
babbi, Aesopus 51:24
babilis, astraea 57:20,21
babilonia, Lora 62:20
babilonia, Scalanoiasta 53:13
baccata, Mitrella 51:14
bachia, Grassispira 62:32,44
bachia, Odostomia 61:11
bacula, Homalopoma 61:37
baculum, Homalopoma 57:20,23 60:39
bacilli, Buccinum 50:26
bacinia, Oliva 49:27 17:8 49:20
bacinus, Oostrea 54:39
bainyi, Area 54:6
bainyi, Cardita 50:30 45:11 39:13
bainyi, Mitrella obellata 51:14
bairdia, Acmea 56:13
bajrdii, Turicula 58:4
bakeri, Alvania 55:33
bakeri, Bernardina 35:19 39:7 45:11
bakeri, Corithiopsis 54:16
bakeri, Cirrolus 58:18
bakeri, Desofoarapa 58:17
bakeri, Erycinia 40:11,13
bakeri, Furtulium 54:11
bakeri, Phileine 49:16
bakeri, Pseudopythina 48:13 40:11,13,17
bakeri, Rissocella 58:6
bakeri, Risola 57:2-5
bakeri, Sabino 53:11
bakeri, Turbofulla 61:25
balaenora, Terebra 48:19,20
balboa, Arone 57:24,25
balboa, Cancelleria 49:5
balboa, Cardionyma 36:13 45:10
BALCOINA Perez Farfante, 1943 60:23
BALCIS LEACH in GRAY, 1847 53:6 58:1
baldra (Bartsch), 1917 53:8
berryi (Bartsch), 1917 53:10
bipartita (Hench), 1860 53:8
abreojosensis (Bartsch), 1917 53:6
adamantina (de Folin), 1867 53:6
dalli (Bartsch), 1917 53:8
barbarenensis, Fusinus 17:8 50:7,5,9, 53:27 83:9
barbarenensis, Mangelia 62:27
barbarenensis, Mitromorpha interfossa 62:39,45
barbarenensis, Ocenebra 51:50
barbarenensis, Thyasira 39:21 41:20 45:12
barbarimun, Epitonium 52:33
barbarinus, Colus 50:19
barbata, Arca 54:7
barbata, Hipponix 60:13
barbaterellus, Melolius 37:3
BARBATIA GRAY, 1847 34:5/6,7
balily Bartsch, 1921 34:6
gradata Sowerby 34:6
barbatus, Hipponix 58:9
barkeri, Tegula 57:22
barkleyensis, Micranellum 54:40
barkleyensis, Odostoma 61:41
barkleyensis, Turbonilla 61:25
BARLELLA CLARK, 1855 47:3 53:21
acuta (Carpenter), 1864 55:21
alderi (Carpenter), 1865 55:22-25
bentleyi Bartsch, 1920 55:23-25
californica Bartsch, 1920 55:22-25
carponteri Bartsch, 1920 55:22-25
coronadoensis Bartsch, 1920 55:22-25
dalli Bartsch, 1920 55:22-25
exilis Tryon, 1866 55:21
haliotiphila Carpenter, 1864 55*22-25
marmorea (Carpenter), 1864 55:21
oldroydi Bartsch, 1920 55:22-25
orcutti Bartsch, 1920 55:22-25
polychroa (de Folin), 1870 55:22-25
rubra (Montagu) 55:21
sanjuanensis Bartsch, 1920 55:22-25
subjuvenil Carpenter, 1864 55:22-25
subjuvenil rimata Carp, 1864 55:22-25
zeteki Strong & Hertlein, 1929 55:22
BARLELLIDAE 55:21-25
BARNEA (LEACH) RISSO, 1826 45:19,20
44:32, 57
pacifico Stearns, 1871 44:23, 33 30:8
spinosa Riss 44:32
barnesi, Enaeta 49:28
bartholomensis, Alvania 55:30
bartholowi, Bulima 55:16
bartholowi, Rissopina 55:2,3
BARTSHELDERA TRESDALE, 1916 61:24,33
bartschii, Anachis 51:21
bartschii, Borsenella 62:15
bartschii, Borsonia 62:42 17:8
basteroti, Cyclostroma 58:8
basteroti, Diplonella 62:42
darocchi, Palmaetra 58:13
bacillum, Epitonium 62:27
BASILICHTON fleckens Carp. 17:7
basteroti, Terebra 48:18
BARTHARO KOBEL, 1891 34:7 45:5
nucleator (Dani), 1908 34:7 45:5
pompolyx (Dani), 1908 34:7 45:5
bachi, Terebra 44:36
bacta, Kirtzina 62:27
beckli, Liozoma 42:15 45:15
bechtli, Lora 62:20
BEGUHA (see Carditamera) 39:12
Clans, Mytilicardita
grayi Dall 39:12
behringi, Volutopius 50:13
behringiana, Neptunaea saturna 50:21
BELLA LEGGIE-GRAY 62:28, 61
becheri, Fornoria 51:64 52:37 17:8
becheri, Hystra 49:29
bella, Homitoma 60:29
bella, Mangalia 62:39, 45
BELLASPIRA CONRAD, 1866, 62:32, 45, 19
grippi Dall 17:8 62:32, 45, 19
mecos Dall 62:45
bellestratum, Epitonium 52:23
balletti, Nucula 47:42 33:8
bennettii, Astarte 46:11 39:6
benthalis, Domocoleon 49:27
benithia, Hompleurotomia 62:47
bentleyi, Barlocoia 56:22-25
bentleyi, Boreotrophon 51:53 17:8
beta, Onconebra interfossa 51:43
beringensis, Cardiomya 38:13 45:10
beringensis, Margaritos 58:10
beringensis, Kochfortia 45:13 40:15
boringa, Antiplanes 62:14
boringa, Boreotrophon 51:57
boringa, Odostoma 61:45
boringa, Thracia 50:37 45:9 37:14
berogiana, Domatoma 38:11 45:10
berogiana, Panomya 50:58 44:31
berogiana, Yoldia 33:13
berogianus, Ancistrolopis 50:15
berogianus, Poetan 35:8
BERINGUS DALL, 1886 (see JUKALA-FREEL, 1882) 50:15
BERNARDINA Dall, 1910 39:7 45:11
bakeri Dall, 1910 56:19 39:7 45:11
beeco, Antiplanes amphitrite 62:13
berry, Belotic 55:10
berry, Cerithiopsis 54:15
berry, Docomaphaia 58:19
berry, Epitonium 52:31
berry, Isomochiton 17:7
berry, Rissolina 50:2, 3
berry, Turbonilla, 61:27
BESCIA DALL AND HARTSCHE, 1904 61:35
beta, Mangalia 62:39, 45, 27, 29
bicolatum, Epitonium 52:27
biangalata, Apolyctis 46:1 back page
46:14 45:4, 9
biangalata, Corbiculicularia 43:10
biangalata, Tricornolocaris 41:25 45:14
biangalatum, Cardium 41:21
bicolora, Pseudorotella 58:22
bicolora, 62:32, 29
bicolora, Obrinella, Obrinella (see O. unguis) 62:39, 46
bicolora, Columbella (see Bifurciun-
um) 30:1
bicarinatea, Lora 62:20
bicolora, Tracheotropis 54:35 55:36
bicolora, Epitonium 52:19
bicinctus, Ancistrolopis ecuadorius 50:15
bicolor, Alvania 55:30
bicolor, Phyllonotus (see P. hippocastaneum) 51:42
bidentata, Cylindarella 47:23
bidentata, Rochefortia 40:31
bifasciata, Passarius porospinosus 51:9
bifasciata, Polinaeos 56:26
bifasciata, Rissola 56:6
bifida, Nannithia 53:25
bifilata, Scissilabra 58:18
bifrontia, Circulosa 56:18
bifurcata, Paphia 42:15
bifurcata, Septifer 36:11
bifurcata, obsolenta, Septifer 56:11
BIFURCUM FISCHER, 1884 51:11 30:1
Bifurcium Fischer, 1884 30:1 51:11
harpaformis Sowerby 47:27
bilirata, Pandora 38:13 46:19
bilinatum, Cantharus 50:12
bilocularia, Mytilina 30:11
bimaculata, Mororodona 43:22
bimaculatus, Mopogibonius 60:25
bimarginata, Bumeta 55:19
binghami, Spongia 44:28
binnominata, Poetan 35:14A
bipalmulata, Bankia 45:36
bipartita, Balcis 53:8
biplicata, Olivala 17:3 16:1 49:17-19
bisecta, Thyasira 39:20 28:12
biseriata, Thais 52:5
dictatum, Poecen 54:14
dictatum Dall,1916, Poecen 55:14A
BITTIAU (LEACH) GRAY,1847 54:28 47:2
ornamentum Carpenter,1864 54:31
asperum Capit.,1861 54:33
asperum lomonos Bartsch,1911 54:33
attenuatum Carpenter,1864 54:30
55:3
attenuatum borcaled Bartsch,1911
54:30
attenuatum latifilocum Bartsch,1911
54:30
attenuatum multifilosum Bartsch,
1907 54:30 55:3
ratilinense Bartsch,1907 54:31,32
55:3
ratilinense incornatum Bartsch,1911
54:32
orrithidoididea Dall (see Alabina) 54:26
challise Bartsch,1917 54:32
eschrichtii Iddendorff,1849 63:11
eschrichtii montareyense Bartsch,
1811 54:30 56:8,36
purpureum (Carp.),1864 54:31
eschrichtii icelum Bartsch,1811
54:30
pellum Bartsch,1911 54:33
bigemma Bartsch,1911 54:33
interfossa Carpenter,1864 54:32
55:3
johnstonae Bartsch,1911 54:29
lessa Bartsch,1911 54:33 68:9
munitum Carpenter,1864 54:32 56:36
munitum munitoidae Bartsch,1911
54:32
cllroydace Bartsch,1911 54:33
ormatissimum Bartsch,1911 54:32
pargiicum Dall,1919 54:30 56:3
quadrifilum Carpenter,1864
54:31 58:3
rugatum Carpenter,1863 54:31 63:9
tangutense Bartsch,1917 64:32
asper Bartsch,1917 54:32
subparsatum Bartsch,1911 54:30,21
55:3
trans Bartsch,1907 54:33 55:5
vancouverense Dall & Bartsch,1910
54:30 55:30
BIVALVILIA JOUSSENAE,1867 49:2,7
Huianstoma (Sowerby),1832 49:7
bulla (Sowerby),1832 49:7
frog (Sowerby),1832 49:7
contorta (Dall),1896 49:7
chrysostoma (Sowerby),1832 49:7
cumingiana (Potit),1841 49:7
funiculata (Hinde),1843 49:7
pulchra (Sowerby),1832 49:7
tuberculosa (Sowerby),1832 49:7
BIVOMIA GRAY,1847 54:22
compacta Carpenter,1864 54:42 55:8,36
bleakvillei, Aron 12:1
blanca, Leucosyprinus persimilis 62:7
blonde, Leucosyprinus 62:41
blondum, Clinocardium 41:21,23 45:14
BOLIVARIA 30:9
bodegania, Tellina 16:1 47:4,5,8,9
45:14 46 Back page
bodegania santoropojo, Tellina 43:9
bolivianus, Cantarthurus 50:12
bombyx, Litiocopa 55:19,20
bonta, Calliostoma 57:33
bonito, Strombilla 51:29
boracle, Bittium attenuatum 54:30
borale, Epitomeum 52:50
boralia, Anaplocamus 56:5
boralia, acrochonis 45:17
boralia, Astart 39:6 55:11
boralia, Dalcis nicans 53:10
boralia, cardita 39:10
boralia, Ulicca 47:8
boralia, Cyclocardia 39:10
boralia, Cephalica 50:21
boralia, Onchidella 62:53 49:17
boralia, Trichotropsis 52:35 55:8
BORDERLUND DALL,1910 49:27
benthalis (Dall),1905 49:27
stovmanni (Dall),1972 49:27
BORDERLUND KORPEN,1902 52:21
BORDO, TROPHON FISCHER,1894 51:56 52:10,11
alboepinosus (Willett),1931 51:56
alaskanus (Dall),1902 51:57
avalonensis (Dall),1902 51:57
bentleyi (Dall),1908 51:58
beringi (Dall),1902 51:57
kallicocrates (Dall),1919 51:59
cepus (Sowerby),1850 51:57
citrinus Dall 51:62
cymnus (Dall),1902 51:57
dalli (Kobelt),1978 51:57
dalli alta (Dall),1902 51:57
daliano Durham 51:62
disparilis (Dall),1901 51:57
elegantulus (Dall),1907 51:57
eucymnus (Dall),1902 51:57
fithitrus (Dall),1910 53:57
leucinostota Martyn 51:62
lorenzoensis Durham 1842 51:62
brunneus, Conus 48:24, 25
brunneus, Pliciatus 50:17
BRYOPHILA CARPENTER, 1864 34:10
saxosa Corp., 1864 34:10
bubonius, Strombus 39:4
BRYOPHILA 13:7
buccatea, Bucalana, 33:9
BURGINIAE 50:23-29 #6 Jan, 1942
buccinoides, Cancellaria 49:5
buccinoides, Cancellaria 51:30
BUCCHIUS globosum 13:2
BURGINIA LIMNEUS, 1758 42:30 50:23
alguticum Dall, 1873 50:26
angulosum Gray, 1839 50:25
angulosum chiusuptoplicata Dall, 1929 50:26
angulosum normalis Dall, 1855 50:25
angulosus subcostatum Dall, 1885 50:26
angulosum transilatum Dall, 1919 50:26
arcularia Linnaeus (see Massarius 61:3
australis Gmelin (see Phasianella 57:17-19
bulimoides Dall, 1907 50:25
bacilli (Hiddendorf), 1848 50:26
conchiglissim Philippii (see anchis 30:2
castaneum Dall, 1877 50:25
castaneum fluctuatum Dall, 1919 50:25
castaneum incidum Dall, 1919 50:25
castaneum triplostophanum Dall, 1919 50:25
carthium Dall, 1913 50:22
costatum Fisch. 1862 50:26
costatum Reeve (see amphissa 30:2 61:25
costatum Dall, 1897 50:25
costatum Dall, 1897 50:24
fischerianum Dall, 1871 50:26
fringillum Dall, 1877 50:26
biculata Linnaeus, 1758 50:23
biculata Linnaeus (Stramenite-Thisis) 52:5
hertzae (Voronezhen) 1882 50:24
humphreyi (Benett), 1826 50:24
lacissense Dall, 1907 50:25
nodosum Barys (Cosmiocochra 30:2
norvegicum Dunker, 1838 50:24
normale Dall, 1885 50:25
oedema Dall, 1897 50:24
ocrates Dall, 1907 50:25
ovulum Dall, 1894 50:26
pomphigus Dall, 1907
pomphigus major Dall, 1919 50:24
pomphigus obtusum Dall, 1907 50:24
perotum Dall, 1907 50:28
picturatum Dall, 1877 50:25
physosomum Dall, 1919 50:25
planoslum Dall, 1919 50:25
plectrum Stimpson, 1855
polare Gray, 1829 50:24
rondinum Dall, 1919 50:25
rossellinum Dall, 1919 50:25
seriatum Hancock, 1846 50:25
signaplicata Dall, 1907 50:25
simulatum Dall, 1907 50:25
solenum Dall, 1919 50:24
squalidae King, 1831 51:10
strigillatum Dall, 1891 50:25 51:31
#5 Jan, 1942
strigillatum fasciculatum Dall, 1907 50:25
strictisomum Sowerby, 1899 51:62
85:13
subulatum Linnaeus (Terebra) 48:18
tenellum Dall, 1883 50:26, 27
tenues Dall, 1884 50:26
tenue Gray, 1839 50:24
tenue lyperum Dall, 1919 50:24
tenue rhodium Dall, 1919 50:24
undulatum Linnaeus 50:23 #7
viridum Dall, 1892 50:24 #7 51:31
buludes, Cheesman 39:12, 19
bulbulas, Cancellaria 49:5
BULBULUS SMITH, 1828 50:33
apertura (Leven), 1847 50:23
smithi Smith 50:33
bulimoides, antiplices 62:14
bulimoides, Bucinum 50:25
BULBULUS andicola (see Helopus 48:11
BULBULUS 47:25
BULLA LINNAEUS, 1758 (Atys Montfort, 1610) 42:28 51:64 52:52 53:51 47:20, 21, 29
apertura Linnaeus (see Vesica 46:2
apertura Linnaeus (see Philino 46:5
costa (Carpenter), 1864 (Atys) 47:29 pl. II, fig. 20
chimera (Pike & Hanne), 1827 47:28 pl. II, fig. 22
osterosoma J.Q. Dall, 1945 (Atys) 47:29 pl. II, fig. 24, 48:30
pourdiana Filsbry (see Vesica) 30:18 46:24 46:29
hydatias Linnaeus (Helminth) 42:3
Lithobes Hallor, 1776 (Lanellaris) 37:1
nanum Linnaeus 47:20, 21
nebuloa Gaul, 1850 (see Vesica
yoldiana Pils.) 46:2
nonscripta (A. Adams), 1830 (Atys)
47:29 pl. XI figs. 23, 25
quyii Gray (see Vesica quyan-
Dall) 42:2 61:64
spelta Linnaeus (see Neosoria)
53:21
stricta Q. & G., 61:64
valuting Killider (see Valutina)
57:3
bulla, Lyonia 38:12
BULLARIA 52:34
bulla, Biviotopsis 49:7
bulla, Epitonium 52:33
BULLOMORPHA 42:24
burchii, Maculana 41:28
burchii, Turbonilla 11:6, 9 61:17, 18
BURCHIA Bartsch, 1894 62:10, 11
chlorotella Dall 61:67
redondoensis T. M. Dohr, 1898 62:11, 67
burrogoi, Rassoina 56:2, 3
burrodenis, Alvania 56:34
burrogoi, Rullina 55:16
BURSA ROBERT, 1798 54:3
calbisasata (Sowerby), 1841 54:3
calciptera Dall, 1908 54:13
calcipta (Dorider), 1832 54:3
california Hinds, 1842 54:3
conoidea Roeding 54:3
conda (Prod. & Shy.), 1629 54:3
pustulosa (Reeve) 36:3
ventricosa (Dorider), 1832 54:3
BURSILAE 54:3 42:25
bushii, Astraea 57:20, 21
bushii, Tassarina 30:2
buttonii, Dermatomya 33:11 39:5 45:10
buttonii, Tellina 43:8, 9, 15 45:16
46: back page
buttonii, Turbonilla 61:25
buxoa, Ooconchra 51:63
BYSSICRA pernoides Carp. 34:6
caenomi, Epitonium 52:31
CAESTRATA (Cymatium) 52:7
caecinella, Tectostoma 58:13
CAEOPENUM
cebrostriatus Carp., 1866 50:29
tabogensis Pils. & Lowe, 1922 50:29
thalida Pils. & Lowe, 1922 50:29
CADULUS PHILIPPI, 1881 46:17 12
aberrans Whiteaves, 1887 40:1, 1, 17
Pils.
californicus Pils. & Sharp, 1898
46:14, 16, 17 Pls.
fusiformis Pils. & Sharp, 1898
46:14, 16, 17 Pls.
hopburni Dall, 1887 46:14, 16, 17 Pls.
17:7
perpusillus Sowerby, 1832 46:14, 16
quadridentatus 46:14
quadrifissatus Pils. & Sharp, 1898
46:14, 16, 17 Pls.
stearnsi (Pils. & Sharp), 1898
46:14, 16, 17 Pls.
tolmici Dall, 1887 46:14, 16, 17 Pls.
49:35
tolmici novocumbi Pils. & Sharp, 1898
46:15
CAECIDA 54:36*41
cacoidea, Lopota 57:5
CABOSUM FLEMINO, 1816 54:41
57:2
buhichondense Strong & Hertlein, 54:30
clathratum Carpenter 54:39
californicum Dall, 1885 54:40 55:3
dalli Bartsch, 1920 54:40
diagonae Bartsch, 1920 54:40 55:3
firmatum C.B. Adams 54:40
grippi Bartsch, 1920 54:40 55:3
liculum Bartsch, 1920 54:41 55:3
parvum C.B. Adams, 1852 54:40
richthofeni Strong & Hertlein 54:40
coldate, Pura 54:43
coldates, Verticordia 33:5 39:13
coorlusa, Junthina 53:4
corulescens, Psamobola (see Gari)
43:21
corculum, Calliostoma ligatus 50:2
coffea, Turca 53:4 60:29
colaneus, Colus 50:18
colathus, Colus 50:19
calcar, Acanthina 52:8
calcar, Leda 30:11
calcaria, Hacona 43:10, 11
calcarolla, Odostoma 51:41
calciptera, Pusa 54:13
calcor, Alabina 54:27
coliana, Tornus 56:23
californiana, Pinta 34:10 37:11
californiana, Mitrella carinata 51:14, 31
colifornianus, Mytilus 16:2 66:7, 12, 15,
coliforniana, Pusa 55:42
californicus, Tagelus 52:36 49:35
43:23,24,29,30
californica, Acilia 53:17
californica, Ameana 56:7
californica, Alabina 54:27
californica, Alvania 55:33
californica, Bealina 55:11
californica, Berlochia 55:22-25
californica, Bursa 56:5
californicum, Caecum 54:40 55:8
californica, Cryptonya 44:26,27
43:18,22
californica, Cuiningia 44:27 45:19
californica, Dornax 47: back page
43:20

californica, 'Erwilia 44:25
californica, Iuluna 53:16
californica, 'Etri 47: back page
43:21,22
californica, 'Eripina 44:29
californica, Jpalina 49:25
californica, Jeffreyzia 56:6,7
californica, Iodea 57:24,25

californica, Lucina 47:26 45:12
41:20
californica, Lyonsea 50:33 45:9
33:5,6,7,10

californica heroldi, Lyonsea 38:6 45:9
californica mesiotas, Lyonsea 38:6
californica, Mastra 43:36 44:1,5,7,8,
85:6,7,15,18,19,20,21

californica, Nauyla 49:12,13

californica, Nebathura (see M. cronulata) 50:34

californica, Petzgeria 50:5

californianus, Hassmerius 51:5,7,30

californienus, Odostonia 61:41

californica, Pseudophaeus 44:33

californica, Pediculariella 53:42
55:35 56:10

californica, Philina 49:47 43:6

californica, Rissoella 56:6

californica, Rissoina 55:2,8,4

californica, Spisulope 58:23

californica, Sonola 45:18

californica, Skenea 55:20

californica, Spica 44:20,21 44:7

californica, Sportella 40:24 45:13

californica, Terphy 48:8

californica, Tindria 53:14

californica, Volvulella 47:18-20,30,
17:4, 18:3

californicus, Xyloplaga 42:36

californicum, Cardium 41:31

californicum, Cardium 14:2,5,6

californicum, Epitonium 52:31

californicum, Sima (see S. scopulorum
56:32

californicus, Ancistrolepis 50:16

californicus, Cadulus 46:14,15,17,11.1

californicus, Capulus 56:9

californicus, Conus 48:23,25 44:29

californicus, Bursa 48:23

californicus, Megaloctenus 56:33

californicus, Placourbranchus 43:8,9,23
60:11

californicus, Ptychactnactus 51:63 50:8

californiensis, Dotula 37:7 39:5 45:3

californiensis, Chiope 45:15

californiensis, Clinocecidium 41:22,23 41:24
46:14

californicas conoconus, Clinocecidium
41:24

californiensis, Heliotis cracherodii

californiensis, Pteriella 45:16 47:26
42:16,19,20

callaoensis, Thea 52:8

callig, Turbonilla 61:31

callina, Siganicola 51:8

california, Corinodrillia 62:32,41

calicoa, Volvulella 47:29,20

calicactatus, Borostrophus 51:38

calificosta, Borsonia 62:42

calimina, Odostonia 61:41

calimeno, Turbonilla 61:31

calimorpho, Odostoria 61:35

calimorpho, Mitrella 61:14,15

calliope, Odostoria 61:41

CALLISTOMA STAEBNIN, 180(3)-58:1
angelorum Lowe, 1855 57:23
annulatum, Martyn 17:6,10

annulatum (Humphrey), 1786 58:4 60:16
antorii (Koch in Phillips), 1843 58:13
bonita B.H. & S., 1893 57:33

canalicalatum (Martyn) see C. dolarius
55:1 17:3,10 60:46
cortatum (Märtyr), 1784 (see C. ligatus) 58:2 60:13
dolarius (Houten), 1803 58:1
dolarius Nebulosum Dall, 1919 58:2
dolarius transliratum Dall, 1919 58:2
eximium Reeve, 1845 58:3 60:39
fondil Philippi, 1860 57:33
gemmulatum Corp., 1864 58:13 60:39 46
gum uloides Love, 1855 57:33
Glionus Dall, 1871 58:3 60:16, 39
Iridium Dall, 1896 57:33
Iolus C.J. Adams, 1862 57:33
ligatus (Gould), 1849, 58:2
ingus enarulum Dall, 1919 58:2
ligatus pictum Dall, 1919 58:2
lima Philippi, 1860 57:33
macandrea Carpenter, 1856 57:33
marchelli Love, 1855 57:33
nepheleoides Dall, 1913 57:33
palleni Dall, 1871 57:33
platinum Dall, 1889 52:23 58:2
pons B.H. & S., 1853 57:33
splendens Carpenter, 1863 17:6, 10 58:3
supragranosum Carpenter, 1864 58:3 60:46
tricolar Cebu, 1865 58:13 60:39, 26
turbinum Dall, 1895 58:4
variegatum Carpenter, 1864 58:2
CALLIOCTEIX DALL, 1889
tomonosum Dall, 1889 49:28
CALLIOCTEIS SCHUM. 1863 58:5
callioporum, Epitome 52:27
calliopops, Triphora 54:8
CALLISEA (see Amnicis 42:7
veyi Gabb, 1866 (see Epispina polystoma alym alaskana Dall, 1894) 44:19
CALLISTOCHEX
caesiacostatus Pilsky 17:7
decoratus Carpenter 17:7
palmatus Carpenter 17:7
CALLITHACA (see Protothaca 42:12
CALLIOPHIDIA atlantica Smith (see Vesicomya Dall) 41:27
callomarginata, Lucapinella 62:54
39:25
CALLIOPEA 57:20, 21
callorhina, Volutopsis 50:13
callosa, Adiantis 39:17 42:6, 7, 22
44:22, 26 60:15
CALLIUSCA DALL 40:7
calluscasina, Odostomia 61:46
calyculata, Cardita 39:10
calyclus, Lithophora 17:7
calyseco, Pleurodotides 61:12, 1
CALLYPTOCERAX DALL, 1891 39:11, 12, 17, 28 45:11 41:23
gongata Dall, 1891 39:12, 17 45:11
pacific Dall, 1891 39:11, 12, 17 45:11
CALLYPTOCERAX LINNAEK, 1758 50:19, 20, 21, 22
adolphsi Lessos (see Crepipatella) 56:15
conica Broderip, 1834 56:19-22
cortorta Carpenter, 1856 56:19-22
fastigata Gould, 1856 56:22
lichen Broderip, 1834 56:19-22
canillaris Broderip, 1835 56:19-22 60:13
radians Lamarck, 19:13
subfasciata Carpenter, 1855 56:19-22
tungia Broderip, 1834 56:19-22
CALLYPTOCERIDAE 56:19-22
CALLIMARTIDAE 15:3
campechianus, inatima 44:3
camarina, Mangalia 62:39, 46
campanulacae, Turbonilla 61:22
conamixis, Turbonilla 61:25
canaliculatum, Calliostoma 60:26
(see C. dolarius) 58:1 17:6, 10
canaliculata, Caasia 47:27
canaliculata, Theis 52:14
conamiculatus, Liosocus ooides 50:14
canamicus, Polinices 56:29
cooperi, Ganciullaria 17:3
CANCILLARIA LINNAEK, 1799 49:2-4
acuminata Sowerby, 1832 49:5
albida Hinds, 1846 49:5
baldoni Pilsky, 1891 49:5
buccinoides Sowerby, 1832 49:5
bullula Sowerby, 1832 49:5
castidiornis Sowerby 49:6
clathrata Sowerby, 1832 49:5
corrugata (Hinds), 1847 49:7
cooperi Gabb, 1865 46:22 49:6 17:5
crenellata Dall (see Massyla) 17:8
crassata Hinds, 1848 49:5
docoasata Sowerby, 1832 49:5
dolata Hinds, 1842 49:5
expoloura Dall, 1903 49:7
gemulata Sowerby, 1832 49:5
indentata Sowerby, 1832 49:5
mollaster Sowerby 49:2
obesa Sowerby, 1832 49:4
ovata Sowerby 47:27 49:4
peruviana Strong & Hertlein 49:5
roticulata (Limacina) 49:4
candida Sowerby, 1832 49:14
urceolata Hands, 1843 49:9
ventricosus Hands, 1843 49:15
cancelata, Cadinia 49:24
CANCELIARIAE 49:15 42:25
CANCELLATA, chitae 52:9
CANCELLATA, Cyclostraum 58:20
CANCELLATA, Lotia 57:25
CANCELLATA, Lena 58:10
CANCELLATA, Lucina 50:16
CANCELLATA, Ruta 44:27
CANCELLATA, Ophiomphallus (see 0. rhodes) 62:10
CANCELLATA, Venus (Chione) 42:9
CANCELLATA, Trichotrobus 54:33 55:36
CANCELLATA, Fusitronum 54:5
CANCELLATA, Lipodoplora 17:7
CANCELLATA, Platyodon 44:27 58:16
CANDEOBRUS, Latia 50:15
CANDIA, Clathurella 62:39,46
CANDIA, Ostomia 61:44
CANDIA, Pinnamphora (Anachis) 30:2
CANDIA, Clathurella 62:39,46
CANDIA, Gibbula adriatica 58:11
CANDIA, Ostomia 61:45
CANDIA, Philiberta 62:23,24,28
CANDIA, Turbochina 17:7
CANTABRICA KOCH, 1796 59:12 47
CANTABRICA, Curtis 1857 50:12
bilobata (Reeve), 1846 50:12
boliviana E. & S., 1852 50:12
clina (Reeve), 1846 50:12
distortus 49:46
elatus (Gray), 1846 50:12
crassimarginata Dall, 1919 50:12
gemmatus (Reeve), 1846 50:12
glabraria Fooding, 1798 60:1,2
incus Dall, 1854 50:12
janelli Kiener, 1836 50:12
pugilata Reeve, 50:12
procerum Sowerby, 1832 60:12
rangius (Reeve), 1846 50:12
sanguinolenta (Dalecar.), 1833 50:12
undatus Lamarr 60:12
vbex (Broderip), 1832 50:12
capa, Dalos 53:18
capanaola, Philiberta 50:24
capax, Volvella 56:12,13 52:37
capensis, Cystinea 49:25
capitata, Ostomia 61:41
capa, Boldia 32:13
capronius, Galus 50:19
CAPULIDA 56:9
CAPULUS L.ANFOX, 1810 56:9
californicus Dall, 1900 56:9
hungaricus Linneaus 56:9
carbonaria, Enalia (see E. lamarck, 50:23
CARDACHLA 42:37
cardara, Lucina 33:7 39:4
CANDIDAE 42:21 45:14
Candida 27:10
CANDILARIA d'Orbigny, 1836 52:18
puncata (Lescon), 1858 57:11,15
CARDINIA A. Adams, 1856 56:11 19:10
balbone (Dall), 1916 38:14 49:10
beringensis (Lescon), 1858 39:13 46:10
californica (Dall), 1856 33:13 et al.
45:10
cladroydi (Dall), 1924 33:13 45:10
punctata (Carp.), 1864 30:13 23:5
48:10
planata (Dall), 1903 39:15,14 29:6
45:10
CANDITA BAGULIIE, 1792 39:10,11,15,15
45:11 (see also Veronicidae)
CANDITA, LAMARCK, 1792 39:10,11,12,15,13
alaskana Dall, 1903 39:11,15 45:11
50:37
antiqua (Linneaus), 39:10,23
arata Conrad, 39:10
bailyi J. Q. Murch, 1944 39:13 45:11
50:30
borealis Stearns, 1890 39:12,13 45:1
borealis Stearns, 1890 39:12,13 45:1
only Linaeus 39:10
chasca Sowerby, not Linaeus 39:11
crassocosta Sby. 39:12
crassicostata Sby. 39:12
Crassicostata Prod. & Sby. 1829 39:12,14
45:11
crassicostata Krauss, 1885 39:13 45:11
flammea Michaelis (see Veronicidae
megastropha Gray) 39:12
gouldii Dall, 1902 39:12,13 45:11
incisa Dall, 1902 39:12,17 45:11
laticostata Sby. not C. Michaelis 50:11
longina Daily, 1945 50:30
moniliasta (Carp., 1843 39:12,14
notula Dall, 1879 39:12,13 40:34
45:11
pencipostata Krauss, 1885 39:12,13
45:11 46: back page 50:37
redondoensis J. Q. Murch, 1944 45:11
47:30,32,33 pl. 11 fig. 40,41
48:30 49: back page
spurca Sowerby 39:12
stearna Dall, 1802 39:12,13,14 45:11
subquadrata (Carp., not Conrad 39:11
sulcata Bruguiere 39:10
trapeza Conrad, 1829 39:10
Cesta Bartsch, 1811 54:15
charlootensis Bartsch, 1817 54:16
columba Carp. 1834 54:10
cosmia Bartsch, 1907 54:17
curtata Bartsch, 1911
diomedae Bartsch, 1911 54:16
diagensis Bartsch, 1911 54:17
donrugosi de' Folin, 1867 54:14
eiseni Strong & Hertlein, 1929 54:14
fia Bartsch, 1927 54:18
fraseri Bartsch, 1921 54:19
galapagensis Bartsch 54:13
gisclichi Strong & Hertlein, 1939 54:13
gloriosa Bartsch, 1811 54:27
guadalupensis Strong, 1933 54:15
hirpidi Bartsch, 1917 54:15
halia Bartsch, 1911 54:15
infraequis C.B. Adams, 1852 54:14
ingens Bartsch, 1907 54:19
kinci H.M. & S., 1936 54:14
kohal Jordan 54:14
montreyensis Bartsch, 1911, 54:16
montozumi Strong & Hertlein, 1939 54:13
necropolitana Bartsch, 1911 54:20
neplecta C.B. Adams, 1852 54:14
onascendens Bartsch, 1921 54:18
oryx Bartsch, 1911 54:14
paramoct Bartsch, 1911 54:16
podroana Bartsch, 1907 54:15
peruvianus d'Oebigny, 1840 54:14
porteri Bart. & S., 1936 54:14
puififormis (Carpenter), 1857 54:13
rowelli Bartsch, 1911 54:17
santaruzana Bartsch, 1927 54:19
sasseta Dall, 1919 54:20
signa Bartsch, 1921 54:20
sorex Carp., 1837 54:13
stejnegeri Dall, 1834 54:15
stejnegeri dina Bartsch, 1911 63:11
stephanoce Bartsch, 1909 54:19 63:11
subgloriosa H.M. & S., 1933 54:13
truncata Dall, 1836 54:19
tuberculoides Carp., 1837 54:13
turida Bartsch, 1907 54:19
villozzi Bartsc., 1821 54:19
CEROPSIS 54:20
CEPHIDOPSIS Bartsch, 1911 54:17
CHAITINII
albomucronatum Carp., 1856 10:4,5
californicum Baldman, 1940 10:4,5,6
cancellatum Lat. (see Semibittium 54:30
bogoslovichii Philippi, 1848 10:4,5,6
mammillatum Philipi (sect. zizania - Bittium) 54:35
montagnei d'Oebigny, 1841 16:4,5,6
mountagnei pulchra C.B. Adams, 16:4,5,6
pulchrum C.B. Adams, 1852 16:4,5,6
roscoena C.B. Adams, 1852 16:4,6
rugholus Snowly (sec Metaxia) 54:20
sacreta Gould 10:4,5,6
validum C.B. Adams, 1852 16:4,5,6
varicosum DeFranco, 1817 16:4,6
corodes, Modulus 54:12
CEROPSIS (sec Milneria)
minima Dall, 1871 54:31
cerritensis, Allegia 40:22,23 45:13
cervola, Tindoria 54:14
CEROSTOMA CONRAD 64:43
corrubrensis, Trophonopsis 51:59
corrubrensis, Raspaeius 51:59
corrosensus, Circulus 54:10
corrosensis, Forraria 54:55
corrosensis, Rissoina 54:2,3
cortona, Sequenza 54:8
cesta, Cerithiopsis 54:15
cesta, Mangilia 62:39,45,27
CETOCONUS DALL, 1849 51:11,12 45:10
malaspinae Dall, 1916 38:12 45:10
cetolaca, Mangilia 62:27,29
chacana, Monandria 15:4
chacae, Erycina 40:12,13,17
chacae, Moniliopsis Oct., 1941
chacae, Odontogastria 61:36
chacae, Opalia 54:17
chacae, Pleurobranchus, 48:8,9 60:11
chacae, Pseudopolytha 40:12,13,17,18
(see also Erycina) 45:15
CHAETOPLURA
gothis Car., 17:7
prasinata Car., 17:7
thamnorea Berry 17:7
challiniae, Bittium 54:32
challiniae, Thracia 37:14 40:26 45:19
CRAMA LINNAEUS, 1758 37:17 39:12,20 45:12
baddiana C.B. Adams, 1860 39:13,19
dosin, Adanson (see Dorsina) 42:5
enagya 63:9
frondosa Broderip, 1835 39:18 45:12
grypeoides Linnaeus 39:18
lazarus Linnaeus 39:13
pallucida Brod., 1835 39:18,14:12
phrenetica Born 39:12
rococana Clessin 39:19
ruderalis Lamarck, 1819 39:19
seidoripecula Linnaeus 39:12
tunca (see Protobrachia) 42:11,12
CHIAJNAB 39:13 46:12
charactolaima, Triphora 54:11
charlottischia, Gorchiopoea 54:16
charrumus, Kytillus 47:28
chartum, Pseudinum 50:24
charybdis, Crepipatella 54:16
charybdis, Verticilium 16:12 56:13
chatherschis, Triphora 54:11
CHAUTRZLEA MONTÉROSA, 1884 30:2
CHELSEA
cepaçà (Broderip), 1834 56:19,20
ceratoga (Broderip) 56:19,20
chelonia, Phoe 51:10
CHEMINITA d'Orkney, 1839 61:22
chermitzschum, Pedalion 54:9
chemitzia, Natica 56:25
chichiana, Lora 62:20
CHICORIUS MONTICOLUS, 1810 51:22
palmarosa, mexicana (Stearns), 1893 61:22
Chile - Arctic Faunal list 50:29
chilensis, Cyphedria 30:12 45:10
chilensis, Ectodrama 30:7,8
chilensis, Violata 33:14
chilensis, Kytillus 56:16
chilensis, Cetrea 54:12
CHILÉNE 42:48 46:24
chimpo, Bulla (Atya) 47:29 pl, 11, f. 22
chinovki, Odostomia 68:11
CHLICE WESEREN von KUHLEFELD, 1811
42:17 59:13 45:15
Californiaensia (Broderip), 1835
(see C. succinna) 46:20 45:15
canclatlata (Stearns) 42:19
crenifera Sowerby 47:23
cydistes (Gehniitz) see V. canclatlata 42:9
fluctifragi (Sowerby), 1835 42:9,10
51:15 51:37
sucinta Valenciennes, 1832 42:10
undatella (Sowerby), 1835 42:9,10
51:15
chiricoa, Sciuraella 58:23
chironix, Sellia 40:14
chiquita, Calices 54:1
chishimana, Pseudoim 50:26
CHROMATIA 65:3
Chiron 39:17 65:3-7
CHLAMIDOCONCHA DALL, 1884 56:24 45:14
ocruciata Dall, 1884 40:24 45:14
CHLAMYS RÖDING, 1787 35:5, 5,10,3
chlorotica, Arcada 43:11
CHLOROPHAGA SMITHSON, 1860 57:24
chocolate, Thais 52:8
chocolaté, Turusilla 61:27
CHORISTES CARTERET, 1872 50:34
carpenterii, Dall, 1883 56:34
CHORUS GRAY, 1847 51:42
giganteus Lamber 51:42
CHRYBAILIDA CARTERET, 1856 61:38
chrysoideus, Acosopus 51:24 17:8
CHRYSODY:UB SMITHSON, 1840 (see holotypus)
tunca) 54:20 Dec., 47, Jan., 48, 7
chrysooma, Divetoplia 49:7
chrysothamis, Fovorionidae 52:12
chrysothamis, Spirotilopsis 62:12,22
curchi, Monandra 15:4
CICADENA DALL, 1899 53:4,5
carolleta Dall, 1892 53:5
coeloplastora Dall, 1895 53:5
cideris (Carpe), 1861 53:15
equatorialis Dall, 1902 68:5
cideris, Ciderima 52:5
ciliatina, Inocinum 50:28
ciliaturn, Clinocardium 41:21-24, 45:14
cineta, Circulus 58:16
cineta, Odostomia 61:36
cinerea, Gastropetra 48:3
cinerea, Fusius 50:7
cinerea, Margarites (see M. costalis 61:22
cinerea, Urosalpinx 51:51
cingulica, Cingula 55:26
CINGULA FERDING, 1813 47:13 55:26
alaskana Bartsch, 1912 55:27
clebier Dall, 1865 55:27
asser Bartsch, 1910 55:28
californica (Irvine), 1865 55:27
cermoda Dall, 1886 55:27
cingulica, Fortescul (55:26
cortorta (Jeffrey) 55:27
hydrida Willett, 1894 55:28
forrestolensia Willett, 1934 55:28
katherine Bartsch, 1812 55:27
kyskeisana Bartsch, 1811 55:28
martini Dall, 1886 55:27
martyni scipio Dall, 1886 55:27
kelsoyi Bartsch, 1811 55:28
mokhtarysinsa Bartsch, 1912 55:27
orvidata Dall, 1819 55:27
pledorni Dall, 1819 55:28
cingulata, Lecodytixnix 62:41 50:3 47:27
cingulata, Symachjna 54:17
cinica, Cinctanmus 50:12
CINCE
margarita Carpenter, 1855 39:17
subtrigona Carp., 1855 39:18
cinicina, Aforia 62:6
acola, Rissoina 56:2-5
COLECHTA FERON & LEBLOND, 1810 47:6
coleoni, Odostomia 41:41
CLOCARDIUM KEEN, 1956 41:19,22 45:14
blancum (Gould), 1850 41:22,23 45:14
californianse (Dosh.), 1841 41:22-24 45:14
californianse cornucopia. Dall, 1900 41:24
ciliatum (Fabricius), 1780 41:21,22, 24 45:14
decoratum (Grevink), 1850 41:24
fusunm (Dall), 1907 41:21,22,24
45:14
nuttallii (Conrad), 1837 41:21,22,23 46:14
CLOG LIMNEUS, 1767 46:26 47:6
exaucta Gould, 1852 47:7 30 Pl.11
fig.5
occidentalis (Dall), 1871 47:7
pyramidata Limnea 47:6
CLOG TALLIS, 1771: borealis Dru, 47:3
dalli Krause, 1885 47:8
elegantissima Dall, 1871 47:8
limacina Phil, 1775 47:8
clionella, Leucozyrinx 62:41
clionella, Pecora, 62:47
CLOGNAEDE 47:8
clypeaster, Acmaea 66:35
CLYPUS SOACCH, 1833 (see Trimaculis) 46:14
clypeus, Fissuresella 53:24-27
CLYPHYLLA calomorquharta Carpenter
(see Lucavillesella) 60:25
crisatoplaure, Fusiana angulosum 50:26
criplantum, Fusiana 50:25
coecactata, Cypraeacensis 54:5
CLOCULUM DALL, 1882 57:16
agnaste Dall, 1908 57:16
cassavica Dall, 1919 57:16
rathbuni Dall, 57:16
CLOCULINMDE 57:16
COCOMUS (Naticidae) 56:25
COCHOCHELLA ventricosa 15:3
COHOCOEPA 56:3
coituyata, Stearns, 1890 56:3
rowelli Tryon 56:8
trachona Hartens 56:8
cocosensis, Hons 51:9
CODAKA 20:3,6,5
coffee, Acmaea 56:35
cognata, Macoma 47:28
COLEPHYSIS Fischer, 1833 47:11-15
Carinata (Gour.), 1857 47:11,15 ... 1:3
harpa (Dall), 1871 47:11,15 30 Pl.II
fig.16
trunculus (Dru) 47:15
colina, Latica 56:25
COLUMBELL DALL, 1871 57:10
colpica, Lexia 62:20
colpica, Strombus 51:25
colpica, Epitonium 52:27
COLUBRARIA
anomala (Hinds), 1844 50:27
aphrogenic Mills & Lowe, 1832 50:27
jordani Strong 50:27
lucassens Strong & Inert 50:27
reinhardtiana (Plien), 50:27
sowerbyi (Reeve), 1844 50:27
COLUBRARIDAE 50:27
columbella, Bruta 53:42
COLUMBELL LAMAR., 1799 30:1 51:10-29, 61:31
cribriura Lamarck 47:27
COLUMBELLIDAE 51:10-29 30:1
columbianae, Amphissa 30:2 51:63 61:25
columbianae, Pelleis 53:19
columbianae, Gramella 37:11 45:8
columbianae, Veasporicia 16:3
columbianae, Odostomia 61:41
columbianae, Docomphila 58:20
columbianum, Epitonium 52:30
columellaris, Theis 52:8
columnella, Olivella 49:17
columna, Cerithopsis 54:10
columna, Balistylius 57:34
columnellum, Epitonium 52:27
colpoicous, Fusimus 50:7
COLUS ROLING, 1788 50:16
acosimus Dall, 1891 50:19
adonis Dall, 1919 50:19
apholus Dall, 1890 50:20 51:65
barbarinus Dall, 1919 50:19
bristolensis Dall, 1919 50:19
calamus Dall, 1907 50:13
calathus Dall, 1919 50:19
capponius Dall, 1919 50:19
capponius Dall, 1919 50:19
clementinus Dall, 1919 50:20 51:63
cornus Aurivillius, 1885 50:19
cornus Dall, 1919 50:20
compactus Dall, 1919 50:19
cornus Dall, 1919 50:20
osculus Dall, 1907 50:18
gemstone Dall, 1892 50:19 61:53
halicrestus Dall, 1881 50:20
coronadoensis, Acton (see punctocoec-
"lata") 57:10

coronadoensis, Darlesia 55:22-25

coronadoensis, Fusinus cineraceus 50:17
coronadoensis, Nitra 49:32
coronadoensis, Odostoma 61:47
coronadoensis, Rissoina 56:2-5 17:7
coronadoensis, Skena 58:20

coronata, Anachis 51:21
cornutus, Typhis 51:38

cornuta, Erycina 49:12,13
cornuaticoi, Dorsonella 62:42,15
cornuta, Cyclostrema 55:17
cornuta, Schismope (see S. californica
58:23

cornuta, Trichotropis 54:26

cornulata, Tagula 57:32

corputus, Narcissus 51:5

corregata Adm., non Sby. (see C.
adamiana) 62:14

corregata, Cancallaria 49:6

corregata, Cheilea 50:19,20

corregata, Cochliopa 56:8

corregata, Diplolotis 66:20

corregata, Emsylia 49:13,9

corregata, Modiolaria 50:37 45:8 37:9
corregatun, Buscinum (see Amphissa
joumehia) 30:42
corsetzii, Hainites 35:11
corsetziana, Glyceris 34:3 50:33
corregulatum, Pertulum 54:39
corsetzi, Cylichna alva 47:23
corsetzi, Phanacepygma 49:27

cosma, Alvena 55:32

cosma, Bacles 55:3

cosma, Cuphidopsis 54:17

COSMIODONIA BALL, 1913 51:29 30:2

buccinoides (Sowerby), 1832 51:20
modesta (Love), 1935 51:30
modestum (Pouys) (see Buccinum
modestum) 30:2

colmeri Hall, 1913 51:30

cornacallis Hall, 1913 51:30

parvula Hall, 1915 51:30

phymacs Hall, 1915 51:30

cosmus, Circulus 58:20

costalis, Margarites 61:1

costata, Coralliophila 52:12,13

costata, Risquella 55:24-27

costa, Patricola 42:18

costa, Scissurella 56:23

costa, Siphonaria 63:16

costatum, Callophoma (see C. ligata
56:2 60:46

costatum, Cardium 41:21

costatum, Gymnium 56:7

costellata, Anachis (see varicosa
51:21 50:2

costellata, Dinastoma 54:26

costellata, Tucula 35:11

COSTELLOLEDA HERTLEIN, 1910
25:11

costulata, Mallaria 57:26

costulata, Adnita 49:14,17

cracherodii, Diplolotis 50:17

crassillata, Porohra 49:19,20

crassidens, Nipponix 56:11

CRANOPSIS ADAMS 50:27 56:27

CRASPEDOTRITIS scalariformis (Erdt.),
1843 56:7

crassa, Thais 52:3

crassa, Cardita 39:11

crassa, Pisitella 50:24-27

crassocosta, Protothaca 42:12

crassaspere, Herdella 17:8

CRASSATELLA LAMARCK, 1799 39:13 10 45:11
fluctuata (Carp), 1864 39:18 45:11
marginata (Carp) 38:9,17

CUMTIDAMARCK, 1807 39:18

CRASSATELLIDAE 39:8 45:11

CRASSATELLITES KUICHER, 1823 39:3 45:11
margarita Carp 39:19

CRASSATELLODA, Tivola (see T.
solidorum 42:26

CRASSIOCASTATA, Cardita (see Veneri-
cardia cavaleri) 39:12

CRASSIOCASTUS, Callistochiton 17:7

CRASSIANA, Astarte 39:7

CRASSIODENS, Cardita 39:12,13 45:11

CRASSILABRA, Cosebra 51:55

CRASIMELLA GUPPY, 1874 39:13 45:11

CRASIMELLA GUPPY, 1874 39:13 45:11

brenneri Arnold, 1903 14:2 39:9 45:11

martinicensis d'Orbigny 39:8

muculiformis Borry, 1840 39:9

oregonensis Koen, 1938 39:9 45:11

pacificoa A. Adams 39:9,18

varies CAR. Adams 39:9

CRASISPIRA STAINSIN, 1840 62:12

adamsiana Pils. & Lowe, 1852 62:32,44

albonodosa Carp 62:32,44

arborosa Dall 62:32,44

apressa Carp 62:32,44

arsine Dall 62:32,44

terrina Sby. 62:32,44

terminata B.S. S. 62:32,44

tricho A. Adams (see actinima)
62:44

terminata Pils. & Lowe, 1852 62:32,44
baccia Dall 62:32,44
ticolor Sowerby 62:32,44
boitae Valencianae 62:12
corrugata Adams, non Sby. (see adamsiana 62:44
dirce Dall (see grandimaculata) 62:44
discoors Sowerby 62:44
tossea Fils. & Lowe, 1932 62:32,44
grandimaculata C.B. Adams, 1852 62:32,44
granulosa Sowerby 62:32,44
hanlloyi Carpenter 62:32,44
hartfordiana Reeve 62:32,44
hermenita Fils. & Lowe, 1932 62:32
hexagona Sowerby 62:32,45
incrassata Sowerby 62:32,44
loxospira Fils. & Lowe, 1932 62:32
luctuosa Hinds 62:32,44
martinsensis Dall 62:32,44
malachory Mokee 62:32,44
micaaa, Hinds 62:32,44
monilifora Sowerby 62:32,44
mophae Dall 62:32,44
nymphaea Fils. & Lowe, 1932 62:32
piluso Fils. & Lowe, 1932 62:32,44
rudis Sowerby 62:32,44
rugicosta Dall 62:32,44
rustica Sowerby 62:32,44
solitaria Fils. & Lowe, 1932 62:45
sowerbyi Reeve 62:32,44
topocana Dall 62:32,44
tiarella Kloner 62:32,44
tomliniana Nolville 62:32,44
trimariana Fils. & Lowe, 1932 62:32,44
unicolor Sowerby 62:32,45
zuluata Reeve 62:45
CRASSISPHERILLA BARTSH & RENNER, 1939 62:12
monteryonis (Stearns), 1871 62:12
rugitexa (Dall) 62:12

CRASSITECTA, Mytilus 36:16
ecassus, Phos 61:9
CRAWFORDIANA DALL, 1891 49:2

CRAWDARDIANA, Cancellaria (see crawfordiana, Massyla 17:8 49:8,9,47
Crawfordianus, Polinices 61:25
crebricinctum, Micranollum 64:40 55:3
crebricostata, Cordia 39:13 45:11
crebricostata, Jumala 60:14
crebricostatum, Mangelia 62:27
crebristriatus, Ironosyrinx 62:7
crebricostatum, Epitonium 52:29
crebristriatus, Cadusifer 50:29
crebristriatus, Massarius 51:5
cremen, Cancellaria 49:5
cremen, Harpa 49:23
cremen, Opalia 52:16
cremen, Nitra 49:23
cremenoides, Opalia 52:13
CREMILLA FROMI, 1887 36:5 27:9 45:3
columbiana Dall, 1897 37:11 45:13
decussata Montagu, 1808 37:9,10 39:5
54:13 50:30

divaricata d'Orbigny, 1855 37:10 45:3
50:35
grisea Dall, 1897 37:11 45:3
inflata Carpenter, 1834 37:10
lecan Dall, 1897 37:10 45:18
rotunda Dall, 1916 37:11 45:8
crenifera, Chione 47:28
crenifera, Fissurella 56:24-27
crenirmarginatum, Opalia (see 0, insculpta 56:13
cremula, Megathura 60:24,47
CREPITULA LAMARCK, 1801 56:1216:2
aculeata (Consinii), 1792 56:16,15
adunca Sowerby, 1835 60:6-9 56:14
arendas (Broderip), 1834 56:14 60:3-9
convexa, glauca Sby, 1822 60:9 56:14
dilatata Lamarck (see Crepipedatella) 56:15
excavata Broderip, 1834 60:7-9 56:13
excavata naticarium Williamson, 1905 56:13
explanata Gould, 1855 60:5-9
exuvita Nuttila (nomen nudum)
exuvita Reeve, 1869 60:3-9 56:16
fimbriata, Reeve, 1869 60:3-9 56:16
formicaria Linnaeus, 1758 56:12,14
grandis Hiddendorf, 1849 56:12
incerta Broderip, 1834 56:14
lingulata (see Crepipedatella) 16:2
lessonii Broderip, 1844 60:2,3
naticarium Williamson, 1905 60:9
mariscoides Sowerby, 1863 60:3-9
nivea C.B. Adams, 1852 60:2-9,10
: : 56:13
nivea glosstidiarum Dall, 1905 60:2,6
88:17
nivea striolata 60:2
nummula Gould, 1846 60:1,-9,10 56:16
norrifornia Williamson, 1905 60:9-9,10,
onyx Sby, 60:84.
: 56:12
orbiculata Dall, 1919 (see Crepipedatella 56:14,17,28 16:2

Page 29
Cycloid, 56:17.
Cyclophorina, 56:17.
Cyclophora, 56:18.
Cyclophorina, 56:19.
Cyclophorum, 56:18.
Cyclothoidia, 56:18.
Cyclophorina, 56:17.
Cyclophorum, 56:18.
Cyclophorina, 56:17.
CYCLOSTOMA HARRISS, 1833 58:20 47:14
adamii Bartsch, 1911 53:17
baldrigae Bartsch, 1911 54:20
bartschii Strong & Hertlein 58:19
cancellata Hertlein 56:20
concinna (C.B. Adams), 1852 53:17
coronata (Carpenter), 1856 56:17
diegnac Bartsch, 1907 52:20
exigua (C.B. Adams), 1852 50:17
jona (C.B. Adams), 1852 58:17
marine D.H. & S., 1938 58:17
nuculacea Strong & Hertlein 58:13
miranda Bartsch, 1921 58:20
nodosus (Carrot), 1856 56:17
ornata (Carrot), 1865 56:17
preparra (C.B. Adams), 1852 58:17
spiceri D.H. & S., 1938 58:17
termisculpta (Carrot), 1865 58:17
zanzibari Bartsch, 1907 58:17

CYCLOSTOMATIDAE (Vitrinellidae) 58:11-23

cylus, Potamides 54:35

cynea, Mustela 39:13

cygnus, Thyasire 39:21 45:12

cylica, Lovisi 1846 4:2, 22-25

cylica, (Brown), 1827 47:22, 25

cylica, corticata Beck 47:23

cylica, Dall 1906 47:25

cylica, (Carrot), 1864 47:24, 25, 30

cylica, figs. 20, 29, 30 17:6, 8

cylica, Bajkov & Hama, 47:25

cylica, figs. 20, 29, 30 17:6, 8

cylica, Bajkov & Hama, 47:25

inca Dall, 1906 47:25

nuculoida (Reeve), 1855 47:23, 25

occulta (Michels), 1841 47:21, 25

pizarro, Dall, 1906 47:25

stephense Strong & Hertlein 47:25

tubogranatia Strong & Hertlein 47:25

tobinora Strong & Hertlein 47:25

zeteki Bartsch, 1918 47:25

CYCLOSTOMA LACE, 1872 47:22, 23

hidentata d'Orbigny 47:23

CYCLOSTOMA 47:25

 cyclica, Cylichna 47:22

cylica, Volutella 47:18-20, 30

cylica, figs. 17 17:3

cylica, Epitonium 52:27

cylica, Lophiana 51:26

cylica, Lepidola 62:22

cylica, Phoebides 42:10 45:10

cylica, langelia 62:22, 25

CYNTHIIDAE 54:16-17

CYNTHIUM REEDING, 1838 54:6

calenense Dall, 1910 54:7

amidus (Reeve), 54:7

annulata (Hinds), 1844 54:7

cingulum (Lam), 54:7

cippuratum transport Dall, 1907 54:16

costatum (Born), 1778 54:7

cyanocephalus (Lam), 58:3

cynorhode Roeding 54:6

cibosum (Brod.), 1833 54:6

ciliumatum (Brod.), 1833 54:7

clineatus (Brod.), 1823 54:7

clearum (Pesh.), 54:7

cileteris (Limaea), 1873 54:7

tigrinum (Brod.), 1833 54:7

testites (Hinds), 1844 54:7

weigmanni Anton, 1829 54:7

CYMBAEACEAE DALL, 62:61

acapulca, Lowe 62:32, 43

ascina Dall 62:29, 43

asei Dall 62:29, 43

ceropo Dall 62:32, 43

albicostata Sowerby 62:32, 43

aerea Sowerby 62:32, 43

arbela Dall 62:32, 43

attalica Dall 62:32, 45

clevata Sowerby 62:32, 43

clesa Dall 62:32, 43

ferminiana Dall 62:32, 43

helocysta Sowerby 62:32, 43

hemphilli Stearns 62:32, 43

horniona Dall 62:32, 43

hespera Dall 62:35, 45

hucaqua Dall 62:43

iante Dall 62:52, 43

idiotheca Dall 62:52, 43

johnsoni Arnold 62:52, 43

pallida Sowerby 62:32, 43

palmeri Dall 62:32, 43

pensia Dall 62:32, 43

plicatella Dall 62:32, 43

pudica Bjöks, 62:32, 43

ruga Sowerby 62:32, 43

splendidula Sowerby 62:32, 43

cymatia, Eorectophyta 51:57

cyphiiformis, Haminoca (see H. virginsens 48:4)

CYRIPIDINAE 47:7

CYRIPIDOPSIS 47:7, 25, 26

CYRIA teetum Wood, 1823 52:6
decussata,
Diasporus 54; 7
decussata, Skenea 55; 17
decussata, Venerupis—Venus 42; 14
decussatus, Hytilus 37; 9
deformis, Pyrolofasus 50; 12
DEFINITION 67; 22
Pajodan Millett (see Plutrotomoides 62; 12
dehiscent, Lima 30; 6 35; 14 61; 54
dialectospermum, Stewart, 1930 35; 14
dielsertiana, Thais 52; 8
dilia, Litrella 51; 14
dilecta, Rhiponix 56; 10
dilectus, Ostonia 61; 1
dolomonta, Turbonilla 61; 31
dolomontensis, Ostonia navassa 66; 36
dolomontensis, Turbonilla gillii 61; 22
dolorosa, Litrella 49; 22
dolorosi, Funtarella 60; 29
DOLPHINIA F. Brown, 1827 (see Skenea 53; 20 47; 3
DOLPHINIA 46; 3
cancellata Gray (see Laticia) 57; 25
depressa Lea (see Solariorbis) 56; 22
duminyi Requien, 1848 (see Cirrusculus) 53; 1
trigonostroria Deshayes in Lamarck (Trigonostroria) 49; 3, 8
doltoidea, Thais 59; 4
dominus, Volcella 36; 15 45; 9
dondriticum, Mygillum 54; 12
donisalathrata, Modora 60; 26, 26
donisalathrata, Epitonium 56; 29
donisallastica, Gytharella 62; 91
donisallastica, Litrella 61; 14
DEUTERIUM 46; 8-20
DENTELIUM LINNAEUS, 1758 46; 8-13
agassizii, Pilbry & Sharp, 1897 46; 9, 10, 17 pl. I
dalli Pilb., & Sharp, 1897 46; 9, 13, 17 pl. I
olephantinum Linnaeus 46; 8
fischeri, Pilb., & Sharp, 1897 46; 11
hannai Nakor, 1925 46; 9, 10, 11, 12
pl. I
indigenorum Carpenter 46; 12
inversum Deshayes, 1825 46; 9, 11, 17 pl. I
neohexagonum Pilb., & Sharp, 1897 46; 9, 17 pl. I
numerorum Dall 17; 7
numerorum Pilbry & Sharp, 1897 46; 9, 10, 17
orostedii Koch, 1831 46; 9, 10, 17 pl. I
protocostum Sourby, 1860 46; 9, 12, 17
pl. I
rectus Carpenter, 1894 46; 9, 15, 17
pl. I
sectum 46; 11
semipolitum Brod. & Styr., 1829
46; 9, 10, 17 pl. I
sharpi, Pilbry, 1832 46; 9, 13
vallicolons Raymond, 1864 46; 9, 12, 17
pl. I
watseud Pilb., & Sharp, 1897 46; 9, 15, 17
pl. I
dentata, Divercella 49; 9
denticulata, Rotulina 37; 4, 5, 6 38; 4
46; 9
denticulata, Gregariella 37; 3, 4, 5
denticulata, Ptericola 42; 20
denticulata, Phydia 48; 9
denticulata, Zetaria 52; 9
dentiferum, Glyphostoma 52; 23
dentiferum, Mastaria 51; 5
DEUTERIUM DE LONGY, 1836 52; 18
depicta, Lamna 57; 7
depilens, Tethya 49; 25
depressa, Atlantia 52; 20
depressa, Solariorbis 58; 22
depressa, Vespericola 15; 3
DEUTERIUM D'ALI, 1839 38; 11, 9 45; 10
beringiana (Dali), 1916 38; 11 29; 10
buttoni (Dali), 1916 38; 11 29; 5 45; 10
lona (Dali), 1916 38; 11 45; 10
macroides (Dali), 1839 38; 11
tenuiconcha (Dali), 1815 38; 11, 17
45; 10
trosti (Strong & Fortlein), 1937 38; 11 45; 10
DECORERAS gracile 40; 1
deshayesi, Dimyta 34; 10
deshayesi, Spicula (see Nacrae nasuta 41; 7, 15
DEUTERIUM DE LONGY, 1836 47; 8
DECORERAS Chuin, 1899 47; 3
penticus Easonberg, 1919 47; 2
papilio Chuin, 47; 8
dosugoci, Gorythopsis 54; 14
DEUTERIUM zeledi Pilbry 48; 14
dorius, Pyrolofasus harpa 50; 12
dextroversus, Portulum 54; 39
dextroversus, Selia 54; 20

diactia, Odostomia 41:38

diaclua, Isactia 54:21

DIEGARD (see DIEGORDA) 60:25

DILLH. D., DALL, 1861 (see Barlesia) 56:21 47:3

DILLUMA BROWN, 1857 47:2,22

brunnnea Dall, 1919 47:22

californica Dall, 1919 47:22 17:8

globosa Loven, 1846 47:22

mirbta Brown 47:22

DIBASTOMA 47:2

diphana, Jeffreysia 56:16

DILASTOMA DESILVIES, 1860 47:2 54:26

costellata Dosseys 54:26

fastigata (Carps.), 1884 54:26

oldroydae Bartes, 1911 54:26

stearnsi Bartes, 1911 54:26

diamolus, Antiplano 61:14

diomolus, Hagilliopeis 63:47

diazi, Boreotrophon 51:62

DEBERUS DALL, 1898 57:7

dicoila, Odostomia 61:36

decipiens, Isocochitona 17:7

doeanina, Tindaria 33:14

diegonse, Bacun 54:40 55:8

diegonse, Epitonim 52:32

diegonse, Alchinia 54:27

diegonse, Boreonella 62:42,16

diegonse, Botula 36:15

diegonse, Cerithiopsis 54:17

diegonse, Cylichna 47:24,25,30

pl. II figs. 49, 50, 50 17:8,3

diegonse, Cyclostrema 58:20

diegonse, Loompia

diegonse, Lora 62:20,42

diegonse, Mitra 49:31

diegonse, Modiolus 56:15

diegonse, Mytilus diegonse 50:38

diegonse, Mytilus edulis 48:28

49:47 pl. III 55:4 51:64

diegonse, Olivella bactica 49:20

diegonse, Pecten 56:9

diegonse, Pecten 56:4

diegonse, Torreao 44:56,57

diegonse, Thracia 37:14,16 38:16

48:9

diegonse, Turbonilla 61:22

diegonse, Volucella 50:25 39:4 45:8

diegonse, Tiliottis corrugata 60:20

diegonse, Lamillaria 57:12

digitalis, Amcea 57:13

dina, Pseudomactula 62:43

digueti, Lamillaria (see Pleurobranchus) 57:2

digueti, Pleurobranchus 48:9

dilatata, Crepidula (see Crepipatella) 56:15

dilacta, Pholas 64:32

diminiuta, Anachis 51:21

dimidiatus, Colus 50:19

diminiuta, Fucinus 56:7 50:10 55:37

DINNIA ROUSO, 1843 34:10 45:6

californiana Borry, 1936 34:10 37:11

DINNIA Borry, 1944 37:11 45:6

deshayensis Rouasa 34:10

DINNIAE 34:10 45:6

dina, Cerithiopsis stojnogori 60:11

dina, Missicina 56:3-4

dionella, Odostomia 61:47

dinera, Pleurotomoides 62:41

dinera, Alveania 55:33

dinera, Turbonilla 61:25

DINNIA DALL, 1860 60:25

costa (C.B. Adms.), 1852 57:24-27

apertura Montagu 60:25

aspera (Echsholtz), 1833 60:26,16

asperior (Dall), 1909 60:24-27

don Slashrata (Reeve), 1850 60:26,16

fontainiana (d'Orb.), 1841 58:22-27

grace Linncaus 60:25

inaequalis (Sby.), 1835 60:27 37:27

63:11 60:26

marina Arnold, 1903 60:26

panamensis Sowerby 58:24-27

diomedae, Cerithiopsis 54:16

diomedae, Cuiralis 58:18

diomedae, Ocenebra 61:53

diomedae, Ailaia 48:7

diomedae, Antiplano 62:14

diomedae, Propheola 62:17

dione, Venus 42:10

DICTOCARDIA or Aspidobranchia 42:24,27

diploiodontum, Buccinum 50:25

DICTOCARDIDAE (see Taras) 39:24

DIPLOCODONTIDAE (see Unguiculidae) 39:24 49:19 45:12

dipsacus, Phyllonotus 51:42

dira, Scarcasia 51:31 50:23

diro, Crassispina 62:32,44

discors, Iacoa 56:34

discors, Crassispina 62:44

dytillus, Lymellaria 57:8
discors, Pyrene- Voluta 50:1

disculus, Modulus 54:12

discus, Periploma 37:12 49:9

disjuncta, Thyasira 39:20

dispar, Conus 48:24,25

dispar, Peeten 36:14 A

dispersilis, Boreotrophon 51:57

DISTORSIO ROEDING,1798 49:3 54:7

costrieta (Prod.),1833 54:7
decaussata (Valenciennes),1833 54:7
distortus, Centharma 49:46

distortus, Triumphis 50:12

DITERTUS DALL,1898 48:18

DIVARICATA HELLARDI (see Agathotoma) 62:30

divaricata, Arcospora 34:6

divaricata, Carnella 50:38 37:10

45:13 33:6

divaricata, Carnella (see L. vicina)

55:14-37 :

DIVARICELLA von Martens,1869 49:6,9

45:15

ornata Reeve (see also D. dentata

parverula Dall 40:6,9

parverula Dall,1901 40:8,9 45:13

divus, Solen (see Tagus divisus

43:23:

divus, Tagus 43:25:

DOCOCLOS A 42:25,27,29

DOCOCLOATA BARTSCH,1907 53:19

bakeri Strong & Hertlein 58:17

berries (Bartsch,1907 58:19

columbiana Bartsch,1921 58:20

lovei (Bajek, Hanno & Strong) 58:17

stearnsii (Bartsch,1907 58:19

dolabriformis, Nastra (see Spisula

dolabriformis, Spisula 44:7,8,14,15,

17,18,19 47: back pge 49:47,50

pl.III

dolorte, Turricula 62:32,41

doloxia, Calliostoma 58:1

DONACIDAE 43:20 45:17

DONAX LIMPRYUS,1758 43:20,24,25 45:17

california Conrad,1837 43:20

47: back page

culter, Henry 45:20

gouldi Dall,1919 20,21,25,26

47: back pge 52:16

iris Limnaeus 42:15

lacivaga Gaulin,1791 45:20

lavica Gaulin 47:23

obscur Gould,1851 (see D. Gould, 45:20,26

punctatostrictus Hanley,1843 47: back page

rugosa Limnaeus 43:20

stultorum Howe, 1823 (see Tivela

42:6

donilla, Odostomia 61:41

dors, Turbonilla 61:23,31

dorsata, Strobina 51:29

DORIDII membranacea Heckel (see

Alkalysa) 48:6

DORIS obvelata (Tryon) 42:29

doris, Panglella 52:9,48

dorum, Mitrella 51:14

dorsalis, Xylophaga 44:36

DOSINIA SCOPOLI,1777 42:8,5 45:14

africana Hanley (see also D. dosin

42:5

concentrica Born 42:5

dosin (A. Casey) 42:5

ponderosa Gray,1833 42:6 45:34

45:14 55:1

DOSINIA IDLA DALL,1902 42:4 45:14

dracona,burydonna 61:25

draconis, Polinices 56:30

DINAPA ROEDING,1798 52:10

Ingbahris (C.B. Adams) 1822 17:3 3

drusiana, Noliella 57:24,26

dubia, luricopsis 51:42 12:1

dubia, Pseudeastora 40:24

dubia, Sportella 40:11,13

dubiosa, Cyclostoma 37:15

dubiosa, Forsicula 49:26

dubius, Polinices 56:26

dulcens, Melanella 55:11

DUNKERIA CARPINTER, 1857 61:35

subangulata Carpe (see Bartschella)

61:34

duncani, Alvaria 55:30

dunkeri, Mytilus 30:9,36:8,9,16

dupotithocrii, Fursinus 50:7

duplicata, Carinodrilla 62:32,44

duplicatus, Modulus 54:2

dupontii, Conus (see Paramenardia)

30:1

dupontii, Paramenardia 51:11 30:1

dydera, Chione 42:9 - Venus

earyla, Engina 50:29

churne, Nilo, 55:17

churne, Pseudocentrotoma 62:43

churne, Verrucaria 54:42 55:8

DOKINOCALMA 39:19

edaphus, Conus 48:12,25

edentula, Strobina 51:29
Assorted genera, 40:5
edentuloides, Anodontia (see Incisina 40:6 45:12
edmondii, Odostomia 61:41
edulis, Mytilus 56:7, 9, 16; 37:11 30:9 34:11
edulis chitonias, Mytilus 30:16
edulis galloprovincialis, Mytilus 37:11
edulis glosaeus, Mytilus 30:7
edulis plagiococh, Mytilus 30:16
edulis trosaulus, Mytilus 30:7, 3
effusa, Lacuna carinata 55:14
effusa, Litra 49:28
effusa, Ophioderma (see incisa) 62:10
effusa, Rissoina 56:2-4
clyta, O. obtomia, 61:37
cognea, Borneola 62:49
cola, Pterygiomus 62:12
cisbri, Cerithiopais 54:14
cisbri, Tegula 57:32
ELACHIUM DALL, 1913 56:22
tripi Dall, 1918 56:32
ELAECIUM DALL, 1913 62:7, 9, 51
scolla Dall 62:3
emphysis (Dall), 1899 62:3, 3
ecocephale Dall, 1919 62:23
hemphilli (Stearns), 1871 62:3
ciata, Cancellaria 49:15
clattor, Neophium australa 50:22
clattor, Tricolia pulloides 57:17, 18
ciatum, Aevicardium 61:52, 14
clonor, Homopleurotomus 62:47
clonor, Odostonia 61:48
cordiocl, Pterygnotus 51:26
cola, Helcionella, 62:59, 45
coliensa, Atlaviana 55:30
coliensa, Mitrella 51:12
cologa, Cantharis 50:12
clologa, Bicelia 50:27
clologa, Lora 52:20, 42
clologa, Bicelia 47:28
clologa, Berginella 40:16
cologa, Mitrella 51:14
cologa, Odostonia 61:40
cologa, Strombina 51:29
clologa, Tegula 57:34
cologui, Cione 47:18
cologusta, Bulima, 55:16
cologusta, Anchis 51:21
cologusta, Solaricella 57:83
cologusta, Broechea 51:57
cologusta, Murex 56:25
cologusta, Rostov 51:22
olen逡sis, Pustulina 37:10
ELEPHANTIDUM DALL, 1892 47:2 34:11
carrenterii (Bartilha, 1820 54:41
heptagonum, Carpenter 54:40
larathoxys, Carpenter 54:40
ELEPHANTIDUM CARPENTER, 1855 54:41 47:2
abnormale, Carpenter 54:40
insculptum, Carpenter 54:40
laqueatum C.R. Adams 54:40
obtusum, Carpenter 54:40
subspirale, Carpenter 54:40
clophontaum, Dentalium 46:3
cleva, Cosycys 54:5
clilatus, Margarites heliceus 52:10
cilasa, Cryptosyrinx 62:35, 43
ELLODIDAE 48:9-14
ELLIONUM stagnum, d'Orbigny 47:23
clongata, Calyptrae 46:11 39:12, 17
clongata, Micrornella 54:40
else, Odostomia 61:45
emarginata, Thais 52:6
emarginata, Conus 48:2, 25
emphalo, Borneola 62:42
EMELECONIA DALL, 1903 (Limopsis see empysia, Clavis 17:4
empyricus, Elagocyma 62:7, 8
empyricus, Nereis (see s. tessulata) 57:7, 8
corydosedum, Epitonium 52:25
ENAETI, H. et A. Adams, 49:28
harnsii (Gray), 1825 49:28
vimingili (Prod.), 1832 49:28
pumari, Verrilli, 1870 49:23
encella, Borneola 62:42
encella, Turbonilia 61:25
dendrissa, Bicelia 55:18
engbergi, Homalopoma 57:20, 23 60:39
engbergi, Odostomia 61:45
engbergi, Turbonilia 61:23
ENIGMA, Gray, 1859 50:28
coracta (Reeve), 1846 60:29
carbonaria (Reeve) (see E. mauro
(Symes) 50:28
earlyi, Bartola & Hohler, 1939 50:29
ferruginea, (Reeve), 1846 50:29
heptagonia (Reeve), 1846 50:29
jugosa (C.R. Adams), 1955 50:29
lithium, Dall 50:29
livida (Sowerby), 1832 50:29
manteosoma (Bartilha), 1823 50:29
maura (Sowerby), 1832 50:29
panuncinaria (Bartilha), 1831 50:29
pulcher (Reeve), 1846 50:29
pyrostoma (Sowerby), 1832 50:29
californicum (Dall), 1897 52:31
calepoleum (Dall), 1819 52:27
carpenteri Tap.-Cal., 52:20
catalinae (Dall), 1908 52:32
catalinonais (Dall), 1917 52:30
centronium Dall, 1917 52:27
colpoicum Dall, 1917 52:27
columbianum (Dall), 1917 52:30
coppodorum Dall, 1917 52:27
cookeanum (Dall), 1917 52:23
columnellum Dall, 1917 52:27
corpor Strongs, 1930 52:29
crèbricostatum (Carp), 1864 52:29
crispa (Lamarck) 52:32
cumingi (Carp), 1866 52:27
cylindricum Dall, 1917 52:27
densicostatum (Dall), 1917 52:29
diegens Dall, 1917 52:32
doryodonculus Dall, 1917 52:23
eospiritum B.H. & S., 1930 52:19
eutaenium Dall, 1917 52:27
eupletura Dall, 1917 52:30
fallaciosum (Dall), 1917 (see
E. tinctorum) 52:27, 29
dermianum Dall, 1903 52:21
gaylordianum Lowe 52:27
golici B.H. & S., 1930 52:19
groenlandicum (Perry), 1811 52:21
gubelli Dall, 1917 52:27
hexagonum (Sowerby), 1845 52:30
hindsii (Carp), 1856 52:27
imbros Dall, 1917 52:27
imporftatum Dall, 1917 52:23
inconsipianum (Shy), 1847 52:32
indianorum (Carp), 1864 52:27, 40
indistinctum (Shy), 1844 52:23
keseyi B.H. & S., 1930 52:23
keratinum Dall, 1917 52:23
lagunarium (Dall), 1917 52:23
lowei (Dall), 1906 52:23
mexaticotum (Dall), 1906 52:23
mexicanum (Dall), 1806 52:19
muscoideum (Dall), 1906 52:23
obtusum (Shy), 1844 52:37
orchodes Dall, 1917 52:23
oringianum Dall, 1917 52:33
orcuttianum (Dall), 1917 52:23
orconus Lowe 52:19
paccis Dall, 1917 52:23
pazinum Dall, 1917 52:27
pedroanum Wiltl, 1932 52:30
persutum (Dall), 1917 52:23
phaniun Dall, 1919 52:27
pompholyx Dall, 1869 52:21
prehaemagenum Dall, 1917 52:27
purpuratum Dall, 1917 52:20
rectilaminatum (Dall), 1907 52:51
reedi Bartsch, 1928 52:27
regionatum Dall in De Bouy, 1919 52:51
regularis (Carp.), 1866 52:27
regum Dall, 1917 52:52
retiporosum (Carpenter), 1864 (see E. spongiosum) 52:19
rythidum Dall, 1917 52:27
roberti Dall, 1917 52:27
sanjuanense Lowe 52:19
sawinac (Dall), 1905 52:30
scalius Linnaeus 52:18
sleni Strong & Bertlein 52:23
spongiosum (Carp.), 1864 52:19
17:7
strongi Bartsch, 1928 52:27
strongianum Lowe 52:27
subcoronatum (Carp.), 1866 (see E. tinctorum) 52:27:28
tabuletum Dall, 1917 52:33
thylix Dall, 1917 52:27
tilia (Carp.), 1856 52:30
tinctorum Dall, 1917 52:23
tinctorum (Carp.), 1864 52:27
Nov. 1941
tinctorum bermannii Strong, 1941 52:23
tromperi (Bartsch), 1927 52:19
turbinum Dall, 1908 52:21
unifasciatum (Sowerby) 52:23
villetti Strong & Bertlein 52:27
zontatii Dall, 1917 52:23
zeophilum Dall, 1917 52:33
zeteki Dall, 1917 52:27
equatorialis, Cidarina 56:5
equatorialis, Lora 52:42
equatorialis, Solarolla 57:33
ERATIDAE (-ERATIIDAEE) 55:38
EUCOSMIA RISSO, 1826 50:6 55:42
maugoricc 30:6
columella Monke, 1847 53:42
vitellina Hinds, 1844 53:42
erosus, Marginella 49:25
crisi, Arenite 57:42, 25
crisonophaltherussia 62:39, 46
crisono, Brachytoma 62:22, 45
crisonos, Pterynotus 51:34
crisonis, Mangelia 62:27
crisonic, Pleurotomoides 62:41
EUCOSMIA, Aspella 51:53
erosus, Tachyrychnus 54:47 55:8, 38
errorce, Colus 50:20
ERYLLA TURTON, 1822 46:18 44:25, 37
california Dall, 1916 44:25
nitens (Montagu) see Mya nitens 44:25
ERYSSAL A. LAMARRCK, 1805 40:3, 10, 13, 17
45:15
bakoni Dall, 1916 (see also Pseudo-
pythina) 40:11, 13
balliana Dall, 1916 (see also Mont-
acuta) 40:11, 13, 21, 22
catalinae Dall, 1916 (see also Psaena
40:13
cnae (Dall), 1916 (see also
Pseudoptythina) 40:12, 13, 17
coronata Dall, 1916 40:12, 13 45:13
pellicula Lamarck 40:11, 13
santarosae Dall, 1916 40:13 45:13
ERYTHOMA 45:19
ERYTHINIDAE Deshayes, 1860 40:19
eurystromma Litra 49:28
oscoecus, Nassarius 51:5
escarinatus, Margarites vorticiformis
56:7
eschrictii, Bittium 54:29 55:36 63:11
escholzii, Turbonilla 61:33 63:11
escondidens, Triphora 54:11
esmauri, Vitrinella 58:19
esida, Odostomia 51:41
esida, Pleurotomoides 62:41
escirpinatum, Epitonium 52:19
esculentii, Astauro 59:7 45:11
acecosanus, Bulla (Atys) 47:29
pl.II, fig. 4 48:30
estuarinum, Microgyphis 47:10
esurianum, Pleurotomoides 62:41
eschius, Colus 50:18
FUCILIA H. & A. ADAMS, 1844 54:26, 6
EUCOSMIA PILSBERY, 1888 (see Eulithidium
57:18
Eucosmia, Bumota 55:19
eucosmia, Odostonia 61:39
eucosmus, Ancistrolophis 50:15
eucosmophysis, Turbonilla 61:31
eucymatus, Berootrophon 51:57
EUDAPHE BARTSCH 62:50
EUDAPHELLA BARTSCH 62:50
cudoxia, Trigonocardia 41:25
eugena, Odostonia 61:36
eugraminatum, Bucinum 50:24
EULAMELLIDRACHIA 42:26, 27
EULIMA RISSO, 1826 (Strombiformis)
53:15
acuta (Sowerby), 1834 53:16
also (Bartsch), 1917 55:16
alaskensis (Bartsch), 1917 55:16
bathaesi (Bartsch), 1917 55:16
B artillery (Bartsch), 1917 55:16
California (Bartsch), 1917 55:16
elegantissima (de Folin), 1867 53:16
fuscostriata (Carp.), 1864 55:16
hemphilli (Bartsch), 1917 55:16
hna (Bartsch), 1926 55:16
incd (Bartsch), 1926 55:16
jacula (Pils & Love), 1932 55:16
lapazana (Bartsch), 1917 55:16
panamensis (Bartsch), 1917 55:16
parla (Bartsch), 1926 55:16
procc. (de Folin), 1867 55:16
raymondii (Rivers), 1904 55:16
riversi (Bartsch), 1917 55:16
salsa (Bartsch), 1926 55:16
townsendi (Bartsch), 1917 55:16
variae (Sowerby), 1854 55:16
EULITHIDAE (Melanellidae) 53:15-18
EUHITISRAGA BARTSCH, 1917 55:13
bartschi Strong & Bertlein, 1937 55:18
galapagensis Bartsch, 1917 55:13
EULITHIDUM PILSBRY, 1898 57:17,18
cyclostoma Carpenter, 1864 57:17
lurida Dall, 1897 57:17,19
mazaatinica Strong, 1928 57:17
phasionella (C.B. Adams), 1852
rubrilineata (Strong), 1928 57:18
subetritata (Carpenter), 1864 57:17,
typica (Dell), 1906 57:17,18
umbilicata (d'Orbigny), 1840 57:17
EUNITE 47:2 55:19
bimarginata C.B. Adams, 1852 55:19
intercalaria Carpenter, 1865 55:19
exoesina Bartsch, 1911 55:19
EUNATOCYDA Fischer, 1855 56:33
heimi Jordan, 1836 56:20
oldroydi Dall, 1897 56:32
EUPELEURH & A. ADAMS, 1853 51:54
51:53
caudata (Say), 51:54
gripp. Dall, 1911 51:33,54
murichathos Broderip, 1852 51:35
nitida Broderip, 1852 51:38
curycola, Eulalia 62:39,46
curyola, Pterostomatoides 62:41
curyomalus, Tagula 57:32
EURITELLINA 43:8
curytoidea, Aechopus 51:24
EUSPIRA AGASSIZ in SOWERBY, 1839 56:28
eutaurium, Epitonium 52:27
EUTHLEA plumboeus Philippi, 1841 50:27
EUTHLEA 42:24
eva, Tarmonilla 61:31
evadne, Langelia 62:27
EVALIA A. Adams, 1830 61:40
EVALIHA DALL & BARTSCH, 1904 61:39
evando, Spirotrapis 62:42
evomanni, Triphora 55:11
evota, Opalia 52:17
exanthema, Cypraea 48:29
exanhamatus, Cantharus 55:12
exaura, Odonotoma 51:40
exacuta, Clio 47:7,30 pl.II, f.5
exarta, Lora 52:20
excavata, Cresipula 56:13 60:7-9
excavata, Lucina (Linga) (Herc) (see also L. richhoveni Gabb), 40:5 45:12
excavata, Thyasia 39:21 45:12
excavatus, Possarum 55:13
excavatus, Sagariodes helicimus 55:10
excisa, Odonotoma 51:40
excelsa, Miso 53:18
excelsa, Rissoella 56:6
excolpta, Rissoina 56:2-4
excolpita, Triphora 54:11
excurvata, Alvania 55:50
excurvata, Granotoma 62:19
exiguus, Cyclostoma 55:17
exiguus, Cuscula 37:42 12:2 33:7
exiguus, Ocenebra 51:53
exiguus, Jantina 54:8
EXILL(see also Exilicoididea), 50:16
EXILICOIDEA GRANT & GALE, 1931 50:15
"7, Jan. 6, 1942 51:63
kelseyi (Dall), 1908 50:16
rectirostris (Carp.), 1865 50:16
exilis, Barleeia 55:21
exilis, Bassarius 51:5
exima, Acteonella 47:11,13,30 pl.II, f.11
a fig. 12
eximium, Callipotoma, 58:3 60:39
exogyra, Chama- Pseudochama 39:19
45:12 65:9
exoleta, Makra 44:17
exopleura, Canthella 49:7
exopleura, Epitonium 52:20
exoticum, Feston 55:14
expansa, Maccor 45:15
expansu, Lacula (see M. bellottii) 47:42
Sulmo Wood, 1820 50:3
FASCIOLEIDAE 50:3 42:25
fastigiata, Calyptroca 56:22
fastigiata, Dictyoma 54:26
favilla, Rissolim 56:2, 5
FELANIA usta Gould (see Teras 39:24
FELANIELLA DALL, 1899 39:24 41:20 65:12
felicpenis, Fusinus 50:7
femorale, Cymatium 54:6
fenosrata, Acaea 57:8 60:10
fenosrata, Iselica 55:16 15:2
fenosrata, Liota 57:24-26
fenosrata, Homalopoma paucicostatum
57:20, 23
fergusoni, Conus 48:24, 25
ferminiana, Cymatocymix 62:32, 45
ferminianum, Epitonium 52:21
foruginea, Thysa 52:26 45:12 38:21
foruginosa, Langina 50:52
ferruginosa, Rochefortia 40:15 40:13
FIBROSCALIA 52:21
festivus, Macr. (see Pterygotus
festivus, Pterygotus 17:8 51:36 52:37
festivus, Nascua 51:5
fetella, Odostoma 61:40
fetellum, Zittum 54:23
fewnessi, Veronicella 54:42 55:8
fiac, Corithiopsis 54:18
fiac, Odostoma 61:57
fiachona, Iselica 33:11
FICIDAE 54:5
FICUS ventricosus (Sowerby) 1825 54:5
fidellis, Monadentia 15:2
fidellis, Mellissa, Monadentia 15:4
fidicula, Lora 63:30
FIILIFERANGIA 42:26
filosa, Acadia 56:35
filosa, Alatina 56:35
filosa, Genesia 56:35
filosa, Lucina 40:7
filosa, Mitromorpha 49:33 62:39, 45
filosa, Pandora 38:13 45:9
filosus, Volupina 50:13
FILIMBRILIA EOLIBOSCH 49:35
fimbriata, Cornellibia 52:14
fimbriata, Cylindrica 56:16 60:3-9
fimbriata, Typhina 51:26
finistima, Hangelia 62:33, 46
flora, Lora 62:20
flora, Malletia 33:14
firmata, Rissolina 56:2-4
firmaturn, Cacorum 54:40
fisherianum, Buccinum 50:20
fischeri, Dentalium 46:11
FISSURELLA LAMARCK 1799 60:23,24
alba, Carpenter, 1857 58:24-27
asporella Sowerby, 1836 58:24-27
clypeus Sowerby, 1834 58:24-27
concina Philippi 58:24-27
costata Lesson, 1830 58:24-27
crassa Lamarck, 1822 58:24-27
ocranifera Sowerby, 1834 58:24-27
fulvescens Sowerby, 1836 58:24-27
latimarginata Sowerby, 1834 58:24-27
limbata Sowerby, 1834 58:24-27
maxima Sowerby, 1834 58:24-27
mexicana Sowerby 58:24-27
nigra Lesson, 1830 58:24-27
nigrocineta Carpenter, 1855 58:24-27
nimbosa Linnaeus, 1758 60:23
nubecula Linnaeus 39:3,4
obovata Lesson, 1835 58:12,24-27
obscura Sowerby, 1834 58:24-27
ostrina Reeve, 1849 58:24-27
poruwicana Lamarck, 1822 58:24-27
philippiana Reeve, 1849 58:24-27
picta Gmelin, 1791 60:24-27 60:23
punctatissima Flahy, 1840 58:24-27
pulchra Sowerby, 1834 58:24-27
rugosa Sowerby, 1835 58:24-27
spongiosa Carpenter, 1857 58:24-27
virosens Sowerby, 1835 60:24-46
volcano Reeve, 1849 60:24-46
volcano crucifera Dall, 1900 60:24
FISSURELLIDAE 60:28-29 58:24-27
60:25
FISSURELLIDAE bimaculata Dall (see Megathomus) 60:25
Fissurida parviforata 39:5
FISSURELLIDAE SEQUENA 60:27
flabellata, Volsella recta 52:36
flabellum, Zeidler 56:12
flaminia, Mitrella 30:7
flammea, Cordita 39:12
flavescentia, Senole 43:17
fleectens, Basilichiton 17:7
flavosa, Thyasira (see also Tollina 39:20,21
flexuosus, Jaximus (see also Thyasira, forresterensis) 39:21
fluidifraga, Chione 52:37 42:9,10
45:15
fluctuata, Anachis 51:22
fluctuata, Crassatella 39:8 45:11
fluctuosa, Liocyma 42:15
fluctuosa, Tegula brunnea 57:36
fluctuatum, Buccinum castanum 60:29
fluctuosum, Tegula brunnea 60:29
fluctuosa, Venus (see Liocyma
fluctuosus, Turbo 57:20,21
flaminia, Corbicula (see C. fluminis 38:18 47:28 46:10
foliata, Pododoris 36:4
foliata, Furfuraria 51:43
fulica, Calliostoma 57:83
fuscicoma, Langaia 56:35
fuscica, Crassipus 62:32,44
frominga, Anostrobus 50:27
fontiniana, Boudrea 58:24-27
fontiniana, Fusinus 50:7
fontiniana, Purpura 51:42
fordi, Antigua 42:8 43:34 45:15
fordi, Typhis 47:38
formosa, Sequinza 54:3
fornicata, Crepidula 56:12,14
fornicata, Volsella 36:12,14 45:18
FORSSKELL JUSSAUME, 1860 61:54
belcheri (Hinds) 1843 51:54 52:37
17:8
caitalensis (Oldroyd) 1827 51:55
17:8
corvocensis (Dall) 1891 51:55
17:8
pinnaeus (Dall) 51:60,61
forrestonensis, Cingula 55:26
forrestonensis, Pandora 37:16 45:9
fortis, Carinoturris 62:13
fortis, Rissoidea 56:2-4
fortiuscula, Cerithidea (see also
C. variocostus Sby. 16:4,9
fossa, Nuculana 33:9
fossa curtulosa, Nuculana 33:9
fossa sculpta, Nuculana 33:9
fossa vagina, Nuculana 33:9
FOSSARIDAE 55:10-18
FOSSARUS PHILIPPI, 1840 56:16 47:3
adonisii Philippi 56:16
angiolus Dall, 1919 55:16,18
anglastorci C. B. Adms. 1852 55:13
angulatus Carpenter, 1857 55:13
atruna C. B. Adms. 1852 55:13
excavatus C. B. Adms. 1852 55:13
foveata C. B. Adms. 1852 55:13
grunyquifolium Bartsch, 1928 55:13
lucanus Dall 55:18
megasona C. B. Adms. 1852 55:13
parciplicatus Carpenter, 1864 55:16
purus Carpenter, 1857 55:16
tuberosus Carpenter, 1857 55:16
gubernatrix, Turbonilla 51:23
GADILLA 46:14
GADIHLA GRAY, 1824 (see Trinuculus) 48:14 16:12
GADINIDAE (see Trinuculidae) 43:14
galapagana, Leucosyrinx 62:41
galapagana, Sycleriella 57:33
galapagana, Sulcorebusta 41:17
galapagana, Velutania 57:33
galapagensis, Alvaria 55:30
galapagensis, Cerithiopsis 54:13
galapagensis, Bulimostraca 53:18
galapagensis, Tectarius 55:11
galapagensis, Terebra 48:19, 20
galapagensis, Triphora 54:1
galeata, Funicella 60:28, 47
galeana, Lora 62:20
galeatus, Strombus 54:4
GALLOIDIA 40:10
Gallinae, Turbonilla 61:25
gallago, Alvaria 55:30
gallago, Nassarius 51:5
gallago, Polinostoma 51:18
gallina, Ischnochiton 17:7
gallina, Tegula 57:35 60:39
gallis, Strombus 15:2
GAMESI
filosa, Dall 58:18
notocoles, Carpenter 58:18
panamensis, Dall, 1902 56:18
piona, Dall 58:13
gardneri, Yoldia 33:12
GARI SCHUMACHER 1817 (Paremobia) 41:21, 25
california (Conrad), 1848 47; back page 43:21
regularis (Carpenter), 1864 47; book 43:21
variolis, Locoh (see also Solen
cuspertinus 45:21
vulgaris, Schumacher (see Tellina
gari, Spengler and Paremobia
caerulea, Gmelin, 1843 43:21
GARIDA 45:17, 18 43:21
GASTROPODA 42:23, 25, 26, 28
GASTROPODERIDAE 43:6
GASTROPTERON KOSSB. 1815 48:6
cinerum, Dall, 1823 48:6
mackelli, Blainville, 1825 48:6
pacificum, Bergh, 1895 48:6
rybrum (Rafinesque) 48:6
graudens, Thos 51:9
gaudichaudi, Atlanta 55:20
gaudichaudi, Tegula 57:32
gausapata, Mitrella 51:63 17:3 (see M. carinata) 51:14, 15
gayi, Nassarius 51:5
gayloridianum, Epitonium 52:27
GEMMA DESHAYES, 1826 42:3, 15 45:15
gemma, Totten, 1874 42:16, 34 45:15
gemma, Petonytus 51:36
gemma, Venus (see Gemma 42:16
gemmata, Turrise 62:41
gemmata, Turrise 54:8
gemmatus, Canthus 50:12
GEMMATA (subgenus Turrise) 62:41
benthina, Dall, 1890 (see Cryptogemma) 62:12
gemmulate, Cancelleria 49:15
gemmula, Terebra 49:12, 20
gemulatum, Calliostoma 50:3 60:3, 46
gemmoids, Calliostoma 57:36
gemulatus, Nassarius 51:5
generosa, Panephe 44:29, 30 52:36
generosa, Sola, Panephe 44:29, 30
generosus, Colus 50:19 51:63
geosideratus, Murex (see also M. magellanicus) 12:1 13:2
gibba, Raleos 52:8
gibberosa, Loma, 57:20, 21, 22
gibberosa, Astrea 60:39
gibberula, Strombus 51:29
gibbus, Olaiadridilla 62:3
gibbocum, Cygnotus 54:6
gibbosa, Saxidomus 42:11 (see Comp-
somyx subdiaphana)
gibbeili, Tindaria 53:14
GEMMATA, Risso, 1826 53:11
diadrepta canfieldii, Dall, 1871 53:11
dagius (Linnæus) 53:11
gibbus, Peck 55:10
gigantea, Fascicularia 46:27
gigantea, Lima 55:11, 12
gigantea, Lottia 57:16 60:11 42:29
gigantea, Leuctra (see solidissima 44:19
gigantea, Planistoma 55:12
gigantea, Bittium 54:33
giganteus, Chorus 61:42
giganteus, Hinnitea 35:3, 11, 12 18:2
giganteus, Ostrea 34:12
giganteus, Saxidomus 42:9, 9, 11 45:12, 34
giganteus, brevis, Saxidomus 42:9
gigas, Ostrea 34:12
gigas, Siphonaria 48:16
gigas, Vesiconyba 41:28 45:14
HALISTRYPHA DARL,1889 57:34

columna Darl 57:34

pupoides (Carp.),1864 57:34

subpupoides (Tryon) (see H. pupoides) 57:34

halistrepta Lora 62:42

halocyanea, CLAVIS 17:8 Cymatocystin
62:32,43 Elaeocyma 62:8

halistrepsa Darl,1886 50:15

minor Darl,1919 56:15

reflexa Darl,1894 57:15

HALONEMIA 32:14

hamata, Chthamella 62:39,46

hamata, Mangelia 62:27

hamata, Nuculana 35:1

hamata lillata Darl, Nuculana 35:11

hamata, Ocestaura 51:52

HAMILTONI TURTON & KINGSTON in Carrington,
1930 48:3

cymbiformis Carpenter (see H. virescens) 48:4

hydratis Limneus 48:3

olga Darl,1919 48:5

vesicula (Gould),1855 48:4 49:47

virescens (Sowerby),1833 48:5,4

virescens rosacea Sperber (see virescens)
48:4

hamini, labina 54:27

hanoeldi, Negaquina 56:34

HANETTA

anomal Darl 50:27

fusciformis, ALLIS 50:27

elegans Darl,1908 50:27

modificata Darl 50:27

pullida Brod. & SHY. 50:27

hanleyi, Grassiapina 62:32,44

hanui, Dentalium 46:9,10,11,17 pl. 1

hanui, Onchidiopsis 57:3

hanus, Skenea 56:17

hanus, Triphora 54:11

hapaty, Vespericola 55:3

HALCOCRACHILLAS cyclophorus Carp. 54:2

HALICTREMATA of, Alameda Fieldi Pilc., 17:3

harfordensis, Odostomia 61:40

HARFORDI DARL,1921 50:9

harfordiana, Grassiapina 62:44

harfordii, Eunias 50:10, 36,37

harfordii, Litrella 51:14

haroldi, Lyonsia californica 63:11

harpa, Coleophysis 47:11,15,30,pl. II, 2,16

HARPA crenata Swainson, 1822 49:23

harpa, Lora 62:20

harpa, Retusa (see Coleophysis) 17:3
hippopus maculatus 46:3
hirundo, strombina 51:29
hinum, typilus 34:8
hisina, rica,ina 55:2-4
holostea, seaweed 65:45,46
holuenni, heliotis orcherodii 60:17
62:12
holocanthina morch, 1852 51:42
morrisi (reeve) 51:42
varicosa (sowerby), 1835 51:42
holophora carpenter, 1864 57:22 47:3
baculum (carp.), 1864 57:20,23
60:39 61:37
carpen tersi (pils.), 1838 57:20,22
conceptionis lowe 57:20,21
curvingham smith, 1831 57:20,21
engbergi (willetto), 1929 57:20,23
60:39
gripping (dall), 1911 57:20,23
juanensis (dall), 1919 57:20,22
luridum (dall), 1835 57:20,22
panemensis dall, 1908 57:20,21
paucicostatum (dall), 1871 57:20,23
paucicostatum fenestratum (bartch) 1919 57:20,23
hoodensis, alvania 58:30
hooveri, morsonella 62:42
hohrerii, rangelgia 62:28,33,45
hormica, theis humeolosa 52:4
hormonya morch, 1850 38:14 36:9 45:7
horrida, ocebrina 51:53
hua, eulina 55:16
huncuba, cymatosyrinx 62:45
humbachi, skonea 50:17
humerosa, anachis 51:21
humerosa, turrubila 61:25
humilariana grant & gale, 1931 42:4,7,10
45:15
iconomy (carp.), 1863 42:10,11 43:3
46:18
humilis, ocebrina 51:53
humphreysianus, luccinum 50:24
humpricus, capulus 56:9
huxleyia sulcata a. adams (see cyrilla 33:13
hyalaea—see carolina 47:6
tricuspida rivers 47:6
tridentata (tryon) 42:29
hyalina schumacher, 1817 49:25
california, (tonnin), 1916 49:25
californica parallela (dall) 49:25
pellucida schumacher 49:25
pyriformis cyprip. 17:8
subriges (carp.), 17:3
hyaloflecten verrill 35:14
Inaccurate text due to poor quality of the image.
inflatum, Entodesma 36:7 45:9
inflatus, Cypryurus 53:20
inflata, Neospinia 53:23-27 37:40
56:7
influentia, Actocina 47:11,15
influentia, Euphrasia 54:14
influentia, Holopus 49:12
influenta, Monadonta 15:14
influenta, Herithiopsis 54:19
inornatum, Bitium catellense 54:32
inquinata, Macoma (see M. irus)
46; back p. 43:3,10,11,12
inquinata aznheidae Dall (see M. incongrua) 43:10,12
insculpta, Opalia 52:18
insculpta, Vanekia 56:34
insculptum, Eleutheria 54:40
insculptus, Assarius 51:5,9,30 17:8
inserta, Anachis 51:21
inserta, Acansea 57:9
insignis, Recluzia 55:5
insignis, Trichotropis 54:36 55:36
instabilis, Acansea 57:11
instabilis, Lapeta alba 57:5
insularis, Neptuna 50:21
intrastriata, Acansea 51:8
intercalaria, Lame 55:19
intercalaria, Clathurella 62:29,47
intercalata, Martea 50:37 44:35
interosse, Bitium 54:32 55:8
interossea, Sangelia (see Mitromorpha) 49:33
interossea, Mitromorpha 49:33 62:79,45
interossea, Cocnesia 51:48 (Tritonall-ia) 17:43
interossea, Monogonia 62:39,45,23
intermedia, Actocina 47:11,13,30
platt, figs.9,10
intermedia, Mitromorpha gracilior
49:24
intermedia, Kya (see M. japonica)
44:25
intermedia, Thais 52:8
intermedia, Trochita 56:19,20
intermedia, Yoldia 33:13
interrupta, Iso 53:18
interruptillipara, Alaba 55:19
interrupta, Oliva epicasta 49:16
intotra, Olivella 49:23
inversum, Pontidium 48:9,11,17 pl.1
involuta, Altiabella 53:19
involuta, Steinostoma 53:22
io, Alabina 54:27
io, Massyla 49:12,13
io, Oostonia 61:42
io, Rissoina 56:4
iodes, Massarius 51:5
io, Terebra 48:19,20
IOYAMA A. Adams, 1867 61:39
coitula A. Adams (see Odostomia-61:39
io, Calcis 53:13
ITENGE H. & A. Adams, 1864 54:36
io, Terebra 48:19,20
ITENOSYNK DALL, 1903 62:7
croebriostro (Dall), 1893 62:7
goodi (Dall), 62:7
iridium, Calliostoma 57:33
irradians, Petton 35:3
irrorata, Littorina 30:8
IRUS GEMINATUS, 1815 42:7,13,15 45:15
Jacobsen (Conrad), 1837 42:15
43:14 46:15
irus, Donax 42:15
irus, Henassa 46; back p. 43:13
ISCHNOCITON
bevanii Dall 17:7
conspicuus Carp. 40:16
decipiens Carp. 17:7
galliina Berry 17:7
nagadenis Hinds 40:16
radians Carp. 17:7
retiporusus Carp. 17:7
simulatensis Carp. 17:7
ISIBELICA DALL, 1918 47:5 55:16
anoma (C. B. Adams) 56:16
anomala (C. B. Adams) 56:16
anomala (C. B. Adams) 56:16
anomala (Carp.), 1867 55:18
obtusa (Carp.), 1834 55:16
obtusa laxa Dall, 1893 55:18
ovidea Gould, 1856 55:18
islandica, Ostrea 55:4 Petton 55:2,7
isocardia, Cardium 41:21 see also
Trachycardium
ISOCARDINUS 41:23
ISOCARDINUS SOLLANDER, 1786 60:31
ISICUIOLA CLARK IN Gray 62:51
isopon, Pterocogioides 62:41
isopleura, Terebra 48:19,20
istia, Turbonilla 61:51
ithio, Neptuna 50:21 46:23 51:30
ithitomus, Heterostrophon 51:27
IVAHY DALL & BARTSCH, 1908 61:39
IVINELLA DALL & BARTSCH, 1909 61:36
pedrosa Dall & B., 1909 (see Peris- tichia) 61:21
jaculifilis, 53:16
jaculatis, Lucina 40:15
jancina, Cytharaella 62:11
jandria, Mangelia 62:39, 45
janello, Canthusurus 50:12
JANDRA 55:3
JAWTHURIA ROEDING, 1798 42:25 53:3
60:41
bifida Reeve, 1838 53:3
caeruleata 56:4
exigua Lamarck, 1822 53:3
globosa Swainson, 1822 53:4
junctana Linnaeus, 1767 53:4
planospira Reeve 53:4
trifida 53:4
violacea Roeding 53:3
Jalithniae 53:4-5 42:25
Janus, Pedalium 34:9
Janus,issicic, 1867 56:6,7
Pacificana 53:6
Jewett, Cystiscus 49:17,26
Jewett, Odostomia 61:42
Jewett, Turbonilla 61:22
Jewett, Turritella (see T. pedriscus) 54:46
johanseni, Klicifusus 50:17
johnsoni, Cyrtosyrinx 62:32, 43,8
johnsonii, Solenomya 53:7
johntana, Lithium 54:29
johnstoni, Linguella 56:6
johntoni, Triphora 54:11
jouen, Cyclostoma 58:17
Jordan, Colubritia 50:27
jordani, Colus 50:20 51:63
jordani, Pecton hindsii 47:28
josephina, Polinices 58:30
juanensis, Homalopoma 57:20,23
jugar, Engine 50:29
julleta, Oliva 49:16,23
JUNIA FRELE, 1982 50:15
alcocina (Dall), 1894 54:11
crebrisostata (Dall), 1877 50:14
crebrisostata undata (Dall), 1810 50:14
friolei (Dall), 1894 50:14
indentata (Dall), 1919 50:14
kennicottii (Dall), 1907 50:14
kennicottii incisa (Dall), 1907 50:14
malleata (Dall), 1884 50:14
marshalli (Dall), 1919 50:14
stimpsoni (Gould), 1960 50:14
JUPITERIA BELLARDI, 1875 35:11
kadiakense, Bucinum 50:25
kadiakensis, Odostomia 61:42
KALYOLDIA GRANT & GALE, 1931 38:13
kleontina, Olivella 49:17
kombatica, antennae 62:14
kuntschatkana, Haliotis 60:20,46
kuntschatkana, Trophonopsis 51:59
katherinae, Cingula 55:27
keena, Alvania 58:30,31
keene, Glycymeris 34:3
keepi, Mesurella 62:6
keepi, Turbonilla 61:28
keepi, Trophonopsis 51:59,60
KELLETTI FISCHER, 1884 57 50:11
kelletii (Forbes), 1850 57 50:11
49:46 61:41 50:11 61:11
kellotii, Macaron echinos 50:1
KELLIA TURTON, 1822 40:4,10,13 45:13
chironis Carp., 1864 40:14
laperoniis Deshayes, 1839 40:14 41:20
45:13
macandrewi Fischer, 1867 (see Pseudo-pychina 40:17
rotundata Carp., 1864 40:14
suborbicularis (Montagu) 40:13
kelseyi, Aloides 44:29
kelseyi, Cingula 55:28
kelseyi, Epitonium 52:23
kelseyi, Exilioides 50:16
kelseyi, Pteronia 43:14
kelseyi, Helcionia 39:12,17 45:12
kelseyi, Odostomia 61:46
kelseyi, Rissolina 56:2,5,4
kelseyi, Turbonilla 61:24
kelseyi, Scissurella 54:13
kelseyi, Trichotropis 54:36
KEMPERLIA CARPENTER, 1864 37:16 45:9
kennedyi, Odostomia 61:45
kennedyi, Humboldina 42:10,11 43:34 45:15
kennedyi, Tindaria 35:14
kennicottii, Scuoviderilla 62:9
kennicottii, Jumalina 50:14
kentia, Epitonium 52:23
kentia, Sima 56:32
KERGUELENIA ROCHEBRUNE & KABILLE 49:15
Genera of Acteocinidae 47:9
Species of Assopus 51:23, 24
Species of Genus Alabina 54:27
Species of Alania 55:29
Species of Amphithallus 56:26
Species of Anachia 51:17-21
Species of Asporiscola 52:22, 23
Species of Balcois 55:6-8
Species of Barleeia 55:22, 23
Species of Bittium 54:20, 29
Species of Bivetopasa 49:7, 9
Species of Boreotrophus and Trichonapsis 51:80, 81
Species of Bursa 54:13
Species of Calulus 46:14
Genera and Species of Cacidae
54:36-40
Genera and Subgenera of Calcellaridae 49:2-4
West Coast Species of Subgenus Cancellaria 49:5, 6
Genera and Species of Cassidae
54:14
Genera and Species of Cerithiopectinae 54:12-14
Species of Clathurella 62:39
Genera of Columbellidae 51:10
Species of Conus 43:24-27
Species of Clavus 62:32, 38
Species of Coralliophila 52:13, 14
Species of Cosmocochla 51:29
Genera and Species of Cyclostomatidae (Vitrinellidae) 58:12-18
Species of Cylichna 47:25
Genera and Species of Cymatiidae
54:6, 7
Species of Dentalium 46:9
Species of Denticula 52:18
Species of Family Elibbiidae
49:12, 13, 14
Genera of Epitoniidae 52:15, 16
West Coast Species of Subgenus Euclia 49:6
Species of Bulima 53:15, 16
Genera of Fasciolaridae 50:3
Species of Fasciolaria 50:3
Genera and Species of Fasciolaridae
58:24-27
Species of Fossarria, 51:60
Genera and Species of Fossaridae
55:17, 18
Species of Fusinus 50:6, 7

Species of Haliacus 54:11
Species of Hipponix 56:10
Species of Latirus 50:4, 5
Genera and Species of Liotidae 57:24, 25
Species of Littorina 55:10, 11
Species of "Mangelia" 62:30, 31
Genera and Species of Marginellidae 49:24

West Coast Species of Massyla 49:9
Species of Microtitharia 51:11
Principal Genera of Microsculptalia 47:2
West Coast Species of Mitra 49:29, 30
Species of Mitrella 51:12, 13, 14
Species of Modulus 54:2
Genera and Species of Muricidae
51:57-62
Species of Muscarius 51:3, 4
Genera and Species of Naticidae 50:23-26
Species of Neosisula 53:21, 22
Species of Nitidiscala 52:24-26
Species of Nothidea 52:19 & 21
Species of Ocenebra 51:51-53
Species of Oliva 49:15, 17
Species of West Coast Olivella 49:17-19
Species of Parumbella 51:11
Species and Family Pyramidellidae
61:12-15
Species of Pyramidella 61:20
Species of Pyrene 51:11, 12
Species of Rissoina 56:2, 3
Species of Spisula 49:51
Species of Strombina 51:27-29
Species of Strombus 54:14
Species of Sulcoretusa 47:17
Species of Terebra 48:20-22
Genera and Species of Terebridae
52:5-3
Species of Triphora 54:9, 10
Genera and Species of Trochidae 57:27-31
Genera and Species of Turbinidae 57:20, 21
Species of Turboidea 52:32
Genera and Subgenera of Turridae
62:2, 3
Species of Turritella 54:46, 47
Genera of Vermetidae 54:42
Species of Volvulina 47:19, 20
lidiosca, Fyrene 51:12
labiosa, Vesperticola 15:3
LABIS DALL, 1916 37:7 45:8
LACTOCUS 57:12
laciniata, Protothaca 42:12-14 45:15
laciniatus, Boreotrophon 51:62 13:2
lacunatus, Margarites 58:7-9
lactea, Helix 15:3
lacteolus, Tachyrhynchus 54:48
5:19, 30
LACURA TURCON, 1827 55:13 47:3
lacunata Gould, 1843 55:13, 37
lacunata offusa Carp, 1864 55:14
lacunata polaloides Dall, 1919 55:14
divariata Fabricius, (See L. vicina
55:14, 37
glacialis Heller, 1842 55:14
marmorata Dall, 1919 55:15
olla Dall, 1919 55:15
paludalda (Da Costa) 55:13
porrecta Carp, 1864 (see L. car-
minata) 55:15
solidula Loven, 1846 55:14, 16
unifasciata Carpenter, 1856 55:18
unifasciata carinenta Carpenter, 1864
vaginata Dall, 1919 55:15
verigata Carpenter, 1864 55:14
vincta (Montagu), 1803 55:14
lacunatus, Amphithalamus 55:26
LACUVITABAIAB 55:13-16
Macoma, Partula 55:13, 41
LACUVITELIOID SWANSON, 1840 41:19, 26
lacunus, (Sowerby), 1833 41:26 45:14
oblongus Gmelin, 41:26
substriat am Conrad, 1837 41:26 45:14
lacunatus, Cerovina 47:6, 50, 51, 43
lacunatus, Donax 43:20
lacunatus, Lora 62:21
lacunatus, Velutina 57:3
lacunatus, Donax 43:20
laevior, Idotea nouchtouyi 49:15
LACUVITELIOID DALL, 1871 49:49
laguncular, Epitonium 55:13
lagata, Nitrella 51:14
LAMARCKII, Potamides 55:33
lamperti, Souchery, 1869 55:18
cokeana Bartsch, 1917 53:13
lancellaria, Antigona 42:8
LAMELLARIA MONTAGU, 1835 57:1
diagonalis Dall, 1885 57:2
rigidi Koch, 1895 (see Pleco-
branchus 57:2
procta Loven 57:2
rhombica Dall, 1871 57:2
sharono Willott, 1939 57:1
stearnsii Dall, 1871 57:2
stearnsii orbicularia Dall, 1871 57:2
tantulata Montagu 57:1
LAMELLARIIDAE 57:12
lamellata, Tellina 45:6, 18, 45
LAMELLARIA 42:26 (Pelocypoda)
lamellifer, Irus 42:15, 34 45:15 (Vomer-
upis) 42:15
lamellosa, Cumingia 41:13, 19
lamellosa, Thais 52:3
laminata, Turbonilla 61:34
lanceolata, Bucida 33:12
lanceolata, Strombus 51:29 30:2
lanceolata, Tellina 43:6, 7
lacunosa, Clathrula 62:39, 46
lapanus, Bulina 53:16
lapanus, Rissoina 50:2-4
laperousii, Kelli a 40:14, 20 41:20 45:15
laperousii, Ostre a 62:56 34:12 37:11
laperouzii, Sorripes 41:26 45:14
lapicida, Venus (see Petricola costata 42:18
lapillus, Olivella biplicata 49:19
lapillus, Thais 52:15
lappe, Conchra 51:55
laqueatum, Elephantulus 54:40
laoa, Liviana 55:20
laurum, Dititium 54:33-67:9
Levitya, REINHARD, 1835 34:7
lerchii, Jurca 34:7
laverneformis, Terebra 48:19, 20
LASARA BROWN, 1827 40:4, 10, 19 41:20
45:15
cestula, Kenon, 1838 40:13, 19 41:20
rubra (Montagu) 40:19
subviridis, Dall, 1889 40:19, 20
41:20 45:13
lasius, Trophonopis 51:59
lastra, Boleis 53:9
lastra, Odostomia 61:45
lateralis, Nicta 58:11
latiaruratus, Pecten 35:3, 10
latiaruratus, dolosi, 35:9
latiaruratus fusicolus, Pecten 35:9
latiaruratus latiaruratus, Pecten 35:9
latiaruratus monotomiris, Pecten 35:9, 10
latiaruratus corritenseis, Pecten 35:9
LATIUS 52:11; 12
cestula hindtii (Carp), 1857 52:11
pilibrarri, Risso, 52:12
latihoodatus, Flicifusus 50:18
latihoodus, Cardita- Venericardi-30:11-15
latidens, Carinaria 55:19
latifiliocus, Mitthium attenuatum 54:30
LATIFUSUS DALL, 1916 50:17
latifusurus, Vespericola 15:3
latiamarginata, Pisicarilla 58:24-27
latipennis, Typhis 51:33
LATIRUS LOWFORT, 1610 50:4
candelbrarum (Reeve) 50:5
castaneous (Reeve) (Gray), 1839 50:5
cerasus (Wood), 1830 50:5
concentricus (Reeve), 1847 50:5
rudis (Reeve), 1847 60:5
tuberculatus (Brod.), 1833 60:5
turnus (Carp), 1836 50:5
varicosus (Reeve), 1847 50:5
LATITRUS LOWFORT, 1610 50:4
laurum, Rissoina 56:2-4
levina, Turricula 62:32, 41
lawrenciana, Lora 62:21
laxa, Odostomia 61:35
laxa, Isolica obtusa 65:16
lazarus, Chama 39:16
leona, Cronella 57:10
leonas, Calliostoma 57:33
leonas, Centriformus 51:42
leonicus, Siphonaria maxa 48:16
LEDA SCHULTZ, CHEIN, 1817 (see also Nuculana) 33:9, 11
calar Dall 33:11
cornea Broun, 33:11
LEDIDAE (see Nuculanidae) 33:8
LENKIA H. ADAMS, 1864 38:13, 14
dunca Gould 32:13
lond, Mitra 49:29
LENTIDIUM CRISTOFORI & JAN., 1832 44:28
lentigiosa, Machis 51:21
leocina, Dormatomya 50:11 45:10
leocina, Melita 55:3
leocina, Nuculana 33:11
leocina, Alcatamia 62:41
leocina, Leucoesternes 72:17
LEPETA GRAY, 1847 57:4
alba Dall, 1869 57:5
alba instabilis Dall, 1859 57:5
accaoids Carpenter, 1865 57:5
concentrica HIND, CORDILLER, 1851 57:4
LEPETIDAE 57:4, 5 42:25
LEPIDOCHELTON raymondii Fitch, 52:2
LEPIDOFLBURICA 63:2
LEPIDOFLBURICUS cancellatus Shy, 17:7
 nexus Carp, 17:7
rugatus Grp, 17:7
leperina, Tethys 49:7 49:35
leptica, Vesiomya 41:27 45:14
LEPTOGYMNA BUSH, 1897 58:121
alaskana Bartch, 1910 50:21
vorriill Bush 50:21
LEPICU TURTON, 1822 40:10, 19 45:13
longipes Stn, 45:14:
membrana Carp, 40:12, 19 45:13
squamum Ht, 40:11, 19
LEPTOMACES 40:9, 10, 24
LEPTOMIDES GRAY, 1847 40:9, 24 45:13
leptonidea, Locoma 48:13, 14
LEPTOPECTEN VERHILB, 1897 35:9
LEPTOPREATUL (see Nuculopra) 57:5
57:22
LENTIDIUM CRISTOFORI & JAN., 1832 45:19
44:28
lessoni, Crepidula 60:2, 3
lessoni, Siphonaria 48:16
leucoetangium Turritella 57:27
LEUCOSINIA DALL, 1889 53:5, 6, 7, 11
amyxus Dall, 1839 52:7
argota Dall 62:41
sulcoea Dall 62:41
blanda Dall 62:41
castanea Dall 62:41
cingulata Dall 62:41
clarinda Dall 62:41
citonella Dall 62:41
galapagana Dall 62:41
hermoso Dall 62:41
kindii Dall 1819 62:7
parella Dall 62:41
persimilis Dall 1889 62:7
persimilis blanca Dall 1819 62:7
persimilis leonis Dall 1903 62:7
vernilli Dall 62:41
LEUCOSYZA GRAY 50:3
cingulata (Lam.), 1822 50:3 47:27
levicensus, Lora 62:42
levicensus, Langaia 62:28
lewisi, Polinices 56:29
libya, Turricula 62:32, 41
lichen, Cucum 54:1 51:3
lichinae, Calyptraea 55:18-22
ligatus, Callosteira 58:12
liguaria, Scoaphander 47:20
ligularium, Cymatium 54:7
ligulata, Tegula 57:33
ligyrus, Terebra 48:10, 20
lilacinus, Strombus 51:29
LIMA BRUMETE, 1797 53:2 45:7
attenuata Dall 1816 35:14B 46:7
dehiscens Conrad, 1837 35:14B 30:6
45:7 62:54
igantes (Sby.), 1834 35:11, 12
hincs Omolin 35:14B
inflata Lam. (see L. dehiscens) 30:6
subauriculata Montagu, 1808 55:14B 43:7
47:26
lima, Calliopestra 57:33
lima, Ostrea 35:14B
lima, Theis 52:4
lima, Calva 40:7
limacina, CLIONE 40:7
LIMENEAE (see Spiratellidae) 46:24
limacinus, Nassarius 51:6
limans, Heteromorpha 62:39, 45
LIMARIA DALL, 1807 35:14B
LIMARIA WOOD, 1839 35:14B 45:7
LIMATOPUSUS DALL, 1816 30:19
limatula, Acmaea 57:14 60:11
limatula, Voldia 33:12
limatula gardneri, Voldia 33:12
limbata, Pisicarella 55:24-27
LIMIDAE 35:14B 46:7
LIMOPSIDAE 34:4 46:5
LIMOPSIS SASSO, 1827 34:5 45:5
akutanica Dall, 1914 34:5 45:5
diegensis Dall, 1903 34:5 45:5
skenea Dall, 1916 34:5 45:5
vaginatus Dall, 1891 34:5 45:5
limopsis, Acaea 54:5
linearis, Dalics 53:18
lineata, Amphissa versicolor 51:26
lineatus, Cymatium 54:7
lineulata, Anachis 62:13
lineulata, Siphonaria 43:13 47:23
LIGRA (see Lucina 40:6
lingualis, Terebra robusta 43:19, 20
lingulata, Crepidula 18:2, see L. crepidulatifellata 56:15
linki, Uculea 33:8
linkia, Tellina 59:6
LIGOSERITHIUM TRYON, 1837 54:34
LIGOSUS DALL, 1870 42:5, 16 45:15
bocki Dall, 1870 42:15 45:15
fluctuosa (Gould) 42:15
scammoni Dall, 1871 42:15 45:15
schepferi Bartsch & Réhder, 1939
42:15, 16 45:15
viridis Dall, 1871 42:15, 16 45:34
liogona, Nuculana 33:11
LIGOSYNTHEICA 62:41
LIGOSUS STIMPSON, 1865 50:14
nassula, Dall 1801 50:14
nux Dall, 1877 50:14
oides (Hiddendorff), 1843 50:14
oides canaliculatus, Dall, 1874
50:14
LIGOTIA GRAY, 1847 47:3 57:24-26
californica Dall, 1803 57:24-26
cancellata (Gray) 57:25
c. b. adamsi Carpenter, 1867 57:24, 25
cocceans Dall, 1801 (see L. fenestrata 57:26
cocceana, carpenterae, 1904 57:24-26
pacis, Dall, 1803 57:24, 25
LIMIDAE 57:24-26
liotricha, Nucula 43:15
lirata, Alania 55:30
lirata, Neptunia 50:22, 32 51:30
liratothecatum, Elephantulaeuleum 54:40
liratus, Podipes 46:11
liriope, Cucumis 58:18
LIRORBITIDAE DAS TOSH, 1911 54:32
LIROSCALA DE MOURY, 1909 (see Dorec-
scala Ebolt, 1902) 52:21
LIRULIATA DALL, 1903 58:7 16:3
lickia, Danae 52:17
lirulata, Teinostoma 50:14
lirulatus, Margarites 55:7, 8, 9 16:3
17:2
lirulatus aequicostatus 16:3, Margarites
lirulatus conicus, Margarites 16:3
lirulatus obsoletus Carp., Margarites
16:3
lirulatus parciplagis, Margarites
10:3
litharia, Arena olivacea 57:24, 25
litharium, Engina 50:29
LITHOPHAGA ROEDING, 1798 58:5 37:6-8, 53:9-
artisata Dillwyn, 1817 37:7 45:3
attenuata Deshayes, 1836 37:7 45:8
calyculus Carp., Raz. Cat. 37:7
mycaloides Roeding 37:6
plumula Hanley, 1844 37:7 45:3
lithophaga, Lytilus 37:5
lithophaga, Patricola 42:13
LITIOBA Rug, 1829 55:19, 20
bombyx Rug, 1829 55:19, 20
nigranostoma Rug, 55:19, 20
LITIOPEIAE 55:19-21
litorinus, Polinices 56:25
litoratus, Conus 48:23
litoraria, Lit orina 53:9
LITTOREINA DANNER, 1822 56:5, 10
alkantia Dall, 1872 56:11, 96
crassica d'Orbigny, 1840 55:11
asper, Philippi, 1845 55:10
etiam Dall, 1866 55:11, 56
castanea Carp., 1855 55:13
consersa Philippi, 1845 55:10
grampiona Monke, 1839 55:11, 35
inversa 50:9
littoralis 55:9
lorina 50:9
macrata Danae 47:27
macrata (Hemphill), 1876 55:13
pedrana Conrad, 1855 55:12
porcupina Danae, 1822 55:10
philippi Carp., 1857 55:10
planaria Philippi, 1847 55:12, 36
plana Gould, 1849 55:12
pullata Carp., 1864 55:12
radius Donovan, 1800 (see L. sarmatilis Olivi, 1892) 59:11 60:12
sarmatilis Olivi, 1792 (55:11, 36
60:12 30:3
scutulata Gould, 1849 55:12, 36
sitkana Philippi, 1846 55:11, 36
squalida Brod. & Str., 1829 55:9, 36
subrotundata Carp., 1866 55:13
therites Reeve, 1837 55:11
varia Sowerby, 1824 55:10
zebra Donovan, 1825 55:11
ziczaco Gmelin, 1791 55:11
LITTORINIDAE 55:9-13 42:25
LITTORINICA DALL, 1918 55:11
littorosus, Spiregyphus 54:44 55:3
litosus, Antiplanes 52:14
litydina, Turboospels 61:28
livida, Engina 50:29
liricus, Doncon 51:63 50:11
loebbekees, Nocesia 53:20-25 57:40
56:7
lohi, Geothyris 54:14
lohi, Micranellum 54:40
lomaee, Ptilia eborum 54:33
loma, Palicella 53:14
loma, Pterio 53:17
loma, Trichotropsis 54:36
LONGICORNUS MORCI, 1875 61:20, 47
longifissa, Puncturella 60:28
longini, Cardita 50:30
longipes, Lepton 43:14
LORE GISTAL, 1848 62:16, 20, 21, 22, 23
ambrochli Krause, 1835 62:20
alitakensis Dall, 1919 65:11 62:20
altherpenesis Dall, 1919 63:11 62:20
amita Dall, 1919 62:20
arctica A. Adams, 1855 62:20
babylonia Dall, 1819 62:20
bechtii Holler, 1842 62:20
bicarinata Gould, 1839 62:20
brachis Dall 62:42
casentina Dall, 1819 62:20
chiaschiana Dall, 1919 62:20
colpoica Dall, 1919 62:20
cumminghami Smith 62:42
diegensis Dall, 1919 62:20, 42
elegans Holler, 1842 62:20, 42
equatorialis Dall 62:42
evaria Holler, 1842 62:20
exserta Aurivillius, 1835 62:20
ficicula Gould, 1849 62:20
flora Dall, 1919 62:20
galvana Dall, 1919 62:20
harpa Dall, 1886 62:20
harpalaria Gmelin, 1835 62:21
halitrope Dall 62:42
healyi Dall, 1919 62:31
incisula Verrill, 1882 62:21
incequita Dall, 1919 62:21
krausei Dall 62:42
lyskiana Dall, 1919 62:21, 23 17:2, 9
laevigata Dall, 1871 62:21
lawrenciana Dall, 1919 62:21
levidens Carpenter 62:42
lotta Dall, 1919 62:21, 42
lutkeana Krause, 1885 62:21
lutkeni Dall, 1919 62:21
muricellei Dall & Bartsch, 1910 62:21
metasagamais Krause, 1885 62:21
niola Dall, 1919 62:21 63:11
mitrata Dall, 1919 62:21
morihe Leche, 1878 62:21
murdochiana Dall, 1919 62:21
nodulosa Krause, 1886 62:21
pavlov Dall, 1919 62:21
pitysa Dall, 1919 62:21, 42
popovia Dall, 1919 62:21
privolva Dall, 1919 62:21
pyramidalis Stroo, 1738 62:31 63:11
quadra Dall, 1919 62:22
rassina Dall, 1919 62:22
regulata Friele, 1886 62:22
regulata spitbergenensis Friele 62:22
regulus Dall, 1919 62:22
reticulata Bronn, 62:22, 42 63:11
scalaris Koller, 1842 62:22
simplex Lidendorff, 1849 62:22
sixta Dall, 1919 62:22, 42
solida Dall, 1886 62:22
subulata Gould 62:42
surana Dall, 1919 62:23
tabulata Carps, 1865 63:22
tomiostata M. Sars, 1868 62:22
tenuilirata Dall, 1871 62:22
tenuilirata gymna Dall, 1919 62:22
tenuissima Dall, 1919 62:22
trevolliana Turton, 1834 62:22
violacea Mighe & Ads., 1842 62:22
woodiana Koller, 1843 62:23
lordi, Psephildoa 42:16 43:34 45:16
52:35
lordi, Turbonilla 61:34
lordi, Vertagus (see Potamides : cyclid) 54:34
lorencensis, Boreotrophon 51:62
LORICATA 68:2
loricata, Trilobopsis 15:3
lotta, lora 62:21, 42
LOTIA GRAY, 1833 57:16
gigantea Sowerby, 1834 42:23 57:16
60:11
gigantea albonucleata Dall, 1910 57:16
louisa, Cytherella 62:30
louisa, Mangelia 62:23, 42
louisa, Philibertia 62:24
lowens, Mitra 49:31
lowei, D Docomphala 58:17
lowei, Clathurella (see C. crystallina) 62:39, 46
lowei, Epitonium 52:23
lowei, Mitra (see K. lowensana 49:31
lowei, Pecten 35:8
lowei, Rissolina 56:2-4
lowei, Turbonilla 61:28
lowei, Typhis 51:33
lowei, Volvulella 47:19, 20
lorospir, Crassispir 62:32, 44
lucana, Terebra 48:19, 20
lacunus, Pseudarca 55:13
LUCAPITella, 1887 60:24 30:6
LUCAPITella PILSBRY, 1890 60:25
acqualis (8by.), 1834 56:24-27
callomarginata (Dall), 1871 60:25
62:52
lacunans, Alvinia 55:30
lacunans, Pyrene 51:12
lacunans, Stenea 50:17
lacunans, Areona 57:24, 25
lacunans, Colubraria 50:27
lucana, Odostomia 61:37
lucida, Siliqua 48:28 43:27-32
lucida, Genus 40:24, 25
LUCINA BRUG., 1797 45:12 40:5
acutilineata Conrad, 1849 (see also
L. anulata) 40:7
acuizoneata Stearns, 1890 40:7 45:12
annulata Reeve, 1850 40:7 45:12
annulata densilineata Dall, 1919
40:7
approximata Dall, 190140:8 41:20 45:12
californica Conrad, 1837 40:7 41:20
47:26 45:12
odontuloidea Verrill, 1870 40:6 45:12
exculata Carps, 1867 45:12
filosa Stimpson 40:7
jamaicensis 40:5
nesclina Conrad 40:6
nuttallii Conrad, 1837 40:6, 7 41:20
45:12
nuttallii contributa Dall 40:7
radians Conrad 40:7
LYCHSHIA TURCHI, 1822 33:5 45:9
amabilis Dall,1913 33:7 45:9
arenosa Keller,1842 33:5 45:9
bullia Dall,1890 32:12
californiae Conrad,1837 33:5,7,10 45:9 50:33
californica haroldi Dall,1915 38:6 45:9 55:11
saliforniae neesiota Dall,1915 38:6 45:9
gouldii Dall,1915 38:5 45:9
inflata 32:7
nitida Gould 33:5
pugetensis Dall,1915 45:9 38:7
striata Montagu,1815 33:5,6,10 45:9
LYCHSHIELA m. SAUS,1872 45:40 33:15
abyssicola Sars,1872 33:15
alaskana Dall,1894 33:15 45:10
LYCHSIELIDAE 38:15
LYCHEIDAE 50:15 45:9
lyperum,Ducrini tomus 50:24
lyrata,Anacheis 51:21
LYRODUS GOULD,1870 45:20 44:37
macandrae,Ca/1ieostoma 57:23
macandrewi, Kelilia (see Pseudopytheia 40:17
macdonaldii, Turricula 57:33
MACHEROMAX FRANCE,1877 56:6
mackelli, Castropetora 48:16
MACOMA LEACH,1819 45:10 46:14
alaskana Dall,1900 45:3 47:30,33
pl.11, figs. 50,51
balthica 43:13
balthica fragilis Dall,1922 43:13
balthica inconspicua (see inconspicua
brota Dall,1836 43:10,11 46: back p.
brota liparia Dall,1836 43:11
calcarea (melinii),1792 42:10,11
carlottensis (Whiteaves),1830 43:3,10,14 46: back p.
cognata C.B. Adams 47:28
cordis Hanley 47:28
expansa Carp.,1864 45:15
incongrua (Martens,1866 43:3,10,12
46: back p.
indentata Carp.,1864 43:3,10,15,16
46: back p.
indentata tenuirostris Dall,1900 45:16 46: back p.
inflata Dall,1897 45:13
inquinata Deshayes (see M. irus
43:3,10,11,12 46: back p.
inquinata arnheimi Dall (see M.
incongrua) 43:10,12 50:37
irus (kankev),1845 43:12 46: back p.
kalaisy Dall,1800 45:14
krausi Dall,1800 (see also moesta
leptonidea Dall,1895 43:13,14
listerica Dall,1897 43:15
mideendorffii Dall,1864 43:10 50:37
45:16
moesta (Desh.),1854 42:11
narroensis TA. Burch,1845 47:30,33
47: pl.11 figs. 46:47,48:50
nasuta (Conrad),1837 43:5-12,14
nasuta kalsy Dall,1800 43:14
oneilli Dall,1919 42:14
planisecula Grant & Gale,1931 43:3,14
quadran a Dall,1916 47:26 45:3-14
macoumi, Boreotrophon 51:58
macoumi, Turbonilla 61:26
macra, Baldis 53:9
MACROCHESMA DALL, 1915 50:24
MACRHA M. & A. ADAMS, 1853 57:10 50:11
athiotops (Reeve), 1847 50:11
athiotops kelletii (M. & Adams), 1855 50:11
lividus (M. & Adams), 1855 50:11 51:63
orcutti Dall, 1918 50:11
macrophyra, Petaloconchus 54:14
macoroches, Podocochus 50:32 36:3
macrostoma, Polinices 56:26
MAGDALENA DALL, 1864 46:15
anatina, Spengler (see anatina 44:3
california, Conrad, 1837 44:4-8, 25
california, Deshayes (M. nasuta 46:17, 15, 12, 19, 20, 21
anaga, Chev., 39:3
dolabriformis (Con.), 1867 (see Spisula 40:17 47:27 back p
elegana, Sowerby 47:28 excoleta 4:17
falcata (see Spisula) 44:19
gigantea Lam. (see Spisula 44:19
homallili Dall, 1862 47:28 laterallis 35:13
nasuta Gould, 1851 44:4, 7, 8 47: back p
oralis Gould (see Spisula polyyma
alabama, Dall, 1894) 44:19
solida (Le) See Spisula 44:18
vannamei, Pils. & Love, 1952 47:28
LACSTRACEA 42:27
LACTIMAE 40:19 44:3 45:18
macrodroides, Dermatomya 38:11
MACROSPERIS COMAD, 1866 44:19
MACROTELLA DALL, 44:3
maculata, Solariella 58:5
maculatum, Leolius 44:23
maculatus, Hippopus 36:3
maculosa, Ischilina 55:13
maculosa, Strombina 51:29
maculosa, Turricula 62:32, 41
macrodronis, Circulus 59:13
MAGNOLIOPHILUS KUESSLER, 1871 56:33
magdalensis, Astraea 57:20, 21
magdalensis, Comus 48:24, 25
magellanica, Adolomelon 49:27
magellanica, Patella 50:34
magellanica, Aurex 12:1
magellanica, Lytiulus 36:15
magellanica, Trophon 51:56
magdalenensis, Atoecina 47:11, 14, 30
pl. II, figa, 48, 49
magdalensis, Echinocheton 40:16
magellanicus, Turbo 57:20, 21
magnus, Ancistrolops 50:15
magus, Gibula 53:11
mahogani, Comus 48:24, 25
major, Antiplanes 62:14 46:32
major, Buccinum pelligus 50:24
major, Massarianus 51:5
major, Puncturella 60:27, 47
major, Pyreno 51:11
major, Tachyrhynchus erosus 54:13
53:2, 36
MALLA VALENCEMIES, 1352 54:5
ringens (Swainson), 1822 55:5
malespinia, Conoconcha 45:10 33:12
mallea, Jumala 50:14
MALLETI, DESCOULINS, 1833 33:13, 14 45:4
chilensis Dall, 33:14
faba Dall, 1867 35:16 45:4
fiora Dall, 33:14 45:4
norrisi (Shy.) 33:16
pacifica, Dall, 1897 33:14 45:4
talam, Dall, 1916 33:14 45:4
malonei, Terebra 48:19, 20
manillaris, Calliphrusa 50:19-22 60:13
manillaris, Trimussculus 48:14
MARGELL, RISSL, 1826 62:25, 16 47:2
aculea Dall, 62:39, 46
aculea Dall, 62:39, 46
aculea Dall, 62:39, 46
alesidenia Dall, 1919 62:27
aleutica, Dall, 1871 62:27
althorpi Dall, 1919 62:27
amathula Dall, 62:36, 45
ampulla Dall, 62:39, 45
antischroa, Pils. & Love, 1932 62:39, 45
antipyrgus Pils. & Love, 1932 62:39, 45
artesa Dall & Bartica, 62:39, 45
artesa, roperi Dall, 62:39, 45 17:3
aspera Caro, 17:8
augusta Jans. (see Agathotoma) 62:30
barbarensis Oldroyd, 1927 62:27
beta, Hinds 62:39, 45 (see M. variagata)
camarina Dall 62:29,46
caricinma Fils, & Lowe, 1932 62:39,45
carrotae Dall,1919 62:27
carpenteri de Polin 62:39,45
costa Dall,1919 62:27,39,45
cotoloca Dall,1908 62:29,27
constricta Cab, 1865 62:27,39,45
crasaspéra Grant & Gale,1931 (see Daphnella fuscoligata) 62:31
17:8
crobrocistata Carpenter,1865 62:27
cyathia Fils, & Lowe, 1932 62:39,45
cyrene Dall 62:39,45
danae Dall 62:39,45
doris Dall 62:39,46
electra Dall 62:39,45
eriope Dall,1919 62:27,39,45
eriphyle Dall,1919 62:27,39,45
eurulae Dall 62:39,46
evadne Dall,1919 62:27
fintitina Fils, & Lowe,1932 62:39,46
freedbakeri Filsbry,1932 62:23
fusconodata Carpenter 62:39,45
godroidi de Polin 62:39,45
gracillor (see Hiatomorpha) 17:8
grantica Dall,1919 62:27
hexacta Carpenter,1865 62:27
hostula Fils, & Lowe, 1932 62:39,46
hobo Dall,1919 62:28,39,45
hecetae Dall & Hartog,1910 62:28,30,39,45
holena Dall 62:39,46
hexagona Cab, 62:39,45 17:8
hileara Dall 62:39,45
hippollota Dall 62:39,46
hooveri Arnold,1905 62:28,39,45
interforae Carp. (see Hiatomorpha) 62:23 49:33
interlirata Stearns, 1871 62:28,39,45
janeira Dall 62:39,45
levidens Carpenter,1864 62:23
lousia Dall 62:39,46
melita Dall 62:39,46
merita Hinds 62:39,45
necris Fils, & Lowe, 1932 62:39,46
newcombii Dall,1919 62:28
nico Dall 62:39,46
nitens Carp. (see M. pulchrior) 62:29
numivakensis Dall,1919 62:29
ocosta Hinds 62:39,45
ocena Dall,1919 62:29,39,45
oldroydi Arnold,1905 (see cotolaca) 62:29
ordinaria E.A. Smith 62:39,45
painei Arnold 62:39,45,29
penelope Dall 62:39,46
peratenuara Dall,1905 62:29
phaeobius Dall 62:39,46
philodice Dall,1919 62:29
phryno Dall 62:39,46
pulchrior Dall,1919 62:29
pyrrhula Dall 62:39,46
quadriserifata Dall 62:39,46
rhysa Dall,1919 62:29 49:34
scammoni Dall 62:39,46
sculpturata Dall,1866 62:26
striola Rasso C7:25
subdiaphana Carpenter 62:39,46
teratocata Fils, & Lowe,1932 62:39,46
telamor Dall 62:39,46
tersa Dall,1919 62:29
variegata Carp., 1864 62:29,39,45
17:8
virginiana Conrad (see Bellacjim 62:19

HANGEILL (see HANGEILLA) 62:16,17
muntuensis, Engima 50:29
MANTLEDUM ROEDING, 1798 35:148 45:7
inflata Chemnitz 35:148
LARTA 42:11
oregnensis (see Pitar ida) 42:7
subdiaphana (see Compsomyia) 42:11
margarita, Circe 39:10,18
margarita, Crassatella 39:17
margarita, Crassatellites 39:49
MARGARITA Ficholc Kruse (see Margaritoropsis) 38:11
MARGARITES LEACH IN GRAY, 1847 10:3
47:3 55:6 60:39
acuticoxatus (Carp.), 1864 55:10
albisolatus (E.A. Smith), 1899
55:10
althorphensis Dall,1919 58:10
boringensis (Smith),1899 55:10
cineres (Couthouy) (see K. costalis (Gld,)) 61:1 55:7
costellis (Could),1841 61:1
frigidus Dall,1919 58:10
healyi Dall,1919 58:7
helicinus (Phips), 1773 58:10
helicinus elevatus Dall,1919 58:10
helicinus excavatus Dall,1919 58:10
hyrolinus Dall,1919 58:10
infalatus Dall,1921 58:9
laevis (Carp.), 1864 58:7-9
lirulatus (Carp.), 1864 58:7-9
10:3 17:2
limulatus acuticostatus 16:3
limulatus conicus (Carpe), 1864 16:3 58:9
limulatus obsoleteus (Carpe), 1864 16:3 58:9
limulatus parcipictus 16:3
marginatus Dall, 1919 58:10
clivaceus (Broom), 1827 58:10
optabilis (Carpe), 1864 58:7-9
60:9 17:2
optabilis knobiti Arnold, 1903 16:3 17:2 58:9
parcipictus (Carpe), 1864 58:7-9
Dall, 1919 58:10
parcipictus (Carpe), 1864 58:7-9
papilloensis Dall, 1919 58:10
pulitis Gould, 1846 58:9
rhodia Dall, 1921 58:7
radiis Dall, 1919 58:7
salmecus Carpenter, 1864 58:7
siphia Dall, 1913 58:7
smithi Barco, 1827 58:10
sordidus Hancock, 1846 58:6
subelevatus (Carpe), 1864 58:10
successus (Carpe), 1864 58:7-9
10:3
tenuisculptus (Carpe), 1864 58:11
umbilicalis (Broc, & Sby), 1829 58:11
vorticifor us Dall, 1873 58:7
vorticiferus ecarinatus Dall, 1919 58:7
vorticifor us sharpii Fillby, 1898 58:7
MARGARITOPSE THELE, 1906 58:11
fricii (Krause), 1835 58:11
margarita, Cypracoelina 49:25, 27
marginata, Grassatellitos 39:9
marginata, Grassatella 39:17, 9
marginata, Marginella 49:24
marginata, Myola 39:9
marginata, Marginatus 68:10
marginata, Solen 49:27
MARGARITA LALANCK, 1799 47:3 49:24
californiae Dall, 1819 49:24
curta Sowerby, 1852 49:24
eplagna 49:6
eretan Dall, 1919 49:25
marginata Born 49:24
spatulata Hindu, 1844 49:24
varia Sowerby (see Myalin cal-
motorica), 49:25
marina, Cyclostomata 68:17
marina, Pegula 57:38
mariata, Turritella 54:46
mariato, Terebra 49:19, 20
marinella, Marinula 64:14
MARINULA
acuta d'Orbigny, 1835 49:14
marinella Kuster, 1864 49:14
pepita King, 1831 49:14
marmorata, Modiolaria 39:7 49:8
marmorata, Barlecia 50:11
marmoratus, Conus 49:20
marmorata, Lacuna 55:15
MARTINEL (Gay, 1836) 57:2
Marshall Islands Faunal List 49:43
marshalli, Calliostoma 57:33
marshalli, Jynxola 50:14
marshali, Natica 49:61
marshi, Triphora 54:11
mertonci, Colus 50:19
martensii, Odostraia 61:45
MARTESIA (LEACH) BLAINVILLE, 1824
44:55, 57 45:20
intercalata Carpe, 1855 49:25 50:37
striata (Limq, 44:35
xylophaga Wel. 1846 49:55
martiniana, Tindaria 52:14
martiniensia, Grassinella 62:8
martiniensia, Grassipora 62:22, 44
martyni, Cingula 55:17
martyria, Typhis 51:13
martyria, Yoldia 33:13
MASSILA H. & A. ALINS, 1854 49:2, 8
californica (Dall), 1903 49:12, 13
circumincta (Dall), 1872 49:10
corallinica (Dall), 1906 49:12, 15
corruagata (Hinde), 1845 49:2, 9
Microstyla (Dall), 1891 49:1, 27
gracilior (Carpe), 1866 49:9, 11
dio (Dall), 1896 49:12, 13
modesta 49:47
mirtiformis (Sby), 1832 49:8, 9
micromosa (Dall), 1903 49:12, 13
modesta (Carpenter), 1865 49:47
49:9, 10
oblonga (Sowerby), 1825 49:12, 13
philippi (Cossmann), 1899 49:12, 13
rhysa (Dall), 1919 49:16, 47
teasellata (Sby), 1832 49:12, 13
woodworthi (Dall), 1905 49:9-12
uncalokrangia (Dall), 1873 49:18, 9
uniplicata (Sby), 1832 49:8, 9
muara, Engina 50:26
muaro, Siphonaria 49:46
muaro, Turritella 62:32, 41
morcro, Littorina 50:6
mELA ROC, 18:35 30:1
met. Cerithidea 10:6
mELA REVUE, 1889 (see Parametaria
Dall, 1916) 30:1
METASTRA hOuTERNOAT, 1884 47:2 54:20
convexa (Carp.) 1886 54:21
diadema Bartsch, 1907 55:21
MIETS alta Conrad (see Apometis
biangulata) 43:9 45:16
motschulianensis, L ora 62:21
METUL A
Amos Venatta, 1913 50:27
mola Hands, 1844 50:27
mota, Lobata 50:27
METZGERIA DALL, 1903 50:5
californica DALL, 1903 50:5
moerina, Balteis 55:3
mexicana, Cassidea vibex 54:5
mexicana, Chioreus palmarosa 51:42
mexicana, Fissurella 58:24-27
mexicana, Litrea 49:26
mexicana, Olivella baotica 49:20
mexicana, Ostrea 51:11
mexicana, Patella 58:34
mexicana, Pyramideella 16:1 61:20,47
mexicana, Riga seita 55:2-4
mexicana, Windaria 35:14
mexicana, Xylophaga 44:36
mexicodun, Epitoniun 52:10
mexicana, Solon 47:28
HEXACANTHA StIMP. 1930 41:22
meyeri, Tellina (see Apometis)
49:9
micans, Balteis 55:10
micans, Grassspira 62:32,44
micelle, Crenobra (see P. subangulata)
51:60
MICRAMELIAH BARTSCH, 1920 47:2 54:40
Marcusenio Bartsch, 1920 54:40
catclinenso Bartsch, 1920 54:40
cerebrocineta (Carp), 1884
56:30 55:8
elongata Carpenter 54:40
loiri Strong & Hertlein 54:40
creogenea Bartsch, 1920 54:40
58:3,36
pedocarnea Bartsch, 1920 54:40
profundicolum Bartsch, 1920 54:40
rosamun Bartsch, 1920 54:40
subinpressum Carp. 54:40
MICROHOCKTA faeta (Kowcork) 15:4
MICROGOTHIA FISCHER, 1884 30:1 51:11
harpaformis (Sby.), 1832 51:11
30:1
uncinata (Sby.), 1832 51:11
MICOPUS DALL, 1916 50:17
MICROGLYPHIS DALL, 1902 47:10 49: bk.P
breviculus Dall, 1902 17:8 47:10
estuarinus Dall, 1903 67:10
mazzaricus Dall, 1903 47:10
peroonicus Dall, 1889 47:10
microgyra, Alvania 51:51
MICROACTRA DALL, 4:14
microsoma, Lassila 49:12,13
microstricta, Diodora 50:6
MICROCYPTES 49:19
midea, Haliothia 47:36
mideendorxii, Macesa 50:37 43:10 45:14
mideendorxii, Turboinula 61:23
mideendorxii, Volutopsis 50:13
mideendorxii, Axmate 49:15
migueliana, Glycymorina 34:3
milium, Anochis 51:21
militaris, Labychotoma 62:32,45
militaris, Clavus 62:32 41
millepunctata, Litrella 61:14
MILLERIA DALL, 1881 39:11,12,17,23 45:12
Okeacy Dall, 1916 39:12,17 45:12
minima, Doll, 1871 39:12,17 45:12
minima, Opercosia 39:11
minima, Littorina 30:6
minima, Almeria 39:12,17 45:12
minos, Cysticus 49:26
minos, Dalecona 55:15
minos, Crenobola interfossa 51:49
MINIMALLETIA DALL, 1908 33:14
minuscula, Clinia 39:11,13
minusculus, Phor 51:9
minuta, Opercosia 39:17
minuta, Diaphana 47:22
minuta, Scutulana 33:10 17:7
minuta, Turoniana 49:10
minuta, Peinostoma 58:18
minuta, Turoniana 45:13
minutissima, Odostomia 61:42
MICRODON CARPENTER, 1864 (see also Mic-
dodonticus) 32:11
MICRODON DURRILLIE, 1897-39:11
MICRODONTICUS DALL, 1903 39:23,11,12,17
45:11
meridionalis Dall, 1916 39:12,17 45:11
prolongatus Carp. 1864 39:11,12,17
45:11
MICROMELON DALL, 1907 49:23
philippica (Dall), 1889 49:20
midea, Lora 51:16 52:21
micropatellatus, Turboinula 61:27
MIRUS DE GREGORIO, 1885 52:11
callimorpha (Dall), 1919 51:15
elegans (Dall), 51:14
clementensis (Bartsch), 1927 51:14, 15
deliciata (Schefer), 1863 51:14
dorsilinata (Carp.), 1864 51:14
dorma E. H. & S., 51:14
electrodes (Reeve), 1858 51:14
flaminia Risso, 1825 30:1
gausapata (Gould), 1850 51:14, 30, 63
17:34
graultii (Carp.), 1857 51:14, 17, 30
17:34
granti Lowe, 1856 51:14
hartfordi Strong & Hertlein, 1907 51:14
hypodra (Dall), 1916, 51:14-16, 50
hyalago Pils. & Lowe, 1826 51:14
luculentula (see K. Intulenta), 51:17
luculentula (Dall), 1919 51:17
millipunctata (Carp.), 1864 51:14
mura (Monaco), 1890 51:14
ocellata Ucmolin, 1791 51:14
ocellata Bailey & Bartsch & Rehder, 1309 51:14
permodes (Dall), 1890 51:14-16
pulchrior (C.E. Adams), 1852 51:14
rorsa (Reeve), 1865 51:14
roscana (Gould) 30:1 51:14-15, 30
santarbarousa (Carp.), 1866 51:14
tuberosa (Carp.), 1865 51:14-16, 30, 63
17:34
unicolor (Shy.), 1832 51:14
unifasciata (Shy.), 1832 51:14
xenia (Dall), 1919 51:14
MEXIDABAE 49:28-34 42:25
mitriformis, Masaya 49:6, 9
MEXIDEORPHILUS ADAMS, in CARPENTER,
1865 49:33 62:25, 61
aspora Carpenter, 1865 49:33
filosa (Carp.), 1864 49:33 62:33, 45
fuscicollata (Dall), 1871 49:32
gravilior Tryon, 1864 49:34 Denothill
62:29, 45
gravilior intermedia Arnold, 1905
49:32
interfossa (Carp.), 1865 49:33
62:29, 45
interfossa bantarbarousa Arnold 62
49:32, 45
limans Dall 62:39, 45
rhyssa Dall 62:39, 45
miricola, Helminthoglypta arosa 65:11
montereyensis,Balcis 53:9
montereyensis,Bittium eochrichtii
54:30 55:8
montereyensis,Ceriopis 54:16
montereyensis,Cingula 53:37
montereyensis,Gracilispira 62:12
montereyensis,Hemira 17:8
montereyensis,Oostonia 61:37
montereyensis,Olylas 52:17
montereyensis,Ophioderma 62:9,10
montereyensis,Petaloonchis 54:44,48
55:3
montereyensis,Seila 54:20
montereyensis,Yoldia 33:13 39:4
montereyensis,Triforca 54:8
montereyi, Mitra 52:56 49:47,30,46
montereyi,Tegula 52:56 57:37 60:39
monterona,Polinices 65:29
montesumi,Cerithiopsis 54:13
monticola,Limnea (see u. pelta 57:10
montijschel,Terebra 48:19,20
MORILLA
imporcata Corp. 17:7
museosa acuta Corp. 17:7
pedroana Villoiti 17:7
moraniana,Nassarius 51:7
moranina,Oostonia 61:45
moroju,limnea limatula 57:14
mori,jura,Lora 62:21
mori,Terebrad 62:31
mori,Turbonilla 61:32
morchiunum,Buccinum 50:24
mordius,Octopus 50:19
morohum,Lonchadia 15:4
MORULL
... ADL. 1834 61:33
morconisa,Becam 48:20 27:30 PL. II
MORRISONella HARISON 1945 62:7
pectinala (Dall) 1900 62:27
MORULL SCHELCHER,1817 52:10
MORULI tuberculosum (Sty.) 54:6
MORTELLI Sowerby,1835 (see TRICUS-
CULUS) 43:14
movilla,Isopleurotona 62:47
movilla,Oostonita 61:42
multicostata,area 34:7
multicostata,Boreotrophon 51:53
multicostata,Glycymeris 54:4
multiforme,Tegula gallina 57:35
multiformum,Bittium attenuatum 54:30
55:8
multiformis,Kyrilus 61:23 36:10-16
multiformis,Houstonus Hartsh & Rohder
1956 36:11
multirugosa,Pecten 15:2 55:11,12
multistrata,Puncturella 60:28,47
manda,Oenebratulida 55:7 51:46
mamita,Cyrilla 35:13 39:4
mamita,Fuscinea 35:15
mamitoid,Bittium marinum 54:32
mamitum,Bittium 54:32 55:36
mamitum,Fleurodon 53:13
murdochiana,Lora 62:21
MUREX LINDAEUS,1758 51:33
argus Linnaeus (Argobuccinum) 55:35
bairnlici Fayl 17:1
costatus Donoven (see Cytherea)
63:30
decusatus Linnaeus(Jatoni-pterostomata)
51:36
denensis Dall,1909 51:42
erraneus Linnaeus (see Ocenebra)
51:44
festivus Hard 17:8
gyversinqua 13:2
hexagona (Norm) 1852 12:1
microtopsas Dalkeyes (Pteropurpur-
Ptystromata) 51:34
magellanicus 12:1
nigriscens Sowerby,1844 51:42
nigrinatus Killip. 12:2
muscatus Montagu (Trophonopsis)
51:59
nubil Dall 17:8
pinatus Ward (Pterostomata) 51:53
MUREX—see Pterostomata,Purpur-
rootirostris Sowerby,1844 51:42
(see u. nigriscens) Broderip
rhythas Dall 17:8
santacruza,17:8
turricula Montagu (see Propebolina)
62:17
muricata,Haenleina 52:8
muricata,Coralliophila 52:12
muricatoides,Turbonilla 61:24
MURICIDAE 51:32-32 42:25
MURICIDAE SMITHSON,1840 12:1 17:3
muriciformis,Apulina 51:38
MURICOPSIS DUCQUY.DEUTERBERG & DOLL-
FUS,1832 12:1 17:5
dubia (Sowerby) 12:1 51:42
pauhilla ('Adams),1852 51:42
squamulata (Cardinal) 51:42
muric.,nabathruni 55:25,34
murina,Diodora 60:20
mus,Conus 30:6
musidora,Epitonium 52:32,26
HASSARITIDAE 51:5-10

HASSARITA Dall, 1898 51:10 30:2
atella Pils. 1890 51:10 30:2
buschii Dall 51:30:2

coccia Pils. 1892 51:10
soluta Dall 51:30:2

HASSARUS DUMORIL, 1826 50:3 52:39, 40 51:31

clypeus Pils. & Low, 1832 51:5
braeostoma (Stearns) 51:5

californianus (Conrad), 1856 51:5, 7, 30
complanatus (Powyx), 1835 51:5
currents (Arnold), 1903 51:5, 8
calificulus (Dall), 1903 51:5

carpenteri (Conrad), 1857 51:5
debilis (Powyx), 1835 51:5
ceratophorus (Powyx), 1835 51:5

Henniccostus Pils. & Low, 1832 51:10

Hinds), 56:36

Ball), see Forbes), 56:25

Marrat), 1697 56:28

diatorus (Powyx), 1835 51:5

solida Dall, 1917 51:10

Hinds), 1897 51:5
timpsonicum (C. E. Adams), 1852

51:5

versicolor (C. E. Adams), 1852 51:5

MASONIA (see MASSESITIDAE), 42:25

nassula, Liotomus 50:14

nassula, Lucina 40:6

nauta, Cibuta 47:13

nauta, Lioconus 43:13-12, 14

nauta, kelseyi, Macoma 53:14

nauta, Nastra 47:13

nauta, Litrella 51:14

nauta, Calomma 47:5

MUDICA SCOPOLI, 1777 56:26

affinis Usselin, 1792 56:26

algica Dall, 1919 56:27, 28

broderipiana Reclus, 1847 56:25
catenata Philippi, 1851 56:25
cranorrhizii, Pfeiffer 56:25
cranorhizii unifasciata Laverack 56:25
crassus Brod. & Shy, 56:25, 27
crassicostatus Eunatrun, 1937 56:25
crassicostatus Eunatrun, 1937 56:25
glaucinoides Shy (Huspira-Polinices) 56:28

holicoides Johnson (see Amauroclus) 56:35

icarthostra Deshayes, 1831 56:27, 28

idiopoma Pils. & Low, 1832 56:25

ethel Dall, 1908 56:25

papilla Usselin (see Eunatica) 56:22

rusa Gould, 1839 56:27

salimba Dall, 1898 56:28

secunda Dall, 1903 56:25

undata Philippi, 1852 56:25

naticarum, Corbula excavata 56:13

NATATICIDAE 56:23-25 42:25

naticoides, Canosa 56:18
naucum, Dall 47:20, 21
nauticocrathocardiilla 62:34, 44
nauvalis, Torode 44:46
HAYWORTH PILSBRY, 1895 45:7 42:26, 30
inermis (Cooper), 1862 48:7 49:24
HLAENIA Hall, 1851 44:35, 37
subglobosa Gray, 1851 44:35, 36
navicelloides, Cepheidula 60:3-9
navicula Donzé 47:23
naviformis, Cnes 39:11
navis, Oostonia 61:38
navis, Tuculana 43:11
azanensis, Propoidea 62:17
NEARLY COOPER, 1865 48:7, 8
NEAR (see also: EUPHY),
granulata 53:14
paeucistrata Dall, 1896 36:15
gouldiana Hinds 38:12
nebulosa, bulla (see Vesica gouldiana 63:2
nebulosum, Callioconina dolarius 58:2
nebulosus, Comus 30:16
neocrepidula, Cerithiopsis 54:20
neglecta, Cerithiopsis 54:14
neglecta, Ctenamurella 52:39, 47
neglecta, secundaria (see K. aphaca) 54:24
NELLO J. A. ADAMS, 1852 33:14
nemo, Alveina 55:30
nemo, Oostonia 61:42
NEOCASTRUM MEER, 1876 41:19, 27
46:14
centifillium (Carp.), 1864 41:27
centifillium, richardi, Whitman,
caves, 1873 41:27 46:14
secundaria (Desh) 41:27
neochonopodium, Portaliaum 46:17 Pl. I
HESSLINIA FISCHER, 1894 53:26-25,
37:40 55:7
aequalis (Spy.), 1832 55:24-27
37:40 55:42 aequalis
aphaca (Spy.), 1832 55:23-27
37:40 55:7
inflata (Spy.), 1832 55:25-27,
37:40 55:7
loebbeckana (Meinkauf), 1861
55:20-25, 37:4-10 55:7
loebbeckana barbarensis (Dall),
loebbeckana extalinensis (Berry)
neglecta "Reeve" (see K. aphaca) 53:24
qwylei Love 52:39
rufa (Sowerby), 1855 55:24-27, 47-1,
55:7 55:42
variabilis (C. E. Adams), 1850 55:7
53:23-27, 37:40
vidleri (Spy.), 1831 55:23-27, 37-29,
55:7
nephaleidos, Callioconina 57:33
nephalo, Grassispina 62:32, 44
NEPHTYS ROEDELL, 1796 50:20
orienta Dall, 1890 46:22 50:21 51:30
antiqua #7
borealís (Philip), 1050 50:21
insularis (Dall), 1894 50:21
ithia (Dall), 1891 46:23 50:21, 50 51:30
irita (Nutt.), 1794 50:22, 32 51:30
vucca (Dall), 1919 50:21
enochos (Dall), 1907 50:21
puloica (Dall), 1891 50:21
pribiloffensis (Dall), 1919 50:21
sutura (Nutt.), 1794 50:21
sutura bohminiana (Middendorff), 1848
50:21
sutura communis (Middendorff), 1848
50:22
sutura elatior (Middendorff), 1848
50:22
sutura tabularis (Dall), 1819 50:22
smirnica (Dall), 1819 50:21
soluta (Hermann), 1751 50:22
soluta varicifera (Dall), 1907 50:22
tabulata Baird, 1863 77 17:6, 3 46:22
50:20 51:30, 34
viliosa (Dall), 1919 50:21
neptuncta, Thais lamellosa 56:4
NEPTUNIÆAE 50:11-23 #7 42:25
nereis, Turbonilla 61:32
nereis, Ksioina 56:2, 3
nereis, Kangaia 62:39, 66
MERITA ascensionis Glazin 39:5
vitellus Limneas (see Latica) 50:26
MERITAE 30:9
neritoides, Coralliphila (see C. vic-
losa) 52:11
NERITOIDES DRUM, 1827 (see NERITOIDES
HEUSCHEN, 1779) 55:9
neritoides, Thais 52:3
NERITRÉGIS RECLUZ, 1869 55:9
nericosa, Hottenra 58:21-27
heroïcata, Opalia 52:18
NETA STOKELLA Carpenter, 1855 44:35
neronicia, Pyrgulopina 51:29
NERIČA RISO, 1826 56:30
nodi dla, Massarius (see H. noduliferus) 51:6

NODISCALA DE EOURY, 1890 52:19

nodosus, Cyclolomata 58:17

nocosa, Pecten 39, 44

NODOSA DARTSCH, 1941 62:19

importans (Beck) Horch, 1869 62:19

noduliferus, Massarius 51:5, 6

donalosa, Cardita 33:12, 40:24

nodulosa, Ira 62:11

nodulosa, Fossilina 62:24

NODUSUS MONTESATO, 1879 53:27

nonscripta, Bulla (Mys) 47:29, Pl. II

nigra, 23, 25

normalis, Bucinum 51:28

nordis, Bursina angulosa 50:25

NORMISLA DAYLE, 1860 57:3, 34

norrisi (Shu), 1838 57:34, 60:31, 79

norrissarium, Cephalica 60:5-9, 10 58:15

norrissi, Monolovschütina 51:42

norrisi, Mollusca 45:3, 14

norrisi, Petrisia 57:24 60:39

NORTHIA GRAY, 1847 51:10

nothidnae (Gray), 1847 51:10

northyia, Vorticella 51:10

norvegica, Panomya 50:14, 30 (Mys)

notata Odostoma 61:45

notilla, Odostoma 61:42

novemcostata, Vorticella 39:13

noyesii, Sinum 56:26

nubecula, Fissurella 59:5, 4

nucea, Aligona 40:22, 23 45:13

nuca, Neptunea 59:21

NUCELLA ROBINSON, 1798 52:13

nuciferina, Odostoma 51:6

NUCELLA (see Cyrilla) 33:13

nutica (Carp. in Bell) 33:13

nucifera, Cyathus 47:23, 25

nuculans, Massarius 51:5

nucleus, Arca 33:7

RUGIULA LINNAEUS, 1799 33:7, 8, 11, 13

42:27, 30 45:3 42:26

articulata, Gray 33:12

bellotii a. Adams 33:8 47:42

cardicaria, Dall, 1916 52:7 39:4 45:3

curtissensis, Dall, 1907 33:7 39:4 45:3

costellata, Say 33:11

dorelliana, Dall, 1913 33:8 45:3

diviciata, Hinds 33:8

divina (see W. bellotii) 47:42

exigua, Sowerby, 1832 47:42

inflata, Hancock, 1846 (see W. bellotii) 47:42
obtusa, Isolica 51:16
obvelata, Doris 47:29
ocenta, kugulian 52:39, 45
occidentalis, Partum 51:41 55:3, 36
occidentalis, Nielsa 51:17
occidentalis, Lubina 54:42
occidentalis, Calvina 41:8
occidentalis, Clio 47:7
occidentalis, Myglophalus 56:34
occidentalis, Psychotrichas 50:5
occidentalis, Turtoria 40:20 45:13
occulta, Cyliina 47:24, 25
oceanica, Microtomoides
oceaniforme, Flavatus 50:17
occulta, Mitrella 51:14
occiliens, Isolica 58:7
OCHEMRA, Grey, 1827 (Tritonalia Auct.
51:44
barbarensis (Dabb), 1866 51:50
buxa (Brod.), 1832 51:52
carmor Lyra, 1835 51:53
circumtexta (Stearns), 1871 51:47
circumtexta cibrica Dall, 1919 51:47
craseillara (Grey), 1829 51:53
diconaeae (Dall), 1808 51:53
diphtera (Dall), 1932 51:53
exigu (Brod.), 1832 51:53
fossilata (Minds), 1843 51:49
greeceillima Stearns, 1871 51:44
fuscoconata (Dall), 1919 51:47
greeceillima obesa Dall, 1919 51:44
hamata (Minds), 1843 51:53
harrida (Brod.), 1832 51:53
humilis (Brod.), 1832 51:53
incisa (Brod.), 1832 51:53
interfossa Carpenter, 1843 51:48
interfossa alpha (Dall), 1820
(see O. fraseri) 51:49
interfossa atropurpurea Dall, 1865
51:49 55:18
interfossa beta (Dall), 1919 51:48
interfossa claiburna (Stearns)
(Dall), 1919 51:49
interfossa fraseri (I. Oldroyd),
1920 51:48
interfossa minor (Dall), 1919 51:49
japonica (Dall), 1860 51:61
lapca (Brod.), 1832 51:53
lurida (Hiddendorff), 1839 51:45
lurida aspera (Baird), 1823 51:45
lurida munda Carp., 1864 51:46
51:7
lurida, rotund (Dall), 1919 51:45
malachi (Ford), (see O. suban-
gulata) 51:50
painei (Dall), 1903 51:47
parva (Smith), 1877 51:53
peaei (Tryon), 51:53
perlata (Minds), 1843 51:53
polysoni Carp., 1864 51:47
puella (Brod.), 1832 51:53
radicata (Minds), 1843 51:53
salena (Dall), 1919 51:45
squamulifera Dall, 1868 51:46 55:17
sternai Warrill, 1871 51:45
subangulata (:Steans), 1873 51:50
tortuosa (Brod.), 1843 51:53
traechea (Dall), 1819 51:51
turrita (Dall), 1819 51:53
vittata (Brod.), 1832 51:53
ochotensis, Buccinum 50:25
ochotensis, Buccinum boreale 52:20
ochracea, Acmaea 60:41 57:12
OCTOPUS 30:4
ODOSTOMIA FLEXING, 1813 47:2 63:35
copinota D & B, 1809 51:53
aequisculpta Carp., 1864 61:47
calhuan Fabricius 61:40
aleutica D & B, 1809 61:40
calitina D & B, 1809 61:47
architha D&B, 1809 61:49
american D&B, 1804 61:50
amianta D&B, 1807 61:59
anida D&B, 1809 61:40
angularis D&B, 1807 61:40
arctica D&B, 1809 61:45
astricta D&B, 1807 61:36
atossa Dall, 1803 61:41
avellana Carp., 1865 61:45
bachia Bartsch, 1827 61:41
baldride Bartsch, 1912 61:41
baranoffensis D&B, 1809 61:41
barclayensis D&B, 1910 61:41
beringi Dall, 1871 61:45
calama Bartsch, 1912 61:41
california D&B, 1809 61:41
calimanne Bartsch, 1912 61:41
calimorpha D&B, 1809 61:55
caliiope Bartsch, 1912 61:41
calocheasen Dall, 61:46
condin Noller 61:42
confield Dall, 1808 61:45
capitana D&B, 1809 61:4]
carinata de Folin 61:35
casandra Bartsch, 1912 61:41
catalinensis Bartsch, 1927 61:36
cassie Bartsch, 1827 61:36
chinooki Bartsch 63:41
cintia Carp., 1864 61:36

P. 72
clementensis Bartsch, 1927 61:36
clermontina D&B, 1909 61:36
closseri D&B, 1909 61:41
columbiana D&B, 1907 61:41
communis Carp., 61:56
convexa Carp., 61:35
cor-rosana Bartsch, 1912 61:41
copnor D&B, 1907 61:36
coronadoensis D&B, 1909 61:47
cumbshoewaensis Bartsch, 1927 61:36
cypria D&B, 1910 61:41
deliciosa D&B, 1907 61:41
diadema (A. Adms.) 61:38
diocella Bartsch, 1912 61:36
dinella D&B, 1909 61:47
donilla D&B, 1909 61:41
edmondii E. Jordan, 1920 61:41
eglypta E. Jordan, 1920 61:37
eldorana Bartsch, 1912 61:45
elegans A. Adms. 61:20
elsa D&B, 1909 61:45
gengerti Bartsch, 1920 61:45
genora D&B, 1909 61:40
osída D&B, 1909 61:41
cucosmis D&B, 1909 61:39
cugona D&B, 1909 61:36
czara D&B, 1907 61:40
excisa Bartsch, 1912 61:40
eyerandi Bartsch, 1927 61:41
farallonensis D&B, 1909 17:45
fereila D&B, 1909 61:67
fersa D&B, 1909 61:40
fetilla D&B, 1909 61:40
fia Bartsch, 1928 61:43
franciscana Bartsch, 1917 61:42
flosclosa Bartsch, 1912 61:40
gouldii Carp., 1864 61:45
grovidea Gould, 1856 61:42
grípiana Bartsch, 1912 61:45
hagamclisiorü D&B, 1909 61:42
herfordensis D&B, 1907 61:40
helena Bartsch, 1912 61:45
helga D&B, 1909 61:37
hemphilii D&B, 1909 61:38
horrida D&B, 1909 61:42
heterocincta Bartsch, 1912 61:37
hypatia D&B, 1912 61:42
hypocurta D&B, 1909 61:40
iliulubonsis D&B, 1909 61:45
inflata Carp., 1804 61:42
io D&B, 1909 61:42
jewettii D&B, 1907 61:42
kadinkensis D&B, 1909 61:42
kanseyi Bartsch, 1912 61:46
kennedyi D&B, 1907 61:45
kilišañoensis D&B, 1909 61:42
krausei Cleasen, 1900 61:45
lastra D&B, 1909 61:45
lexa D&B, 1909 61:35
lucca D&B, 1909 61:37
martenäs D&B, 1906 61:45
minutissima D&B, 1909 61:42
montereyensis D&B, 1907 61:37
moratoria D&B, 1909 61:45
novilla D&B, 1909 61:42
navissa D&B, 1907 61:38
navisa dolmontensis D&B, 1907 61:38
nemo D&B, 1909 61:42
nota D&B, 1909 61:45
notilla D&B, 1909 61:42
nuciformis Carp., 1864 61:46
numivakensis D&B, 1909 61:42
obena D&B, 1909 61:43
ocenca Bartsch, 1927 61:35
olároydi D&B, 1909 61:37
oreia D&B, 1909 61:46
orecutii Bartsch, 1917 61:47
oregonensis D&B, 1907 61:37
ornatissima (Haas.) 1943 61:18, 19, 37
pesa D&B, 1909 61:46 63:11
phanea D&B, 1907 17:7 61:43
phaneilla D&B, 1909 61:43
pharcida D&B, 1907 61:40
phicatus Montagu, 61:35
protomera D&B, 1909 61:43, 47
profundicola D&B, 1909 61:43
promicoes D&B, 1909 61:37
pulcherrima D&B, 1909 61:37
pulcinia D&B, 1909 61:37
quadrae D&B, 1910 61:43
raymondi D&B, 1909 61:43
resina D&B, 1909 61:33
richi D&B, 1909 61:35
ritteri D&B, 1909 61:37
cahectorum D&B, 1909 61:37
sanjuancensis Bartsch, 1920 61:46
santarosana D&B, 1909 61:43
sapi D&B, 1909 61:33
satura Carp., 1864 61:46
sephentriornalis D&B, 1909 61:43
serilla D&B, 1909 61:43
cillana D&B, 1909 61:46
sitkamensis Cleasen, 1900 61:43
skidegatensis Bartsch, 1912 61:44
soitilia (A. Adms.) 61:39
spreadboroughi D&B, 1910 61:44
stretinae 61:44
stephensae D&B, 1909 61:43
strongi Bartsch, 1927 61:44
subglobosa Bartsh, 1912 61:46

territa D&B, 1896 61:46
tauromenesis D&B, 1907 61:44
talpa D&B, 1909 61:45
terricola D&B, 1903 61:39
thalia Bartsh, 1912 61:38
then Bartsh, 1912 61:44
tillamookensis D&B, 1907 61:44
torrita D&B, 1909 61:36
trachis D&B, 1909 61:38
tremperi Bartsh, 1927 61:38
unalaskaensis D&B, 1909 61:44
valdezi D&B, 1907 61:44
vancoverensis D&B, 1910 61:44
vicola D&B, 1909 61:33
vineta D&B, 1909 61:38
virginalis D&B, 1909 61:38
washingtonia Bartsh, 1920 61:46
whitei Bartsh, 1927 61:44
willettii Bartsh, 1917 61:44
youngi D&B, 1910 61:44
OLALIA subdiaphana Carp., 1864 (see Cooperaella) 42:20

codonatum, Fascinum 50:24
cosea, Odostomia 61:35
cosea, Zanclina 62:29
CERATOPHYTA NOEPSI, 1852, 62:19
alaskensis (Dall), 1871 62:19
pleurophoria (Couthouy), 1838 62:19
rosea (H. Sars), 1846 62:19
coretedii Hörh., Detellium 46:9, 10, 17

PL. I

czehrydace, Almania 55:34

czehrydane, Lithium 54:35

czehrydace, Blastoza 54:126

czehrydi, Acteonella 47:14

czehrydi, Alella (see Rissosea kelseyi) 56:14

czehrydi, Atrina 34:7, 8

czehrydi, Balcoa 53:11

czehrydi, Barlesea 55:22-25

czehrydi, Cordonya 50:13 45:10

czehrydi, Corallilophila 52:12 17:8

czehrydi, Dunatica 65:32

czehrydi, Kamelia (see M. cetolaca) 62:29

czehrydi, Odostomia 61:37

czehrydi, Vitrina 58:11

OLIOVINA perrosae Dall 17:7
clearum, Cymatium 54:7
clearum, Heminae 43:5

OLIVA

hintula Duclos 49:16

inorassa Solander, 1786 49:16

julista Duclos, 1835 49:16 47:13

peruviana Lamarck, 1810 49:16

porphyra Lam., 49:16

reticularis 49:46

spicata Reeding, 1798 49:16 50:54

spicata cunningia Reeve 49:16

spicata fascata Harrel, 1870 49:16

spicata hemphilii Stearns 49:16

spicata interrupta Carp., 49:16

spicata ohiaca Duclos 49:16

spicata pindarinia Duclos 49:16

spicata polypeta Duclos, 1840 49:16

splendicula Sowerby, 49:16

olivacea, Arene 57:24, 25

olivacea, Podiolaria 46:8

olivaceus, Astrea 57:20, 21

olivaceus, Margarites 58:10

olivaceus, Melampus 48:11

OLIVELLA STAINSG, 1851, 49:17

anaora Duclos 49:17

bactica Carp., 1864 17:8 49:20, 24

bactica diegensis T.S., Oldroyd, 1921 49:20

bactica mexicana T.S., Oldroyd, 1921 49:20

bicipita (Sby.), 1825 17:8 49:17-19

bicipita angulina T.S., Oldroyd, 1921 49:19

bicipita fusca T.S., Oldroyd, 1921 49:19

bicipita lapillus Vanatta, 1915 49:19

bicipita parva T.S., Oldroyd, 1920 49:19

olumellaris Sby., 1825 49:17

dama Have in Wood, 1883 49:17

gracilis (Sby.), 1829 49:17

guayaquilensis Bartsh, 1926 49:17

intorta Carpenter, 1856 49:23

kalenterina Duclos, 1855 49:17

myriadina Duclos, 1855 49:20, 21

pedroana (Conrad), 1855 49:20, 21

petiolata Duclos 49:17, 25

porteriana Dall, 1910 49:20

purpurata (Swainson), 49:17

pycna Berry, 1856 16 : 1 49:21-22, 27

salinaeensis Bartsh, 1926 49:17

semistrata Gray, 47:23 49:17

tohuecina Duclos 49:17

tergina Duclos 49:17

undatella Lam., 1810 49:17

versicolor Have 49:17
<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Synonym</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONCHIDELLA Chay, 1860</td>
<td>48:17</td>
<td></td>
</tr>
<tr>
<td>carpenteri W. G. Binnov, 1869</td>
<td>48:17</td>
<td></td>
</tr>
<tr>
<td>nigricans (Quoy)</td>
<td>48:17</td>
<td></td>
</tr>
<tr>
<td>ONCHIDITIDAE</td>
<td>48:17</td>
<td></td>
</tr>
<tr>
<td>ONCHIDIOPSIS Bergh, 1865</td>
<td>57:37,35</td>
<td></td>
</tr>
<tr>
<td>groenlandica Bergh</td>
<td>57:2</td>
<td></td>
</tr>
<tr>
<td>hannai Dall, 1916</td>
<td>57:3</td>
<td></td>
</tr>
<tr>
<td>nigricans (Quoy) (Onchidella)</td>
<td>48:17</td>
<td></td>
</tr>
<tr>
<td>oncodes, Epitonium</td>
<td>58:23</td>
<td></td>
</tr>
<tr>
<td>oncodes, Marsarius</td>
<td>51:5</td>
<td></td>
</tr>
<tr>
<td>oncoedia, Neptunia</td>
<td>50:21</td>
<td></td>
</tr>
<tr>
<td>oncoulousis, Orthiopsia</td>
<td>54:18</td>
<td></td>
</tr>
<tr>
<td>oncolii, Macroa</td>
<td>43:14</td>
<td></td>
</tr>
<tr>
<td>oniska, Oliva spinata</td>
<td>49:16</td>
<td></td>
</tr>
<tr>
<td>onyx, Crepidula</td>
<td>56:12,18</td>
<td></td>
</tr>
<tr>
<td>OCYRYS Fischer, 1884</td>
<td>50:5</td>
<td></td>
</tr>
<tr>
<td>octavia Dall, 1900</td>
<td>54:5</td>
<td></td>
</tr>
<tr>
<td>pacifica Dall, 1906</td>
<td>54:5</td>
<td></td>
</tr>
<tr>
<td>rotunda Dall, 1908</td>
<td>54:45</td>
<td></td>
</tr>
<tr>
<td>oides, Littorina</td>
<td>50:14</td>
<td></td>
</tr>
<tr>
<td>OCELLA h. A Adams, 1855</td>
<td>52:16</td>
<td></td>
</tr>
<tr>
<td>australis (Lama)</td>
<td>52:16</td>
<td></td>
</tr>
<tr>
<td>chacoensis Strong, 1837</td>
<td>52:17</td>
<td></td>
</tr>
<tr>
<td>crenata (Linnaeus)</td>
<td>52:18</td>
<td></td>
</tr>
<tr>
<td>crenatoide (Carp.)</td>
<td>1861</td>
<td>52:18</td>
</tr>
<tr>
<td>cronimercatum (Dall), 1917 (see O. incisata)</td>
<td>52:18</td>
<td></td>
</tr>
<tr>
<td>ovicta (de Bouy)</td>
<td>1919</td>
<td>52:17</td>
</tr>
<tr>
<td>incisata (Carp.)</td>
<td>1864</td>
<td>52:18</td>
</tr>
<tr>
<td>montereyensis (Dall), 1907</td>
<td>52:17</td>
<td></td>
</tr>
<tr>
<td>neiocata (Dall), 1917</td>
<td>52:18</td>
<td></td>
</tr>
<tr>
<td>wroblewskii (March), 1876</td>
<td>52:16,40</td>
<td></td>
</tr>
<tr>
<td>opalina, Sabellina</td>
<td>59:11</td>
<td></td>
</tr>
<tr>
<td>ophiaster, Ophiasterella</td>
<td>62:9,10</td>
<td></td>
</tr>
<tr>
<td>OPHIODEMELLA BARTSCH, 1944</td>
<td>62:9</td>
<td></td>
</tr>
<tr>
<td>cancellata Carp. (see rhines)</td>
<td>62:10</td>
<td></td>
</tr>
<tr>
<td>effusa Carp. (see 0. incisata)</td>
<td>62:10</td>
<td></td>
</tr>
<tr>
<td>fanchorae (Dall), 1903</td>
<td>62:10</td>
<td></td>
</tr>
<tr>
<td>gripi (Dall), 1919</td>
<td>62:10</td>
<td></td>
</tr>
<tr>
<td>incisa (Carp.), 1861</td>
<td>62:10</td>
<td></td>
</tr>
<tr>
<td>montereyensis Bartsch, 1944</td>
<td>62:17</td>
<td></td>
</tr>
<tr>
<td>opifex (Dall), 1908</td>
<td>62:9,10</td>
<td></td>
</tr>
<tr>
<td>rhines (Dall), 1908</td>
<td>62:10</td>
<td></td>
</tr>
<tr>
<td>opifex, Botulinus</td>
<td>37:9,36:4</td>
<td></td>
</tr>
<tr>
<td>opifex, Modiola</td>
<td>37:9,45</td>
<td></td>
</tr>
<tr>
<td>OPUSCULARIA BRENTWOOD, 1919</td>
<td>42:21-50</td>
<td></td>
</tr>
<tr>
<td>optabilis, Margarites</td>
<td>16:3,17:2,52:7-9</td>
<td></td>
</tr>
<tr>
<td>orbelina, Taras (see T. orbiculata)</td>
<td>35:24</td>
<td></td>
</tr>
<tr>
<td>orbiculata, Crepidula</td>
<td>50:14,17,18</td>
<td></td>
</tr>
<tr>
<td>orbiculata, Lamellaria</td>
<td>57:2</td>
<td></td>
</tr>
<tr>
<td>orbiculatus, Azinopsis</td>
<td>32:21</td>
<td></td>
</tr>
<tr>
<td>orbigyana, Macroa</td>
<td>58:25</td>
<td></td>
</tr>
<tr>
<td>orbis, Scissilabrum</td>
<td>58:18</td>
<td></td>
</tr>
<tr>
<td>orca, Odostomia</td>
<td>61:46</td>
<td></td>
</tr>
<tr>
<td>orcutti, Carinella</td>
<td>55:23-25</td>
<td></td>
</tr>
<tr>
<td>orcutti, Chlamydoconcha</td>
<td>40:24,45:14</td>
<td></td>
</tr>
<tr>
<td>orcutti, Pseudulina</td>
<td>48:11</td>
<td>54:41</td>
</tr>
<tr>
<td>orcutti, Fusinus</td>
<td>59:7</td>
<td></td>
</tr>
<tr>
<td>orcutti, Macron</td>
<td>50:11</td>
<td></td>
</tr>
<tr>
<td>orcutti, Nauta</td>
<td>49:8,29</td>
<td></td>
</tr>
<tr>
<td>orcutti, Odostomia</td>
<td>61:47</td>
<td></td>
</tr>
<tr>
<td>orcuttiana, Carambola</td>
<td>52:14</td>
<td></td>
</tr>
<tr>
<td>orcuttianum, Epitonium</td>
<td>52:33</td>
<td></td>
</tr>
<tr>
<td>orcinum, Epitonium</td>
<td>52:19</td>
<td></td>
</tr>
<tr>
<td>orcinus, Epitonium</td>
<td>52:19</td>
<td></td>
</tr>
<tr>
<td>orcinus, Mangalia</td>
<td>62:39,45</td>
<td></td>
</tr>
<tr>
<td>orcodonse, Fusitriton</td>
<td>58:18</td>
<td></td>
</tr>
<tr>
<td>orculus, Fusitriton</td>
<td>58:18</td>
<td></td>
</tr>
<tr>
<td>orculus, Fusitriton</td>
<td>58:18</td>
<td></td>
</tr>
<tr>
<td>orconessa, Micrasterella</td>
<td>54:49,55:8,36</td>
<td></td>
</tr>
<tr>
<td>orconessina, Crassina</td>
<td>39:9</td>
<td>45:11</td>
</tr>
<tr>
<td>orconessina, Marcia</td>
<td>42:7</td>
<td></td>
</tr>
<tr>
<td>orconessina, Odostomia</td>
<td>61:37</td>
<td></td>
</tr>
<tr>
<td>orconessina, Plectrocontes</td>
<td>62:12</td>
<td></td>
</tr>
<tr>
<td>orconessina, Turbonilla</td>
<td>61:29</td>
<td></td>
</tr>
<tr>
<td>OREGELICITHAE 15:8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oria, Vespericola</td>
<td>15:3</td>
<td></td>
</tr>
<tr>
<td>orcinus, Yoldia</td>
<td>30:13</td>
<td></td>
</tr>
<tr>
<td>orientalis, Mitra</td>
<td>49:23</td>
<td></td>
</tr>
<tr>
<td>ornata, Cyclostrema</td>
<td>58:17</td>
<td></td>
</tr>
<tr>
<td>ornata, Divaricella</td>
<td>40:3,9</td>
<td></td>
</tr>
<tr>
<td>ornata, Zoschera</td>
<td>48:12,20</td>
<td></td>
</tr>
<tr>
<td>ornata, Verticordia</td>
<td>45:10,30:16</td>
<td>59:18</td>
</tr>
<tr>
<td>ornata, Verticordia</td>
<td>45:10,30:16</td>
<td>59:18</td>
</tr>
<tr>
<td>ornata, Verticordia</td>
<td>45:10,30:16</td>
<td>59:18</td>
</tr>
<tr>
<td>ornatala, Laevicosta</td>
<td>38:15</td>
<td>39:5</td>
</tr>
<tr>
<td>ornatissima, Odostomia</td>
<td>61:13,39:7</td>
<td></td>
</tr>
<tr>
<td>ornatissimin, Bittium</td>
<td>55:32</td>
<td></td>
</tr>
<tr>
<td>orcuttium, Buccinum pomphagus</td>
<td>50:24</td>
<td></td>
</tr>
<tr>
<td>orcuttium, Bolostrophon</td>
<td>51:28</td>
<td>17:8,</td>
</tr>
<tr>
<td>orcuttia, Cingula</td>
<td>55:27</td>
<td></td>
</tr>
<tr>
<td>cymbal, Patina</td>
<td>56:25</td>
<td></td>
</tr>
<tr>
<td>otis, Polinices</td>
<td>56:25</td>
<td></td>
</tr>
<tr>
<td>orcutta, Teinostoma</td>
<td>50:18</td>
<td></td>
</tr>
<tr>
<td>OSCILLA 61:21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panamaensis, Borotroctaphon 51:62
Panamaensis, Dilodora 50:12-27
Panamaensis, Engina 50:29
Panamaensis, Eulina 53:16
Panamaensis, Fassina 50:47
Panamaensis, Geessa 53:18
Panamaensis, Haliaus 54:11
Panamaensis, Hiponix 57:27 56:10
Panamaensis, Homalopoma 57:20, 21
Panamaensis, Holaspas 48:12
Panamaensis, Polinices 56:26
Panamaensis, Scissilabrum 58:18
Panamaensis, Soloreya 33:7
Panamaensis, Tegula 57:29
Panamaensis, Tellina (see T. tabogenesis) 45:7 45:16 50:30 45:7
Panamensis, Terabra 48:19, 20
Panamensis, Triphora 54:11
Panamica, Daphnilla 62:42
Panamic, Voluviella 47:19, 20
PANDORA BRUGUIERI, 1797 37:16 36:4 45:9
Bilirata Conrad, 1856 38:3 45:9
Biloxa Carp., 1864 38:3 45:9
Forrestonera Wilt., 1916 37:16
Glaciella Lach., 1919 37:16 46:9
Glaciella exsulata Dall, 1917 37:16
Grandis Dall, 1917 37:16 45:9
Granulata Dall, 1915 30:3 45:9
Innequiviva (Linnaeus) 37:16
Punctata Conrad, 1857 33:3 39:4 45:9
PANTOCRAT 53:15
PANORAMA 57:16 45:9
PANOCH ORAY, 1857 44:19 44:30, 38
Anapa Dall, 1898 44:30, 38
Caroica (Lam.), 1819 44:31
Caroliniana Dall, 1916 44:31 50:38
Norvegica (Spong), 44:30
Turgida Dall, 1916 44:30, 31 47:3
PAPYRUS WESTARD, 1807 44:29, 33
Aldrovandiana Conrad 44:29
Carus Conrad 44:29
Generosa Gould, 1850 44:29, 30 52:36
Generosa solidula Dall, 1898 44:29, 30
Panamica, Eros 62:47
Panthea, Clathrodrillia 62:32, 44
Panthea, Clavus 62:32
Papillo, Altera 63:5
PAPA ROMAORTH, 1798 42:11, 12, 14
Bifurcata Quayle, 1933 (see Von - craw's philippinarum) 42:15
Paphia, Eorhina 48:19, 20
Papilio, Dextropterus 47:8
Papamicus, Nassaureus 51:5
Papyraceous, Pholas 44:33
paralella, Leucaena acuta 57:48
paralella, Platina californica 49:35
PARAVENTARIA DALL, 1916 51:11 50:1
concinata (Cros), 1858 51:11
duponti (Ries), 51:11 50:1
conformis (Sowerby) 51:11
paracoma, Cerithiopsis 54:16
PARAPOLIS CORRAD, 1893 42:20 42:35, 57
californica (Con), 1857 42:33
parasitica, Steuris 50:4
parcicurros, Margarites 56:79, 40:3
55:16
parconicus, Microglyphis 47:10
paraelia, Clathurella 62:22, 47
pardo, Polinices 56:25
parcille, Leucosyrinx 62:41
paria, Eulina 54:1
parilla, Paras 59:24
parrodis, Clathurella 62:23, 47
PARTHENA diadema A., Adams (see Hiraclia 61:28
parva, Gouldia 69:9
parva, Olivella biplicata 49:19
parva, Canadornia 54:53
parva, Scissilabrum 58:18
parva, Pholadidea 49:15
parva, Parvula, Pislicidea 39:3
PARVULIGERA DALL, 1901 40:3, 4, 41:20
45:12
parvula, Cosmoconcha 61:30
parvum, Cacca 54:40
parva, Conchotomina 57:32
Fatella
apertura Mamt, (see Diodora) 50:25
crassula Muller (see Lopota) 57:4
cornucopia Lam., (see Haptonix) 56:9
fornicate Linnaeus (see Crepidula) 56:12
magellanica Eolin, 1791 56:54
mexicana Broc. & Sb., 56:54
octocerata (Eolin.) (see Hemitoma) 60:29
PATELLIDAE 42:25
PATELLIDAE QUOY & GILBERT, 1834 57:17
patoeloides, Lucina catenata 53:14
pata, Leucaena 57:4
PATSINGHSTH DALL, 1898 56:9
petula, Pyrula 50:27
petula, Silicia 52:36 43:28-33
petula alta, Silicia (see S. alta) 48:29, 29
petula nuttallii, Silicia 43:28, 29
patula, Thais 52:8
paucicostata, Cardita 50:37 45:11 39:12
paucicostatam, Bonap. 57:20, 23 paucicostatus, Pecton 35:10
paucilirata, canthina 52:9
paucilirata, Turbonilla 51:35
paucistratia, rana 32:13
peacock, Solariella 53:6
pauciaria, luricopsis 51:42
pavlov, Lora 52:21
pavonia, Strombina 51:29
pectinatia, Pyrene 51:12
paziana, Cymatosyrinx 62:35, 43
pazianum, Simun 52:32
paytorisis, Pavo 30:6
paviniun, Epitonium 53:15
paytorisis, Pavonini 53:15
PASSELLA 55:11
roosevelli, Hertsch & Rehder, 1939 55:11
PETERBULLER, 1779 35:3 42:26, 27
45:6 Pecton Osbeck 39:3 38:3, 4
adscensionis Osbeck, 1786 35:3
alaskensis Dall, 1871 35:12, 13 45:7
andersoni Dall, 1918 35:14A 45:7
arcos Dall, 1913 35:14 39:14 45:7
boringianus Hidd., 1849 35:8 45:6
bionodatus Hinda, 1924 35:14A 45:7
bistratia Dall, 1919 35:14A 45:7
catalinensis Willett, 1901 35:13, 14A 45:7
caurinus Gould, 1850 35:8, 9 45:6
35:52 55:13
coelena De Gregorio 35:12
circularis Sby., 1836 35:10, 11 45:6
circularis acquisulatus Carp., 1865
35:11 45:6
davidsoni Dall, 1897 35:14 45:7
diagnos Dall, 1898 35:4 45:6 55:9
dispers 35:14A
colonicum 35:14A
cobia 35:10
stomata Sby., 1843 35:5 38:3 45:6
horicensis Gould, 1850 35:4 45:6
horicensis albicu Dall, 1906 35:16 45:6
horicensis Gould, 1850 35:4
horicensis pugiotensis L. 1850 45:6
hindsii Carpenter, 1862 35:8, 7 45:6
hindsii jordani Arnold, 1903 47:26
35:6, 8 45:6
hindsii kincaidi Oldroyd, 1920 35:6
45:6
hindsii navarchus Dall, 1898 35:6
incongruus Dall, 1896 35:14, 11A
irradia 35:3
icelandicus Kuller, 1776 35:3 45:6
latiauratus Conrad, 1873 35:9 45:6
latiauratus delosi Arnold, 1906 35:9
latiauratus fusicolus Dall, 1893 35:9
latiauratus monoceros Conrad, 1877 35:9, 10 45:6
latiauritus corritonis Arnold 35:9
loved Hortifoin, 1855 35:16 45:6
maximus 35:4
monoceros Conrad, 1875 35:10
propatulus Conrad, 1849 35:9
pugiotensis Oldroyd 17:7 35:3, 6
pustulosus Verrill 35:14
randolph Dall, 1897 35:17 45:7
randolph tillanookensis Arnold, 1896 35:2, 14A 45:7
sayanus Dall 35:16
coricusa Hinds, 1844 35:4
tumbirensis d'Orb., 1847 35:7, 10 45:6
vancowreensis Whiteaves, 1893 35:16,
39:2 45:7
ventricocus Severby 35:10
whiteavesi Dall, 35:14A 45:7
vessicinensis Jay 35:8
PECCHIIMA 42:27
pectinata, Cardiogyna 38:13 39:5 45:10
pectinatam, Crucibulum 56:19, 20
PECCHIMAFACHIATA or MONOTOCARDIA
42:24, 25, 27
PECCHIMADE 35:3 45:6
pectunculoides, Arca 34:7
PECTUNCULUS LAMARK, 1799 34:3
pectunculus, Arca 34:4
pectunculus, Tuceta 34:4
PEDALION SOLANDER (see ISOGONION)
60:31 64:9 45:5
chemitzianum d'Orb., 1826 34:9 45:6
james Carp. 34:9
PEDALIONIDAE 34:9 45:6
PECTICULARIA (see PECTICULARIELLA)
PECTICULARIELLA THRÉ, 1925 55:42 55:35
60:10
californica (Novcomb) 60:10 55:5
55:42
PENTICULARIIDAE 42:25
pediculus, emacata 56:34
PEDIPES 600POLI, 1777 48:11 47:3
cafer Gmelin 43:11
angulatus C. F. Idae, 1852 48:11
liratus Binseymula 48:11
uniscutus Cooper, 1866 48:11
49:47 56:7
pedroana, Alvania 55:33
pedroana, antipilaces 62:43
pedroana, Cereithiopsis 56:15
pedroana, Cynrochotoda 37:15
pedroana, Itoforina 55:12
pedroana, Nopulina 17:7
pedroana, Ovela a 49:20,21
pedroana, Pecten 35:14
pedroana, Peristichia 61:21
pedroana, Rochofortia 45:13 40:15,20
pedroana, Terebra philippiana 17:8
pedroana, T. robua 17:8 46 :18,19
pedroana, Triphora 52:3
pedroana, Turbonilla 61:29
pedroanus, Epitonium 56:30
pedroanus, Trophonopsis 61:59
pedroanex, Micranellum 54:40
pedroanex, Turritella (T. jewettii) 54:16 56:3
PHELLOPODA or LAMBILLIPRANCHIATA
42:23 26:28,30
pollucida, anatina 44:3
pollucida, anisodonta 40:24 45:14
pollucida, Grycina 40:11,13
pollucida, Hyalinula 49:25
polliscorpetia, Temgula 57:32
pollucida, Verrucularea, 54:43
polla, Itacama 57:10
pollteidae, Williams 48:16 17:3
ponchertoia, Claus 68:32,43
ponphogus, Buccinum 60:24
porei, Bucculina 47:30,32 pl.II
figa, 35:89 33:9,11
fomes, Eutecta 49:23
fonolep, Angaria 62:39,46
fontrilla, Anaakis 51:22 17:8
fontrilla, Pseodomolotora 62:43
foteneula, Beallia 53:9
foteneula, B. issoina 63:1 2:4
foteneula, Triphora 54:9
fenita, Pholadidea 44:33-35
fenita, Conomacronata, Pholadidea 44:34
fenita, sagittta, Pholadidea 44:34,35
feppatus, lottis squamigerous 52:43
peninsulanico, Venus 40:5
pentalpha, Turbonilla 61:34
popita, Marinula 46:14
peramabilis, emacata (see A. ochracea) 57:12
peramabilis, Seleriella 58:5
portunata, Mangolia 52:29
porcassum, Buccinum 50:26
porcrassa, Oldroydia 17:7
porforana, Cypria 53:9 56:16
porforana, Venerupis 42:14
porforita, Tricolia 57:17
porgracilis, Cosmioconcha 51:30
porideria, Hindia 51:10
porgrimus, Boreotrophon 51:58
PERIFLUM. SCHUMACHER, 1817 37:12 45:6
alaskana Williams, 19:0 37:12 45:6
argentaria Conrad 37:12
ariscus, Stearns 1890 37:12 45:6
inaequivalvis Schumacher 37:12
planifusula, Shy. 1834 37:12 45:6
sulcata, Dall, 1904 37:12 41:28 45:9
PERIFLUMATIDAE 37:12 45:8
PERITHEC 42:19
periscelida, Turbonilla 61:34
periscelida, Colus 50:18
PERISTRICHEA DALL, 1889 61:21
pedroana (Dall & Bartsch), 1909 Cl;21
perita, Coenobea 51:53
porlata, Alvania 56:30
porlatus, Modulus 56:2
porneodosta, Nitrella 51:14-16
PERICA BRUGUIERE, 1790 3:9
ophiophium L, 34:9
porneodota, Fleuronotomoides 62:12
porneodota, Fleuronotomoides esuarins 62:41
porneodota, Arca 34:5,6 Byssarca
porpula, Shy. 33:9 Bucculana
PERONIDIA DALL, 1900 43:16 45:16
peronii, Altanta, 55:19
peronii, Fleuronotus 48:8
peronii, Pseudonotus 47:3
perpavula, Divaricella 40:8,9 45:13
perphygus, Massarius 51:63,69 17:8
perplexus, Conus 43:24
perpusillus, Caenel 46:14,16
pery, Volucrana 50:26
PESICULI. SCHUMACHER, 1817 42:25
adamsiana (< Filina & Love), 1932 49:25
dubiosa (Dall), 1871 49:25
frumonta (Shy), 1832 49:25
imbricata (Kinds), 1845 49:25
phygia (Shy), 1846 49:25
melanura (Sby.), 1834 44:34
ovoides (Ch)<1851 44:34
perva Tryon, 1865 44:35
pennis (C), 1837 44:33-35, 44:34
pennis concomitans (Desh.), 1839
rostrata Val., 1846 44:35
pholadica, Sphenia 44:27
pholadiformis, Petricola 42:18 46: back 45:16
pholadis, Saxicava 44:32
PHOLAS LINN. ANUS, 1758 44:32
californicus Conrad, 1837 (see Parapholae) 44:33
candicans Linnaeus, (see Barna 44:32
crispus Linnaeus (see Zirfaea) 44:33
dactylus Linnaeus (see Barna 44:32
dilecta Phil. & Lowe, 1832 44:32
papyraceus Turton 44:33
stricta Linnaeus (see Martesia 44:35
PHOS HOWKERT, 1810 51:9
articulatus Hinds, 1844 51:9
chelonia Dall, 1817 51:10
clarki Smith, 1844 51:10
oratus Hinds, 1845 51:9
coosensis Dall, 1869 51:9
fuscus C. B. Adams, 1852 51:10
goudens Hinds, 1845 51:9
ruminusculus Dall, 1817 51:9
myosotis 49:47
variegatensis Hinds, 1843 51:9
phrenotica, Chem 39:12
phrygia, Persicula 49:25
phryne, Engelio 62:39, 46
PHYLLOCUS SHAWNH, 1840 51:42
biclor Val. (see F. hippocastan-
sum) 51:42
brassicus (Linn.), 1822 51:42
dipsaeus (Brod.), 1832 51:32
hippocastanum (Philippi) (biclor
Val.), 51:42
nitidus (Brod.), 1832 51:42
nigrites (Philippi), 1845 51:42
princps Brod., 14:2
radix nigritus 60:33
physematam, Buccinum 50:25
PHYLLOTIA GIAL, 1821 48:9, 10
denticulata Montagu 48:9
myosotis Draperiana, 1801 48:9
reflexilabris (d'Orb.), 1840 48:10
setifor Cooper, 1872 48:9, 10 49:47
picta, Pissurella 60:23 53:24-27
picta, Turris 62:41
PICTOSCALA 52:20
picturatum, Buccinum 50:25
pictum, Calliostoma ligatum 58:2
pilcaris, Cymatium 54:7
PILIDIIUM commodum Hdc. (see Filiscus)
PILOUSCUS LOVEN, 1859 56:9
comodus (Hdc.), 1851 56:9
pilosa, Vespericola 15:3
pilsbryi, Clathredillina 62:32, 44
pilsbryi, Latixis 52:12
pilsbryi, Zirfaea 44:33
pinicola, Vespericola 15:3
PETRA LINNAEUS, 1758 34:7
nigra Chem. 34:7
PIIL.IDAE 34:7 45:5
pinosensis, Borsonella 62:16
pinctada, Amaea (see A. t. acutum) 57:3
pinderina, Oliva spicata 49:16
pinnatus, Forreria 51:60, 61
pinnatus, Typhis 51:33
pinnigera, Pterynotus 51:42
pinnigera, Pterynotus 51:12
pinna, Canas 56:15
PIRENEELA GRAY, 1847 54:33
pirlformis, Sabinella 53:11
piscina, Helix 15:13
PISANIA pusio (L.) 39:4
pisciformis, Polinices 50:25
PITAR ROMER, 1857 42:3, 7
idc Tagland, 1928 42:7, 8, 45:15
newcombianus (Gabb), 1865 45:15
42:7 43:34
tenus, Gmelin 42:7
PITARRA DALL, 1902 (see PITAR) 42:7
pitysa, Lora 62:42, 21
placenta, Cardiapoda 53:18, 19
PLACIPHORELLA ventera Carp, 17:7
PLACIUMONIA nudis Broderip 56:9
PLACOCENTHUM DALL, 1896 35:10, 11
PLACOCHOSTA gigantea Sby, 1832 35:12
plan, Crepidula 56:15, 16, 17 60:5-9
planata, Acteocina 47:11, 15, 20 pl. II
fig. 14 17:7, 8, 6
planata, Rochefortia 40:1, 20 45:13
planatus, Hip onix 56:10
PLANAXIDAE 54:2
nigritella Forbes, 1850 54:2
planicoastatus Sby, 1825 54:2
planaxis, Littorina 55:12, 36
planeticus, Cardiomya 39:13, 14 39:5
45:10
planeticus, Buccinum 50:25
placostomatus, Hecbrius 51:5
placostomatus, Planaxis 54:2
planilirata, Halloites (see H. fulgens) 60:20
planospira, Halinoecus 54:1
planospira, Circulus 54:13
planospira, lanthina 53:4
planospira, Theis 52:9
planiuscula, Lacoma 44:3,14
planiuscula, Periplana 37:12 45:3
planulata, Spina 44:7, 13:21
platensis, Lytilus 30:16
platinum, Calliostra 46:23 58:2
PLETODON CONRAD, 1837 45:19 44:27
44:38
cancellatus Conrad, 1837 44:27
32:16
PLETODON CARP, 1864 45:10 38:13
sceber Carp, 1864 45:10 38:13
PLETOSICHEIDAE 46:14
plectrum, Bucinum 50:24
plena, Littorina 56:12
PHELIONISCA 54:5
PLEURONOCANTHIDAE 48:8,9
PLEURALANGULARIS CUVIER, 1804 48:8,9
californicus Dall, 1900 48:28
60:11 48:8,9
chaced J.Q. Buch, 1944 48:8,9
60:11
digocchi, Boechebrune, 1896 48:6
peroni, Couvier 48:8
PLETODON (see CYPILLA) 53:13
ruditum (Carp) 45 33:13
PLEUROPELIS 62:32, 51 62:48
PLEUROTOMA
archimedes Bellardi (see Hemi-
-pleurotomus) 62:12
bertrandi Payr (see Cythereilla) 62:30
bicolor Risso (see Philbertia) 62:24
lymanneformis Kiener (see Daph-
-nella) 62:81
philberti Michaud (see Philbertia 62:24
pleurotomaria Couthouy (see
Conopota) 62:19
pleurotomaria, Conopota 62:19
PLEUROTOMELLA VERRILL, 1873 62:23
62:49
horninea Dall, 1919 62:23
packardi Verrill 62:23
thalassica Dall, 1919 62:23

PLEUROTOMOIDEA Bremi, 1831 62:12, 49:41
calypso (Dall) 1919 62:12, 41
chrysothemis (Dall) 1919 62:12
cymothoe (Dall) 1919 62:12
dinera(Dall) 62:41
cidola (Dall) 1919 62:12
crosina (Dall) 62:41
csihle (Dall) 62:41
curians (Dall) 62:41
esuriens pernaeta (Dall) 62:41
euryania(Dall) 62:41
cuilans (Dall) 62:41
herilla (Dall) 1908 62:12, 41
isogonia (Dall) 62:41
oeceana (Dall) 62:41
oreoniscus (Dall) 1919 62:12
pernata (Dall) 1908 62:12
polystoma (Dall) 1919 62:12
sedillina (Dall) 62:41
xylonia (Dall) 62:41
placata, Cycnotherea 37:15
placata, Eva (see Saxicava 44:31
placata, Thracia 38:8
placata, Cymatotheca 62:32, 43
placata, Incurvata (see Anatina 44:3
placata, Eops. 36:5
placata, Turbonilla 51:21
placata, Odostoma 61:35
PLICTIFUSUS DALL, 1902 50:16, 27
arcticus (Philippi) 1850 50:16
brunnus (Dall) 1877 50:17
griseus (Dall) 1890 50:17 51:63
incisus (Dall) 1919 50:17
johanseni Dall, 1919 50:17
kroyeri (Koller) 1844 50:16
latiornatus (Dall) 1907 50:18
ocalcdromous Dall, 1919 50:17
verkruzoni (Köbel) 1876 60:17
virens (Dall) 1877 50:17
plumbos, Ruthria 50:27
plumula, Lithophaga 37:7 45:18
pluto, Crocaspirea 62:32, 44
pluto, Turbonilla 51:32
PLICTODERMA pacifica Dall, 1871 47:13
PLICTODERMA CUVIER, 1806 47:8
peroni Lamarck, 1819-47:3
PLICTODERMATIDAE 47:8
PODOCERATITUS PHILIPP, 1837 50:5, 4 45:7
decipiens Philippi 50:3
fossleri Brönd, 32:4 45:7
macrochisma (Desh.) 1829 50:5 45:7
50:32
pocilla, Nassarina 51:10 30:2
polare, Saccinum 50:24
polaris Astarte 39: 0 45: 10
polaris Thalina 42: 5
POLINICES MONTFORT, 1819 56: 23, 28
acoenius Dall, 1919 56: 25, 29
aparianus Dall, 1908 56: 25
albus Montfort 56: 28
algidas Gould, 1848 56: 29
altus Arnold, 1903 56: 21
alveolatus (Troschel), 1852 56: 26
bifasciata (Gray) 56: 26
cauranus Ball, 1908 56: 25
caurinus Gould, 1847 56: 29
costatus Ball 56: 25
crassovordianus Ball, 1908 56: 25
crickmagi Falmer & liertlein 56: 26
draconis Ball, 1903 56: 30
dubius (Recluz), 1843 56: 26
glaebula (Reeve), 1855 56: 26
glaucxoides (Sby.) 56: 28
glonlandica (Beck), 1841 56: 29
glauca Ball, 1909 56: 30
intermorata Philipp, 1857 56: 26
josephina (Risso) 56: 30
nesii (Gould), 1847 56: 29, 30
litorinus Dall, 1903 56: 25
macrostoma (Philipp, 1852 56: 26
montevina Dall, 1919 56: 29
nansia (Moller), 1842 56: 32
natrix Brod. & Sby., 1829 56: 25
pallidus Brod. & Sby., 1829
17: 7 56: 29
phananesis (Recluz), 1843 56: 26
pardecanus Dall, 1908 56: 25
philippianus (Nystr), 1845 56: 26
placiformis (Recluz), 1843 56: 25
polilcanus Dall, 1919 56: 29
raviclus (Eydoux & Soulejeit), 1852
56: 26
recluzianus (Desh.), 1839 56: 30
63: 12
recluzianus imperforatus 'Stearns' Dall, 1909 56: 30
rupulumina Pilshry, 1933 56: 26
scutatus (Gould), 1847 56: 25
strobeli Dall, 1903 56: 25
uber Valenciennes, 1833 56: 25, 30
60: 13
unimaculatus Reeve 56: 26
polistes, Bassarius 51: 5
politiana Hucula 23: 11
politianus Polinices 56: 29
POLITOLEBA HERTLEIN & STRONG, 1940 35: 11
politum, Taenostoma 58: 21
politus, Cystiscus 49: 25
polis, Cystiscus 49: 26
politus, Tagelus 49: 25, 48: 23, 24
politus, Volsella 36: 14
politis pallidus, Volsella 36: 14
polista, Oliva spicata 49: 16
polycesta, Spirotropsis 62: 42
polycenstrea, Fleurinotomides 62: 12
polychroma, Barlecia 55: 22-25
polynyma, Spisula 44: 19
polynyma alaskana, Spisula 44: 3, 10, 19
polynyma voyi, Spisula 44: 19
POLYCHYRDAE 15: 13
polyenenus, Terebra 43: 19, 20
POLYPLACOPHORA 63: 2
POLYSCHIDES 46: 14
POLYSTIRA WOODRING, 62: 48
polystrigia, Brocktonia 47: 22, 30 pl. II
fig. 27
pomara, Cythereella 62: 31
POMAULAX Gray, 1850 57: 19
pompolya, Bathyarca 54: 7
poncho, Epitonium 52: 21
ponderosa, Docinna 42: 3, 43: 34, 53: 1
45: 14
pomponia, Halicosteps 60: 19
poronia, Huculana 35: 11
popoza, Lora 62: 41
porosa, Tectarius 56: 11
porcellanum, Skenea 56: 17
porcellanum, Aloidis 44: 29
porcellana, Crepidula 60: 6
POROMYA FORBES, 1844 33: 11-14, 42: 27, 30
anatinoides Forbes, 1844 33: 11
granulata Nystr. & West 38: 11
PORGYACEA 38: 15, 42: 27
PORGYACEIDAE 38: 11 45: 10
porphyria, Oliva 49: 16
porrecta, Lacuna (see L. carinata) 56: 13
porterii, Gerithiopsis 54: 14
porterii, Olivella 49: 20
porterii, Rissoida 56: 2, 3
PORTLANDIA 'Morch', 1855 33: 12 45: 4
portlandica, Balzis 53: 19
POTAMIOTES BRONNART, 1810 54: 25, 33
16: 5
cyclus Dall, 1919 54: 35
incisum (Sowerby) 54: 34
lamarckii Brot., 54: 38
sculptum Sby., 1855 54: 34
POTAMIODEAE 55: 38
poultoni, Eschrichtia 51:27
powelli, Spondylus 52:4
prasinota, Chactotipoidea 17:7
pretorni, Odocestria 61:43, 47
pratormi, Taenihynchus 54:16
prohexagonum, Epitonium 52:27
proparva, Cyclolepas 53:17
pretiosum, Dentalium 46:9,12,17 Fl.1
pribilosensi, Megaritites 58:10
pribiloffensis, Neptunaea 59:21
prilova, Lora 62:21
PRIENNE ADAMS, 1855 59:5
principis, Conus 46:22, 25
principis, Fasciolariia 50:3
principis, Phyllocotus 14:2
PRIOOEPISARCEA 42:27 45:3
proa, Dallina 63:16
procerum, Cantilurus 50:12
procerum, Cardium- Trachycardium 41:21
prodita, Lemilaria 57:2
prodita, Leleis 53:3
productus, Trilocia conica 57:17
proflacus, Tellina 43:16
profundae, Glycymeris 52:13
profundicola, Antiplanes 62:15
profundicola, Alvania 56:50
profundicola, Odostomia 61:43
profundicola, Propsebola 62:18
profundicola, Micranellum 54:40
PRONAPIA DALL, 1859 (see EULALIA H. & A. ADAMS, 1864) 49:6
projectus, Thais emarginata 52:5
prolongata, Volutina 57:5
prolongata, Miodonticus 39:11, 12, 17 46:11
PROHARTMII DALL, 1902 57:37
prodiucus, Odostomia 61:37
proptus, Pecton 28:9
PROTEAMSIUM DE GREGORIO 1864 55:12, 14
PROPEBSIA TREDALE, 1918 62:17
diomedea Bartsch, 1944 62:17
exquieta Bartsch, 1944 62:17
montecalsis Dall, 1919 62:18
nazahensis (Dall), 1919 62:17
nobilis Huiller 62:17
profundicola Bartsch, 1944 62:18
smithi Bartsch, 1944 62:18
turricula (Montagu), 1803 62:17
PROSBRANCHIAE- STEEPPOPOURA 42:24
protenus, Conus 30:6
PROTOBRANCHIA 42:28
PROTOCARA 41:21,27BERRICH, 1845 somiasperum (Desh.) 41:27
nuttalli albescens Dall, 1919 61:43
nuttalli albofuscata Dall, 1919 61:44,45
pu purpurascens Conus 48:24,25
purpurata Olivella 43:17
purpuratum Epitonium 52:20
purpura, Anglia 48:7
purpura, Alma 55:34
purpurata, Aneuropsia 56:33
PURURELLA Dall, 1872 52:8
purpurum, Kittium 54:31
purus, Possanus 55:18
pucio, Misanio 39:4
pustulosa, Harta 39:3
pustulosus, Pecten 35:14
PULSULA J USEMABE, 1864 53:42
californiana (Gray), 1883 55:42
soleri (Sowerby), 1832 53:42
pyca, Olivella 16:1 49:23,24,27
pygmaea, Landois 51:21
pyramidalis, Lera 52:11 52:21
pyramidata, Glio 47:6
PYRAMIDELLAR LA MARE, 1799 47:2
adamsi Carpenter, 1864 61:20,27 16:1,2
comica Adams 16:1
comica variegata Carpenter (see P. adamsi) 61:20 10:1
maculatana (Dall & Bartsch), 1909 61:20
mexicana Dall & Bartsch 61:20,27 16:1
PYRAMIDELLIDAE 61:20 42:25
PYRAMIDELLUS 1798 30:1 51:11,31
castrensis (Smith), 1832 51:12
cribaria (Linn), 39:1
discors (Clark), 30:1
fuscata (Smith), 1832 51:12 30:1
inornata (Smith), 1832 51:11
labiosa (Smith), 1832 51:12
lacusana (Dall), 11:12
majors (Smith), 1832 51:11
partens (Lessem), 1832 51:12
stomataforis (Lessem), 1832 51:11
PYRAMIDE (see COLUMBELLIDAE) 61:10
PYRGEUS (see HARTSCHELII) 61:34
PYREXUS PHILIPPI, 1841 61:30
PYROCHAETA Saco, 1892 61:27
PYRUSTELA nevadensis (Stearns) see PYRUSLOPHIES 51:69
pyridalius Steinmayer, 50:10
pyridaliforius, Conus 48:24,25
pyriformis, Conus 48:24,25
pyriformis, Cypraeolina 49:27,28
Pyulina 17:3
pyriformis, Melampus 48:12
PYROLUSUS NORCH, 1869 50:12
deformis (Reeve), 1847 50:12
haemactus Dall, 1907 50:12
pyrætoma, Engina 50:29
pyrrhula, Mangalia 62:39,46
PYRUS LA PETULA, Broderip 50:27
PYRUS 60:54
PYRUS [NS] 62:42
quadra, Lora 62:22
quadra, Ostentoria 61:43
quadra, Kolleria 57:24,26
quadragenarium, Trachycardium 62:54
45:14 41:21 Cardium.
quadrama, Macoma 47:28,29 38:10,14
quadricuits, Typhus 51:33
quadricostatus, Pogula 57:32
quadricostatus, Cadulus 46:14
quadrifilata, Kittium 54:31 55:8
quadriiformis, Cadulus 46:13,14,17 II.I
quadripatula, Assamia 48:5
quadriseta, Mangalia 62:29,46
quaylea, Poecilium 53:39
quentinensis, Icriillosis 62:47
QUIBULIA TREBAILI, 1929 52:34
quirica, Fuscula (see M. bellotti) 47:42 33:8 46: back p.
quirquini, Crucibulum 56:19,20
quisqualis, Clathurella 62:53,47
quoyana, Vesica 48:2 49:47
quoyii, Atlantia 55:20
quoyii, Bulla (see Vesica quoyana) 48:2
51:64
quoyi, Vesica 62:34
QUOTULA monodonta (Q. & G.), 1852 52:14
radialis, Calyptrecta 60:13
radialis, Iacochiton 17:7
radialis, Lucina 40:17
radialis, Trachites 56:19,20
radiata, Corbicula 47:28
radiata, Glaucus 39:11
radiata, Fuscula 33:11
radiata, Tellina 45:15
radiatum, Crucibulum 56:19
radiatum, Ralfsiaus 54:11
radiatum, Silvia 43:27
radiatum, Solen 43:27
radicata, Gaecophila 51:53
Radula Technica 46:12
radula, Terebra 48:19,20
Radula of West American Mollusks 49:46
radialis, Archetetconica 54:1
RAEVA GRAY, 1835 45:18 37:12

canaliculata (see Anatina 44:3)

raininus, Strombus 15:2

ramate, Arene 57:24,25

ranthus, Conus 30:6

randolphi, Balcıs 55:11

randolphi, Pecten 35:13,14 39:4

randolphi tiliomocosis, Pecten 35:14,14A 39:4

rhelliformis, Argobuccinum 54:7

rangle, Oxyynus 53:20

range, Scaleniostoma 53:18

rassina, Lora 62:22

rathbuni, Coeculina 57:16

ravy, Clathurella 62:39,47

ravy, Philbertia 62:24

ravida, Polinices 56:26

raymond, Balima 53:16

raymond, Haplochiton Nov. 1941

raymond, Odostoma 61:43

raymond, Turboilla 61:24

RECLUIZIA PETIT DE LA SAUSAYE, 1853 53:6

ignis Pilis. & Low, 1832 53:5

rollandiana Gray 53:45

reclusianus, Polinices 56:30

recta, Turboilla 61:22

recta, Volsella 36:13 45:3

recta flavillata, Volsella 38:13 45:3

rectillaminatum, Epitonium 52:31

RECTIFERES BARTSCH, 1944 62:13

sp. 46:22

santacorena (Dall), 1902 62:13

rectirostris, Exiliscidea 50:16

rectirostris, Exarx 51:42

rectus, Dentalium 46:9,13,17 Pl. I

recursa, Strumbina 51:29

recurvirostris, Larex (see H. nigr-

seons) 51:42

recursus, Conus (see C. incurvus)

40:24

recursus, Mytilus 36:11

redondoensis, Alligina 17:6,10 40:23 45:

43:13

redondoensis, Burchia 62:47,11

redondoensis, Carita 47:30,32,33 pl.

pl.II figs. 40,41,42 back p. 48:50

redondoensis, Insularina 33:9,10

redondoensis, Insularina penderi

49: back p. 47:10,22 pl.II figs. 32-37 inc. 48:30

redondoensis, Pseudomalatoma 17:6

redondoensis, Pseudomalatoma semiinf

-lata (see Burchia) 62:11

reddi, Anachis 51:23

reddi, Epitonium 52:27

reeseana, Areca 34:7 39:4

reeseana, Chama 39:19

reeseana, Cerithium 16:4

reflexa, Malcococha 55:15

reflexilabris, Phyllia 48:10

regina, Ameote 49:15

regina, Tegula 57:37 60:39

regina, Turboilla 61:34

regioneetus, Epitonium 52:31

regius, Conus 30:6

regularis, Conus 42:24,25

regularis, Cysticus 49:26,47

regularis, Epitonium 52:27

regularis, Gari 47: back page 43:21

regularis, Helcionostoma 56:18

regularis, Volutosius 50:13

regula, Lora 62:22

regula, Turboilla 61:22

regula, Epitonium 52:32

regula, Calliostoma 57:33

remondii, Megasurcula 62:41,46

remondii, Sullulites 17:8 (see above)

reinaudi, Clithodrillia 62:9

reinaudi, Spiratopsis 62:42

resina, Odostoma 61:43

restorationensis, Protothaca 42:12,13

45:15

retexta, Balcis 53:8

reticulata, Amphissa 17:3 51:63,26

reticulata, Areca 54:5,6

reticulata, Cancellaria 49:4

reticulata, Colubraria 50:27

reticulata, Lora 62:42 63:11 62:22

reticulata, Semelc (see Tellina prof-

ica) 43:16

reticulata, Tegula 57:38

reticulatus, Trimusculus 48:14

reticularis, Oliva 48:46

reticularis, Trachycladina 54:48

retifers, Fornia 40:13,26 45:13

RETFUSUS DALL, 1841 50:17

retiporosum, Epitonium (see E. spong-

icosum) 52:19

retiporosum, Ischnochiton 17:7

RETUSA BROWN, 1828 47:17,18 47:17

harpal Dall 17:18 (see Coleophysis)

obtusa, Montana 47:17

obtusa, turrita Holler, 1842 47:17

pertenua (Mighels), 1843 47:17

semen Reeve, 1856 47:17

reversum, Partulura 54:59

REXITHAEBUS GONERAD, 1869 43:15
RICHSIGLOSSA 42:25 27 29
rhinec, Ophiodermella 62:10
RHINOCACTA 38:14
RHEPIDIGLOSSA 42:25 27 29
RHIZONUS MONTORT 1810 47:13
rhodio, Margarites 58:7
rhodope, Rhodopetona 62:16
rhodope, Spiropleps 62:42
RHODEPERA DALL 1921 57:14
RHODEPOLA BARTSCH 1944 62:16
rhodope (Dall 1919 62:16
RHEMALE JUICE FROHS 42:12
rhombica, Lamellaria 57:2
rhysa, Admete (see Massyla) 17:8
rhysa, Langiida 62:29 49:34
rhysa, Massyla 49:10 47
rhysa, Murex (see P. potri) 17:8
rhysa, Pterynotus (see P. potri)
51:33
rhysa, Solariella 58:6
rhyladium, Epitonium 52:27
rhodium, Fuscinum tumo 50:24
richi, Odoaxoma 61:35
richthofeni, Scecum 56:40
richthofeni, Lucinà 40:6
RICKANAX DALL 1871 47:9
rigaudyi, Tubonilla 61:29
rigida, Clathurella 62:39 49
rimata, Parlecia subtenuis 55:22 25
rimaloides, Schismope 50:23
rinella, Tubonilla 61:29:
ringens, Cantharus 50:12
ringens, Cataca 56:5
RINGCARRDIA 41:22
RINGUEA mazatlanica Carp, 1857 58:22 27
RISQUY Kelsey Dall & Bartsch (see
Rissoina) 56:4
RISSOILLA GRAY 1847 (see JEFFREYSIA)
56:9 47:3
angiliferes (de Folin) 1870 56:6
bakeri Strong 1838 56:6
bifasciata (Carp.,) 1856 56:6
californica Bartsch 1927 56:6
excolpta Bartsch 1920 56:6
johnstoni Baker, Strong, & Hanna
1936 56:6
tumens (Carp.,) 1856 56:6
RISQUIDAE 56:25 34
rissoina, Tubonilla 61:33
RISQUILLA d'Orbigny 1840 47:3 56:2
adamsi Bartsch 1915 56:2 3
allemani Bartsch 1931 56:3 14
bakeri Bartsch 1902 56:2 5
bertholowi Bartsch 1915 56:2 3
boreyi D.H. & S. 56:3
burragei Bartsch 1915 56:2 3
Californica Bartsch 1915 56:2 3
corrosoensis Bartsch 1915 56:2 3
cleangustina C.B. Adams 1925 56:2 4
cleo Bartsch 1915 56:2 5
columbina Bartsch 1915 56:2 5
dina Bartsch 1915 56:2 4
effusa Bartsch 1915 56:2 4
excolpta Bartsch 1915 56:2 4
expansa carp 1855 56:2 4
favia Bartsch 1915 56:2 3
firmae C.B. Adams 1852 56:2 4
fortis C.B. Adams 1852 56:2 4
giana Bartsch 1915 56:2 4
guadalupensis Strong 56:2 4
hamburgi Jordan 56:2 5
helena Bartsch 1915 56:2 4
histia Bartsch 1915 56:2 4
inca d'Orbigny 1840 56:2 4
io Bartsch 1915 56:2 4
james C.B. Adams 1852 56:2 4
kelseyi (Dall & Bartsch) 1902
56:2 4
lapazana Bartsch 1915 56:2 4
laurae de Folin 56:2 4
lamei Strong 56:2 4
mexatlanica Bartsch 1915 56:2 4
melanoides B.H. & S. 56:2 4
mexicana Bartsch 1915 56:2 4
nereina Bartsch 1915 56:2 3
newcomb d'All 1897 56:2 5
penicillaris Bartsch 1915 56:2 4
porteri B.H. & S. 56:2 3
signae Bartsch 1915 56:2 4
stephensi D.H. & S. 56:2 3
stricta Kenke 1950 56:2 4
townsendi Bartsch 1915 56:2 3
willettii Strong 56:2 4
woodwardi Carpenter 1856 56:2 3
zelleri de Folin 1867 56:2 4
ritteri, Odoxoma 61:37
ritteri, Tethys 48:3
ritteri, Tindoria 53:14
ritteri, Fusula
rivera, Fufina 53:16
roberti, Epitonium 52:27
robusta, Moehnia 50:18
robusta, Terebra 48:19 20
robusta, Xenophora 56:34
ROCHEFORTIA VELAIN, 1876 40:9,10,14 41:20
alcantica Dall, 1899 40:15,24 41:20
45:13
australis Velain, 1876 40:14
beringensis Dall, 1916 40:15 45:13
bidentata Montag, 40:11
compressa Dall, 1911 40:15 45:13
ferruginea Dall, 1916 40:15 45:13
golisci Dall, 1916 40:15 45:13
grobnitzki Dall, 1916 40:15 45:13
grippi Dall, 1912 40:15 45:13
pedocana Dall, 1899 40:15,16 41:20
45:13
planae Dall, 1895 40:15, 41:20 45:13
sturnida Carp., 1864 40:15,24 41:20 45:15
rollandi Astarte 39:6 45:10
rollandi Ioxia Dall, 1902 39:6 45:11
rollandiana Reclusia 53:5
rombergia Turris 62:41
rondiniium Bucinum 50:25
roosevelli Terebra 48:19,20
roosevelli Peasieilla 55:11
roperi Kurntia arteaga 62:26,39,45
roperi Terebra 48:19,20
rotida Mitrella 51:13
rosa, Calceis 53:8
rosacea, Acmaea 57:14
rosacea, Columbella 50:1 48:5
rosacea, haminoa virensena 48:4
rosacea, Mitrella 51:63 30:1 51:16-16
rosacea, Solen 42:27
rosae, Cymatosyrinx 62:22,43
rosans, Alvenia 55:33
rosanum, Meraculium 55:40
rosae, Jema 57:14
rosae, Harpa 39:4
rosae, Genopota 62:19
rosas, Culus 50:18
rosellinum, Bucinum 50:26
rosellinum, Cirkulus 58:20
rostrata, Arau 35:9
rostrata, Phaladidea 44:35
rostrata, Volvulella (Volvula) 47:17
ROSELLA semistriata d' Orbigney (see PSEUDOROTELLA) 55:22
rotula, Antiplexus 52:15 45:3
rotundae, Cocorea lurida 51:46
rotundae, Cocorys 54:45
rotundata, Cocrella 57:11 45:8
rotundata, Kellia 40:14
rotundatus, Perostrophon 51:57
rotundus, Volutospius 50:18
ROWELLI, Cooper Carp., 1834 (see TRULUSCUS) 48:14
rowelli, Gerithiopsis 54:17
rowelli, Cochliopa 56:8
rubella, Persicula 49:25
rubida, Clanculus 57:23
rubra, Barlocia 55:31
rubra, Lasaec 40:19,20 41:20
rubra, Volutina 57:3
rubrilina, Eulithidium 57:17,19
rubripes, Senela 43:17,18 46:3
rubrum, Cardium 40:13,19
rubrum, Gastroperon 40:6
rudo, Argobucinum 54:7
ruderalis, Chama 39:11
rudis, Latirina 50:6
rudis, Littorina (see L. saxatilia) 55:11
rudis, Littorina 60:12
rudis, Margarites 50:7
rudis, Placumonanisia 36:3
RUDILAPES CHILMENTII, 1900 42:14 45:15 (see Amygdalina)
rufa, Neosimia 52:42 53:24-27,37-40
rufa, Protothaca 42:12
rufo, Turbonilla 61:30
rufa, Venus (see Protothaca 42:12
rufescens, Halicota 60:17,18 42:6
36:3,14
rufocinereus, Terebra albuscincta 48:19,20
rufocinerea, Terebra albocincta
48:19,20
rufosulcata, Pegula 57:32
rufotincta, Ancus 53:21
rufotincta, Pegula 57:32
rufonodata, Enigma 50:29
rugatum, Bittium 54:31 63:9
rugatuu, Lepidopleurus 17:7
rugifera, Cymatosyrinx 62:22,43
rugifera, Pseudopythina 40:17 45:13
41:20
rugitector, Crassispira 62:32,44
rugitector, Crassispirella 62:12
rugosa, Ancash 51:21
rugosa, Antigone 42:28
rugosa, Crepidula 60:9 56:13
rugosa, Pistaevella 58:24-27
rugosa, Pegula 57:56
rugosa, Venus (see Antigona 42:8
rugoscoplicata, Halicota 47:36
rugosus, Donax 45:20
rugosus, Rasinus (see F. arnoldi) 50:7
rugosus, Mytilus (see Saxicava rugosus 44:31
rugulosa, Anachia 51:22
RUMELLIA 60:34
RUPPELLIIA FLEURLU-BELLEVUE, 1802
42:13 45:16
rupicola, Semole 41:17
rupina, Semole 42:17
rupulimina, Polinicos 56:26
rusca, Baticia 53:27
rustica, Crassispira 62:32, 44
rutile, Balcis 55:10
SARTHEILLA MONTEROSATO, 1890 53:11
bakari Bartsch, 1917 53:11
chatronsensis Bartsch, 1917 53:11
meridionalis Bartsch, 1917 53:11
opalina de Polin, 1867 53:11
piriformis Bargocho 53:11
philocrinica (Bartsch), 1907 53:11
SACCELLA WOODING 53:9
sacco, Jorsonella 62:42
sacerta, Cerithium 16:5, 6
var. hypothyrae Borry 16:6
SILBR LINCOLN 49:38
SULLIEMA DE Polin, 1885 61:35
SALATELLA DALL & BARTSCH, 1909 61:35
salbroca, Villarzia 61:42
salimbo, Batica 56:26
salinasensis, Illitra 49:23
salinasensis, Olivella 49:17
salma, Fasciolaria 50:3
salmonia, Psophidia 42:16, 18 45:16
salmonia, Tellina 43:16 45:16
- 45:3, 6 47: back p.
salmonid, Largurus 56:7
salsa, Tellina 56:16
salmaria, Pseudorotula 56:22
salmaria, Pectinoma 58:18
SANARAGLI (see HUMILIS 42:11
sanctijohannis, Sinum 56:26
sanctorum, Ostostia 61:37
sanctus, Acous 51:24 17:7, 8
sanecia, Toldia 33:13
sanfelipensis, Anachis 51:21
SAPIQUELLA LINTOW, 1793 43:22 45:18
muttallii Conrad, 1837 43:22 52:37
SANGUEZILYNDAE (see CARIDAE 45:18
43:21
sanguinolenta, Santar7 50:12
sanjuanensis, Anachis 56:32
sanjuanensis, Parolea 55:25
sanjuanense, Jittium 56:32
sanjuanensis, Ostostia 64:46
sanjuanense, Terebra 43:19, 20
sanjuanense, Epitonium 52:16
San Luis Obispo County fauna 51:17
santarobertosensis, Hidella 51:14
santarozana, Cerithoidea 54:19
santarosoe, Erycina 40:13 45:15
santarosae, Tellina 43:8, 9 46: back p.
santarosana, Antiplanes 63:43
santarosana, Lurex (see Pterygotus
17:8 51:36
santarosana, Odostoma 61:43
santarosana, Rectiplanes 62:13
santarosana, Spirotripes 17:8
santarosana, Turbonilla 61:24, 34
santarosana, Pterygotus 51:36
sapija, Odostoma 51:36
sapija, Pseudorotula 58:22
sapius, Colus 50:19
sapolitina, Marginella 49:24
SARCOPTERUS ruber Rafinesque (see
Castroptera) 48:6
sarci, Thyasira 39:21
sassetta, Cerithiopsidae 54:20
sauturn, Neptunca 50:21 63:11
sauturn, Odostoma 61:46
sawina, Epitonium 52:30
saxatilis, Littorina (L. radiata) 55:11, 36
50:3 60:12
SAXICAVA FLEURLU de BELLEVUE, 1802
34:31, 33 45:19
arctica (Linnaeus), 1767 44:32 36:12
pholadis (Linnaeus), 1771 43:32
rugosus (Linnaeus), 1767 44:31
SAXICAVELLA MURERIS, 1835 44:31, 33 45:19
pacifici Dall 17:7 44:31
plioca (Mont.) 44:31
SAXICVIDAE 45:19 44:29
saxicola, Entodesma 33:8 45:10
saxicola cylindrica, Entodesma 33:8
SAXIDOMUS CONRAD, 1837 42:18 45:15
gibbosa, Gabbs (see Compsomyx
42:11
giganteus Desh., 1829 42:8, 9, 11
43,12, 36 45:15
giganteus brovius Dall, 1916, 42:9
muttallii Conrad, 1837 42:8, 9 45:15
43:22, 34 52:36
muttallii giganteus, Saxidoma 42:9
saxosus, Turbo 57:20, 21
sayanus, Pecten 55:12
scabat, Plectodun 41:20 38:4, 45:10
scabrum, Niemura 57:13
sacbusculus, Messarius 51:5
sacbusculum, Argofoceum 54:7
SCALA (KLEIN 1753) Bruguière, 1792
(see EPITONIUM) 52:16
scalare, Tagula 30:6
scalariformis, Coralliophila 52:14
scalariformis, Graspedotriton 54:7
scalarina, Ancis 51:21 30:2
scalaride, Conus 43:24, 25
• scalaris, Epitonium 52:18
scalaris, Lara 42:22
scalaris, Entodesma 33:10:45:10
scalaris, Liocyma 42:15 45:15
scalaris, Angia 62:39, 46
SCALEOSTOMA DESHAYES, 1863 53:18
• Scalillation (Bartsch), 1012 53:13
• carinatum Deshayes 53:13
ranga (de Polin), 1867 53:13
SCAFILLERI archiarchi J.J. Rivers, 1891
(see ADEIEPOLON magellanica) 49:28
• seatnisi Dall, 1872 (see Boreo-
• melon) 49:27
SCAFIOPONTA 4:0-20
SCAFIANDER MONTFORT, 1810 49:20-25
• liymarina (Linnaeus) 47:20
willetti Dall, 1919 47:20
SCAFILURIDAE 49:20-25
schofferi, Liocyma 42:15, 16 45:15
sechelli, Acteon 49:1 back p.
seutra, Vatica 45:25
SCAISCOPE JEFFREYS, 1856 59:23
• californica Bartsch 58:23
coronata Watson, 1836 (see S .
californica) 58:23
• rimaloides (Carbe), 1864 58:23
• striatula (Philippi) 50:23
SCHEGOFFICA CORNH, 1856 51:7, 31
SGUZIELERUS CONRAD, 1853 45:18
38:14 44:3, 20
nutallii (Con), 1837 44:3, 20
22:23, 24
nutallii capax (Gould), 1860
41:22
sehrani, Fissurella 30:6
sciohydrotopia martyni 55:27
SEIGUZIELERI HARTSC, 1907 56:20
47:13
bifilata Carpenter 56:18
dalli Bartsch, 1807 50:20, 21
monile Carp, 1857 53:18
monilifera Carp, 56:13
orbis Carp, 56:18
panamensis C.B. Adams, 1852 56:18
parva C.B. Adams, 1852 56:18
subquadrata Carp, 56:18
scissurata, Yoldia 33:12 39:4
P. 91
SCISSURELLA d’OCCIGY, 1824 53:23
chirica Dall, 1919 50:23
costa d’OCCIGY 56:23
Kelseyi Dall, 1905 58:23
SCISSURELLIDAE 56:23
• scintilla, Aranea 57:24, 25
• scintuli, Boreotrophon 51:57
• sclera, Ocenobra 51:50
• scopulorum, Sinum 50:32
• scriplus, Conus 48:24, 25
• SCHOENICULARIA biangulata 43:10
• sculpta, Clathrodon 52:32, 44
• sculptum, Potamides 54:24
• sculpturata, Angelia 52:29
• sculpturatus, Patagonocus 54:44
scurra, Scurria 56:34
SCURRIA
• aeruginosa Had, 1849 56:34
• parasitica, d’Orhi, 1641 56:34
• scurra (Lessen), 1830 56:34
• zebrina (Lessen), 1830 56:34
• scutella, Siphonaria 48:16
• scutulata, Littoria 55:12, 36
• scutum, Lempaea tasculata 57:3.
SCHLESSLI HARRER, 1916 50:22
• dina (Reeve), 1846 50:23 51:31
• Senegal Fodfasts 60:35, 46
• secta, Lactea 43:3, 15, 16, 22
• sectum, Dentaliun 46:11
• secunda, Yoldia 35:13
• sedillina, Pleurotomoides 62:41
• SEGUZIELERI JEFFREYS, 1876 54:8
• formosa Jeffreys 54:8
• caliana Dall, 1919 54:8
• cervula Dall, 1919 54:8
• certoma Dall, 1919 54:8
• livia Dall, 1919 54:8
• SEGUEZIELIDAE 54:8
• SEIILLS H. ADAMS, 1861 54:20 47:2
• assimillata (C.B. Adams), 1852 54:20
dextroversus (Adams & Reeve) 54:2
• montereyensis Bartsch, 1907 54:20
• SEIIILLS SCHULTZ, 1817 45:16, 19 46:17
• californica H. Adams, 1854 45:18
decisa (Con), 1837 43:17
• flavescens Gould, 1851 43:17
• incongrua Carp, 1864 43:18
• incongrua montereyi Arnold, 1903
• pacifica Dall, 1815 49:35 45:17
• pulchra Sowerby, 1832 45:18, 22 49:35
• pulchra montereyi (Arnold), 1903 43:18
SINEM ROEDING, 1798 56:32
 californicum Oldroyd, 1917 (see S. scopulosum) 56:32
 cancrum (Lamarck) 1822 56:26
 debile (Gould) 1832 56:32
 keratium Bell, 1919 56:32
 novyi Dall 56:26
 paxianum Dall, 1919 56:32
 sanctijohannis Pils & Lowe, 1932 56:26
 scopulosum (Conrad) 1849 56:32
 sipho, Siphonaria 48:14
 Siphonaria Sowerby, 1824 48:16
 brachiata Stearns, 1872 48:16 17:3
 costata Sowerby, 1835 48:16
 gigas Sowerby, 1825 48:16
 lesonii Blainville, 1824 48:16
 lincoliana Sowerby 47:23 48:16
 maura Sowerby, 1835 48:16
 maura equilirata Carpenter, 1857 48:16
 maura lecania Philippi, 1846 48:16
 maura polmate Carpenter, 1857 48:16
 satellis Deshayes 48:16
 sipho Sowerby, 1833 48:15
 tenuis Philippi, 1860 48:16
 theridites Carpenter, 1864 48:15
 Siphonodentalidae 46:15
 Siphonoidea, Johnson 50:15
 sirena, Ojathurella 62:33,47
 sitkana, Littorina 55:11,36
 sitkana, Nucama 43:11
 sitkana, Thais lamellosa 52:4
 sitkensis, Odostomia 31:43
 sitkensis, Velutina 57:2
 sitka, lora 62:22,42
 skenea, Limopsis 34:15
 SKHEEA FLEMING, 1825 58:20. SKHEEA
 Acut. (see Skeleopsis) 55:25
 californica (Bartsch), 1907 58:20
 concordia (Bartsch), 1920 58:20
 coronadoensis (Arnold), 1903 58:20
 decussata (Carpenter), 1855 58:17
 granti (B.H. & S.), 1938 58:17
 hannai (Strong & Herleian) 58:17
 humphchu (Strong & Herleian) 58:17
 limulata (Carpenter), 1855 58:17
 lucasiana (B.H. & S.), 1933 58:17
 peregrina (de Polin) 58:17
 seminuda (C.J. Adams), 1852 58:17
 spiritualis B.H. & S., 1838 58:17
 stephensae (B.H. & S.), 1933 58:17
 Skeleopsis Iremale, 1915 56:25
 alaskana Dall, 1919 55:25
 skidegatensis, Odostomia 61:44
 skogesbergi, Turbonilla 61:17,29
 slavini, Triphora 54:11
 slevoni, Epitonium 52:23
 smirna, Actaea 47:11,13,30 7:17,18
 smithii, Antiplanes (see rotula Dall) 62:43
 smithii, Boreotrophon 51:58
 smithii, Margarites 55:10
 smithii, Proporbula 62:18
 smithii, Tegula 57:22
 smithii, Vitrinella 58:20
 smithii, Bulbus 56:33
 smithsoni, Haliotis 60:21
 snodgrassi, Tegula 57:22
 socorroensis, Ares 57:24,25
 sotula, Odostomia 61:59
 solandri, Trivia 60:13,39
 See Pusa 53:42
 Solariella Wood, 1842 58:15
 affinis (Jeffreys) 53:6
 ceratophora Dall, 1896 57:33
 elegantula Dall, 1925 57:23
 equatorialis Dall, 1908 57:33
 galapagana Dall, 1908 57:33
 maculata S. Wood 58:5
 nuda Dall, 1895 56:6
 obscura (Couthouy), 1858 58:6
 pumepcula (Dall), 1919 58:16
 peranambilis Carpenter, 1864 58:5
 rhysa Dall, 1919 58:16
 triplostephanus Dall, 1910 58:5
 varicosa (K. Gold & Adams), 1841 58:5
 SOLARIPÉS CONRAD, 1865 55:22
 arnoldi Bartsch, 1927 55:22
 depressa Lea 55:22
 Solenia LAMARCK, 1818 33:7 42:26 45:9
 agassizii Dall, 1893 35:7 45:3
 johnsoni Dall, 1891 33:7 45:3
 panamensis Dall, 1893 33:7 45:3
 pumicola (Polli) 55:7
 valvulus Carpenter, 1864 33:7 45:3
 SOLAYACIDAE 53:17
 SOLÉN L INAEUS, 1758 45:18 43:26,27
 affinis 43:26,24
 brevis Gould 45:27
 divinos Spengler (see Tagelus) 43:23
 marginatus Pulteney 45:27
 mexicanus Dall 47:28
 radiatus Linaeus (see Silica 43:27
sanguinolentus Gmelin (see San-
aguinaclaria) 45:22.
sicarius Gould, 1850 43:27 48:28
squamus Montagu (see Lepont 40:19
vespertinus Gmelin (see Caru 43:21
vagina Linnæus, 1758 43:27
violacens 43:24.
SOLEI'DAE 45:28 48:18
soleniformis Botula 37:6
solenum Balzini 50:24
solido Aroe 64:5,6
solida, Cancellaria 49:4
solida, Lora 62:22
solida, Actra (see Spisula 44:18
solida, Mancina 30:51,10
solida, Spisula 44:18
solidiscima, Actra (see Spisula 44:19
solidula, Lacuna 55:14,16
solidula, Strombina 51:29
solidula, Tellina 43:13
solitaria, Balzini 53:8
solitaria, Crassispira 62:45
solitaria, Mitra 49:51
Solomon Islands Puna 56:35
soluta, Nepthaea 50:22
solutos, Polinices 50:25
sordida, Hagaritae 58:6
sororae, Palliota 50:22,23
sorex, Corithiopis 54:13
sorexmas, Fusinus cinereus 50:7
southerici, Egalolophus 50:34
sowerby, Colubralia 50:27
sowerbyi, Crassispira 62:32,44
sowerbyi, Lycopina 50:6
spadica, Anachis 51:51
spadicea, Cypraec 46:27
spadicea, Zonaria 52:42
spagana, Huclana 33:11
sparta, Tractolira 48:28
spartus, Nassarius 51:5
spelaiota, Terebra 48:19,20
spectabilis, Corolla 47:7
spectra, Annea (.see A. scabra) 57:13
SPHERUL TURTON, 1822 44:27,38 45:19.
38:12.
binghami Turton, 1822 44:27
fragilis Carp., 1857 44:27
globula Dall, 1919 (see S. pholad-
ideo) 44:27 38:12
guna (Oldroyd), 1918 (see S. phol-
ideo) 44:27, 38:12
ovoidea Carp., 1864 44:27
pholadidea Dall, 1916 44:27
trunculus Dall, 1916 44:27
spicata, Oliva 49:16 50:34
spicata, Cylostoma 50:17
spinosum, Crucibulum 56:19,21
SPINOCEREBRA 30:2
spinos, Bernoa 44:25
SPIRALELLA BLAINVILLE, 1817 47:5
antarctica Forbes 47:5
pacific (Dall), 1871 47:5,30 pl.11
figs. 1,2 17:7
SPIRATELLIDAE 46:24,26 47:5
spiritualis, Skenea 58:17
SPIROGLYPHUS DAUVIN, 1800 54:44
anulatus Daudin 54:43
SPIROSPHERA 62:49,15 (see Antipodines)
adrasia Dall 62:42
agmadera Dall 62:42
amyces Dall 62:42
chyrosothem Dall 62:42
cymothoe Dall 62:42
evando Dall 62:42
herminea Dall 62:42
perversa Gabb 17:18
polycastra Dall 62:42
remaudi Arnold 62:42
rhodope Dall 62:42
rotula Dall 17:8
thalea Dall 17:8
SPIEULA GRAY, 1827 45:18 49:50,51
44:8,17,18
dolabriformis Conrad, 1867 49:47,50
P.L.III 44:7,8,9,14,16,17,18,19
alaskana 44:8
californica Carp. (not Conrad) see S.
catilliformis 44:20,21
californica (see Mactra 44:7
catilliformis Conrad, 1867 44:8,14
deshayesi Conrad, 1868 (see Mactra
nusuta' Gould) 44:7,15
pulchra (Gould), 1850 44:7,8,12,21
49:51
 gigantea (Lam.) 44:19
hesphilli Dall, 1894 44:8-21
47: back p. 49:51
planulata (Con.), 1827 44:7,13
polynyma alaskana Stimpson, 1860
4:19 49:51 46:10,19
polynyma voyi (Gabb), 1860 (see S. P.
alaskana) 42:19
sulida L. 44:13
spitbergeniis, Colus 50:16
spitbergeius, Larra regulata 62:22
splendens, Calliostoma 58:3 17:6,10
splendens, Hallotis (see H. fulgens) 60:20
splendida, Cyphoencyrinus 62:2 43
splendida, Hallotis 65:12
splendida, Hallotis cracherodi 60:17
splendidula, Hiso 53:13
splendidula, Oliva 49:16
splendidum, Dentelliun 46:8,13
SPONGILUS powelli Smiih 39:4
spongiosa, Elasmocella 56:24-27
spongiosa, Epitonium 52:19 17:7
SPORTELLE DESEHYES, 1863 40:9,10,12,24
55:13
californica Dall, 1899 40:24 45:13
dubia Nashayes 40:11,24
spreadborughii, Odostomia 61:44
spuroa, Cardita 59:12
spuroa, Cypraea 39:2,4
spurina, Conus 30:6
squalida, Littorina 55:9,36
squalida, Buccinos 51:10
squama, Crepidula 60:5-9
squamosa, Lepton 40:11,19 (Solen)
squamoser, Turbo 57:20,21
squamiger, Aotea 54:43 53:8
squamulata, Hunicopsis 51:42
squamulifer, Oncabrca 51:46 55:12 22
stagnalis, Auralina 51:10
stagnalis, Ellobium 47:28
stamina, Protothaca 42:12,13,14 43:12
45:15
stamina orbea, Protothaca 42:12,13
stamina petiti, Protothaca 42:12,13
43:34
stamina ruderata, Protothaca 42:12-15
stamina rotiosa, Protothaca 42:12,13
staphylina, Boreostephon 51:53
stearnesiana, Goralithphila 52:14
stearnesiana, Megascurela (see remora-
di) 52:6
stearnai, Arenae acuticostata 57:24,25
stearnai, Cadulus 46:17,17 pl.1
stearnai, Cardita 59:12,13,14 45:11
stearnai, Dictornia 56:36
stearnai, Deoompha 56:19
stearnai, Janellaria 57:2
stearnai, Lytilus 56:10,11 ,LGA
stearnai, Oncabrca 51:45
stearnai, Triphora 54:9
stearnai, Boreoselion 49:27
stearnai, Tachyrhynchus 54:45 55:9
stearnai, Vesicomya 41:27
steanaonai, Volotopsis 50:13
steaonei, Corithiopis 54:15
steaonei, Volotopsis callothinus 50:13
stolleri, Cryptochiton 60:47
stolleri, Turbonilla 61:29
stonostoma, Helicina 53:14
stephensei, Amphitheatrum 56:26
stephensei, Corithiopis 54:19 63:11
stephensei, Odostomia 61:43
stephensei, Rissoina 56:23
stephensei, Skenea 58:17
stephensei, Triphora 54:11
sterna, Pteria 34:48
STROMBYLUS 52:21
STELLETTER BRODERIP, 1832 53:18
astericola Broderip, 1832 53:18
stimpsoni, Aconea 56:7
stimpsoni, Jumula 50:14
stimpsoni, Truncatella 46:11
stimpsoni, Turritellopia acicula 54:47
stimpsonianus, Bassarius 51:5
stipulata, Aconea 58:5 47:25
STRAINSIS 62:41
strenae, Clathurella 62:33,47
strenae, Odostomia 61:44
STROMATITI SVINUMSCHER, 1817 52:5
STREPTOMETER (PR660261H41A)
42:26 25,26 37 30
striata, A.C. Lea 40:21
striata, Bulla 51:64
striata, Lyonsia 33:5,6,10 46:9
striata, Nyia 58:5
striata, Martesia 44:35 (Pholas)
striata, Tarobua 48:19,20
striata, Arenae 57:24,25
striatissimum, Buccinum 51:62 55:18
striatula, Schismoe 52:23
striata, Rissoina 56:21
strigillata, Aconea persona (see A. p.
strigellata) 57:9
strigatella, Aconea persona 57:10
STROMATELLA SWAINSON, 1840 49:28
strigillaturn, Buccinum 50:25 51:31 #7
strigata, Crepidula nivea 60:2
strigata, Angulla 62:25
STRIOTEREBRUM SACC0, 1801 48:18
STRIO TURBONIUM SACC0, 1892 61:22,23,34
Taphri (see Erothula) 42:12
taphria, Buchenla, 53:11 39:4 41:23

taphridnis, Nuttallina 50:15

taphridnis Risso, 1828 39:25, 24 41:20 45:12
alexandria (Dall), 1901 39:24 45:12
50:37
antiquatus Risso 39:24

orbella (see T., orbellus) 39:24
orbellus (Gould), 1852 39:24 45:12
parillus (Conrad) see T., sericatus
39:24

sericatus Risso, 1850 39:24 45:12
(Falanqilla)

subquadrate (Carp.), 1855 39:24
41:20 45:12

TARANTILUS, 1870 62:31
morphi, Malm, 62:31
strongi Arnold, 1903 62:31 17:8
62:47
taravalli, Baldis 53:8
taylori, Sacchararia 37:9 45:8
taylori, Tegula pulillo 57:37
taylori, Turbonilla 61:39
taylorius, Fusinus 50:10
Technique, Rudula 46:2

TEGURRIUS galapagonis Stearns, 1892
53:11
trochiformis Bilby, 30:8
tuberculatus Wood, 30:6
porcata Philipphi, 1844 55:11

TEGURRIUS 42:27:29

TEGURRIUS 47:9

Tegurrius 1800, 1890 56:26
tegula, Cru und, 56:26

TURONIUS Lissot, 1835 57:34 42:25
atra (Lessen), 1830 57:32
aureotincta (forbes), 1852 57:38
barkeri, Ditsch & Kohler, 1839 57:32
brunnea (philipphi), 1848 57:36
60:39
brunnea fluctuosa 60:39

coculoni (J. & G.), Smith, 1877 57:32
coromumata (G. & J. Adams), 1852 57:32

cisini, Jordan 57:32
clagus, Lessen 57:34

curumphelus (Jona), 1844 57:32
fungibrallia (G. & J. Adams), 1854 57:35
fungibrallia aorta (Carp.), 1864 57:35

gallina, Lissot, 1835 57:34
gallina fluctuosa Dall, 1892 57:35
gallina multilobata Stearns, 1893
57:35

gallina tincta (Honshill), 1893 57:35
gallina umbilicata Dall, 1891 57:36
gaudichaudi, hemp, 1854 57:32

globula Carp., 1827 57:32 47:27

incora (Jones), 1843 57:33
indusii, Guerin, 30:16
lignata (Munke), 1850 57:38
luctuosa (d'Orb.), 1841 57:32

lignaris (philipphi), 1844 57:32
mariana (Dall), 1919 57:38

naleloca (Jones), 1844 57:32
notata (Jones), 1844 57:32

montereyi (Kienor), 1850 57:37 52:36
60:39

penemensis (philipphi), 1852

patagonica (P. d'Orb.), 1840 57:32
polliserpentis (Wood), 1826 57:32

pulligo (guerin), 1850 57:37 57:36
pulligo taylori, Oldroyd, 1822 57:37
quadricostatus, Gray, 1828 57:32

regina (Stearns), 1892 57:37 60:39
roticulata (Wood), 1826 57:38

rufofimbria Koch, 57:32

rufofimbria Carp., 1857 57:32
rufofimbria (A. Adams), 1851 57:36
scalace Anton 30:6

smirchi (T. & G.), 1874 57:32
smirchi (Pils, & Vanatta), 1902
57:32

tridentata (P. & K.), 1859 57:32
tegula, Massarius 51:6, 30
telmisch, Olivella 49:17

TERIOSTOMUS, 1852, 1854 47:3 55:21
amploctenus (Carp.), 1866 55:19

carinata (Carp.), 1856 55:18
carinella Dall, 1899 55:18
gallopisi, Jordan 55:18

hempillii, Strong & Hertlein 55:18

invallatum (Carp.), 1864 55:22
limitala (Carp.), 1856 55:13

minuta C. B. Adams, 1852 55:18
oschneri Strong & Hanna 55:18

puliddula (Carp.), 1856 55:18

politum C. B. Adams 58:21

pyriclaiosa (Carp.), 1855 58:13

regularis C. B. Adams, 1855 58:13

salvania Dall, 1899 58:13

subinvallatum Carp., 1856 58:18

supravallatum (Carp.), 1864 58:21

tyconns (Carp.), 1856 58:18
telemon, Angelia 62:39, 46
telemus, Monoculus (see Carolina natana
47:5, 6
TELEODERMAE 43:27 45:10
tellimyells, Petricola 39 41 42:13,19
20 46 :16
TELLINA LINGAEA, 1758 43:5 45:16
bimaculata L. (see Heterodonax 45:22
bodgensis Hinds, 1864 45:8 45:14
huttoni Dall, 1900 45:7 45:16
43:3 46: back p.
calcarea Mallin (see Macoma-
tenera) 43:10
carpertria Dall, 1900 43:7 45:16
compressa Brocchi 43:7
crystallina Wood 43:16
cuspidaet Oliv 38:12
decidua Sowerby, 1868 45:6 45:16
dg:5,6 46: back p.
flammea Montagu, 1803 (see also
Thysanaria 45:20,21
fluminicis Hallor 38:18
gari Zengler (see Gari vulgans
45:21
idae Dall, 1891 43:6 45:16 43:5,6,9
iris (see Macoma inquilina 45:12
lancepata Carp., 1857 43:6 45:16
lanceolata L. 43:6,7
lutea Wood, 1868 43:9 45:16
lutea vanulosa Schrenck, 1861
43:9 45:14
meropsis Dall, 1900 43:6 45:14
46: back p.
meyeri Dunker (see Apolypoetis
43:19
modesta Carp., 1864 43:7 45:14
25:15 47:7,3
oudardii Puyreudoac 43:7
panamensis Dall, 1890 (see T.
tabagensis) 43:7 45:16
panamensis Li, 1930 50:30
proficua Hultenay 43:16
radiata L. 43:5
reticulata Sengler, 43:16
solidula 43:13
saloossa Carp., 1864 43:8 45:14
46: back p.
santoresae Dall, 1900 43:8 45:14
46: back p.
shabogensis Salisbury, 1934 43:7 45:14
46: back p.
virgata L. 42:5
TELLINACETE 43:6
TELLINIDAE LINGEA, 1758 41:3 45:7
TELLINELLA "GRAY" Moré 40:16 43:8
tenebrosa, Puccinum 50:26
teneillum, Puccinum 50:26,27
tenere, Macoma 43:10
tenuina, Protothea 45:15 42:12
tenuicuata, Quelrellia 57:1
tenuis, Puccinum 50:24
tenuiconcha, Dermatoxyta 46:1002:11,17
tenuiscosta, Lora 42:22
tenuicula, Turbonilla 61:22
tenuilirata, Lora 42:22
tenuirostris, Macoma indentata 48
46: back page
tenuis, Amphithelamis 55:26
tenuis, Cypraeacassis 54:5
tenuis, Macula 33:8
tenuis, Siphonaria 40:16
tenuisculptae, Alabina 56:27
tenuisculpta, Cyclostraea 58:17
tenuisculpta, Linga 40:8,8 (Farvil-
-lucina) (LUCINA) 45:12
tenuisculptus, Margarites 58:11
ntenuisculptus, Trophon (see Trophon-
opsis lasius) 51:39 17:13
tenuissima, Lora 62:22
tenuissima, Volvulella 47:18-20,30
PI. XII, fig. 18
tepocana, Brussispira 62:32,44
TELEOMUS BRUGUIERE, 1789 40:13
aciculata, Lem. (see Hazatilana 60:2
clara Hinds, 1844 46:19,20
albus Dall, 1900 50:19,20
albocincta, Carp., 1857 45:10,19
albocincta hindsii, Carp., 1857 40:10,20
albocincta rufocincta, Carp., 1837
48:12,20
albocincta subrufocincta, Carp., 1867 46:19,20
armillata, Hinds, 1844 46:19,20
aspera Hinds, 1842 48:19,20
balsepora Dall, 1900 48:19,20
bactereti Hyst 48:13
bridgeri Dall, 1900 48:19,20
brunneocincta Mills 62:18,20
brunneocincta Mills 62:18,20
bucalognatha Mills, 1932 48:19,20
coriongenis Mills, 62:18,20
crecumilla Li, 1850 48:19,20
frigata Hinds, 1844 48:19,20
galapagensis Dall 48:19,20
gemmata Kiener, 1839 48:19,20
glaucia Hinds, 1844 48:19,20
guaimilicensis B.A. Smith, 1830
48:19,20
incomparabilis Deshayes, 1859 48:19, 20
iola Dillwyn & Lowe, 1832 48:19, 20
iru Hinds & Lowe, 1832 48:19, 20
isoleptra Hinds & Lowe, 1832 48:19, 20
larphormia Hinds, 1845 48:19, 20
ligyrus Hinds, 1832 48:19, 20
lucana Dall, 1908 46:19, 20
lucana Hinds, 1844 48:19, 20
maliac Venatta 48:19, 20
maritcha Hinds, 1832 48:19, 20
melida Hinds 1821 48:19, 20
montigoensis Hinds, 1832 48:19, 20
ornata Gray, 1834 48:19, 20
penamensis Dall, 1908 48:19, 20
paphida Bartsh 48:19, 20
podocana Dall, 1908 48:19, 20 17:3
podocana philippiana Dall, 1920
17:3 48:19, 20
polyconus Hinds, 1844 48:19, 20
reduna Hinds, 1844 48:19, 20
robusta Hinds, 1844 48:19, 20
robusta lingulina Hinds, 1844 48:19, 20
rocoveltii Bartsh, 1839 48:19, 20
rogeri Hinds, 1832 48:19, 20
salpumensis Hinds, 1832 48:19, 20
scalpellum Hinds, 1844 48:19, 20
stricta Sowerby, 1825 48:19, 20
stylus Dall, 1808 46:19, 20
subulata (Linnaeus) 48:18
suberosa Hinds, 1844 48:19, 20
vericosa Hinds, 1844 48:19, 20
veriegata Gray, 1834 48:19, 20
TEREDINIDA 40:15-22 50:2 42:25
TEREDINIDA 44:36
TEREDO LAMARCK, 1763 44:36 37 45:20
beachi Bartsh, 1920 44:36
bipolmula Lam. (see Barksia 44:36
chloratica Gould 44:37
diagonis Bartsh, 1916 44:36 37
novellis Linnaeus, 1758 44:36
turnendi Bartsh, 1932 44:37
TEREDOPS Bartsh, 1921 44:36 45:20
teres, Vartulun 54:29
TERIFS panope Dall, 62:47
zeusippo Dall, 62:47
toryina, Olivella 49:17
tersichora, Amachis (see A. lyrata 31:31
terricula, Codostan 61:39
terson, Ampulla 62:28
teschnidi, Eassarius 51:15
tessellata, Pancya 49:12, 13
tessellata, nitra 49:28
tessellata, Persicula 40:25

tessellata, Amacea 57:7 60:11
testacea, Agaronia 49:23 50:34
testiculus, Cassis 39:3
testudinalis, Amacea (see A. tessellata) 57:7
testudinarius, Conus 30:6
TETHYS LAMARCK, 1758 43:7, 8
TETHYS LAMARCK, 1758 43:7, 8
42:24
49:36
california Cooper, 1833 49:36
dapilana 49:35
leporina Linnaeus 48:7 49:35
mitter Coockell, 1901 40:3
textilis, Lemaea digitalis 57:13
thaca, Chan (see Protothaca 42:12
THALASSODES, 1798 52:5, 6
ascensionis (Gmelin) 39:4
biserialis (Blinville) 1832 52:5
callooena Gray, 1822 52:6
canaliculata (Duclos) 1832 52:4
canaliculata analoga (Forbes) 1850 52:5
canaliculata compressa Dall, 1915 52:4
chocolata Duclos, 1832 52:3
coluellaris Lamarck, 1822 52:8
cressa Blinville, 1832 52:8
delcosartaria d'Orbigny 52:3
deltidea (Lam.) 39:4
emarginata (Deshayes) 1839 52:5
emarginata ostrina (Gould) 1852 52:5
emarginata projecta (Dall) 1815 52:5
fasciatus (Reeve) 39:4
heptagonalis Reeve 51:3
intermedia Kiener 52:8
kiockiformis Duclos, 1832 52:8
lanellosa (Gmelin) 1792 52:5
lanellosa cymica Dall, 1915 52:4
lanellosa franciscana Dall, 1915 52:4
lanellosa hermica Dall, 1915 52:4
lanellosa heptansa Dall, 1915 52:4
lanellosa sitkana Dall, 1915 52:4
lapillus Linnaeus 52:3
lima (Bartyn), 1784 or Gmelin, 1790 52:4
limatoides (Lamarck) 52:3
pataula Linnaeus, 1758 52:8
perennis Dall, 1822 52:8
planospira Lam., 1832 52:8
triangularis Linne, 1832 52:8
triscularis Linne, 1832 52:8
TETHYSIDAE 52:8-10
thalea, Antiplanes 62:15
TORUS TURTON, in CARRINGTON, 1830
53:23
calliana (Dall), 1919 55:23
subcarinata (Montana) 53:23
torosa, Pseudomalatoma 49:46 62:11
tortuosa, Turbonilla 61:26
tortoita, Odostoma 61:36
tortuosa, Ocenebra 51:53
townsendi, Baltei 53:18
townsendi, Eulina 53:16
townsendi, Massarius 51:15
townsendi, Missolina 56:12,3
townsendi, Tereza 44:37
TOXOLOGYSA 42:25,27,29
TRACHYCARDIUM HIRCH, 1853 41:19,21
45:14
procerum Sowerby, 1833 41:22,25
quadragonarium (Conrad) 1837
41:21 45:14 62:04
trachea, Ocenebra 51:51
trachis, Odostoma 61:38
trachism, Alvania 35:3
TRAICTOLLA DALL, 1905 49:28
sparta (Dall), 1895 49:28
TRANSFORMA DALL, 1883 42:3,6 45:14
conradiana Dall 42:6
tentilla (Gould), 1852 42:6,17
43:54 45:11 50:56
transliratum, Buccinum angulocum 50:26
transliratum, Calliotoma dolarius 53:2
translucens, Assiminea 56:13 48:10
translucens, Syncera (see Assiminea)
trapedia, Cardita 39:10
trapezoides, Thracia 37:13 45:9
traski, Acteon 47:9
tremperi, Cymatium corrugatum 54:6
tremperi, Epitomina 52:19
tremperi, Odostoma 61:33
tremperi, Pterynotus 51:35
tremperi, Turbonilla 61:30
tremperiana, Tegrasulca carpenteriana
62:45,41
tremo, inschis 61:22
trevulliana, Lara 62:22
trileata, Lurex (see Pterynotus)
30:4 46:6 60:11 51:35
triangularis, Lorna 50:11 41 57:15
triangularis, Campania 43:19
triangularis, Thais 52:8
triangularis, Boreotrophon 51:56
Trophen 52:10
trilatex, Pterynotus 51:55
TRICUSCUS KLUM, 1753 52:8
tricarinata, Thyasira 45:12 39:21
TRICARINATA, Circulus 58:13
TRICHTHODRiDAE 54:35,36
TRICHTHODRIS BRODERIP & SOWERBY, 1829
54:35 47:2
bicarinata (Sby), 1825 54:25 55:36
borealis (Sby), 1829 54:23 55:38
concinna (Linda), 1833 54:36 55:36
conica Moller, 1882 54:35 55:36
corona Dall, 1860 54:36
insignis Middendorf, 1839 54:36 55:36
Kelley Dall, 1895 54:36
kroyeri Philippi, 1840 54:36
kowana Dall, 1918 54:36
unicarinata Sowerby 54:36
TRICULLA HISSO, 1826 57:17 47:3
compta (Gould), 1835 57:17 60:58
compta producta (Dall), 1905 57:17
compta punctulata (Corp), see
T, pulloides 57:17
perforata Philippi, 1845 57:17
pulloides (Corp), 1845 57:17
pulloides eliattor (Corp), 1865
57:17,19
tricolor, Calliotoma 60:39,46 58:3
39:11
tricostata, Hemitoma 60:29
tricuspida, Cavolina 47:5,50 pl.II 1.4
tridentata, Hylidea 42:29
tridentata, Secula 57:32
tridentata, Turbonilla 61:34
trifida, Jenthuna 54:4
TRICONA pollucida Perry, 49:3
trionae, Crucibulum 56:19,20
TRICHOCARDIUM DALL, 1900 41:19,25 45:14
bicarinata (Sby), 1829 41:25 45:14
Eudosia (a Dall), 1916 41:25
graniferum Brod & Sby, 41:25
TRICOSTOMA BLAINEVILLE, 1826 49:2,6
goniostoma (Sby), 1832 49:8
TRICULINA d'Orb, 1846 38:15 45:10
trilincatus, Helampus 48:12 47:23
TRILOBOPUSIS 15:4 loricata (Gla.) 15:5
trimariana, Crassispina 62:32,4
TRICUSCUSIDAE (GADINIDAE) 43:14
TRICUSCUSUS SCHMIDT, 1018 (GADINIA)
16:2 40:14
manillaris (Limnaeus) 40:14
peruviana (Sowerby), 1835 48:14
roticulatus (Sby), 1835 48:14
TRICUSCUSIDAE 15:3
triphostor, Trophonopsis 51:59
TRICUSCUS BLAINEVILLE, 1826 54:9 47:2
adamsii Bartels, 1807 54:11
alternatus C. H. Adams, 1852 54:11
callipyga Bartsch, 1907 54:8
carbonaria Bartsch, 1907 54:8
catalinaensis Bartsch, 1907 54:9
chamberlaini Baker, 1926 54:11
clathrata Bartsch, 1907 54:11
controrsa Baker, 1926 54:11
cultrata Bartsch, 1926 54:11
dallii Bartsch, 1907 54:11
dissoundensis Baker, 1926 54:11
dovermanni Baker, 1926 54:11
dicemail Bartsch, 1907 54:11
gomatula Blainville 54:8
homophila Bartsch, 1907 54:11
harnai Baker, 1926 54:11
inconscia C. D. Adams, 1852 54:11
johnstoni Baker, 1926 54:11
marchi Strong & Hertlein, 1939 54:11
montoregynensis Bartsch, 1907 54:18
ovari Baker, 1926 54:11
palmeri Strong & Hertlein, 1939 54:11
paragonensis Bartsch, 1907 54:11
pedroana, Bartsch, 1907 54:8
peninularia Bartsch, 1907 54:9
pliny Baker, 1926 54:11
steinmai Bartsch, 1907 54:9
stephansi Baker & Spicer, 1925 54:11
vanduzeci Baker, 1926 54:11
TRIATOMIDAE 54:8-11
triplostephamus, Buccinum castaneum 50:25
triplostephamus, Solariella 58:5
tripsycha, Vomitorius 54:45
TRIPTYCHUS 61:21
triserialis, Thais 52:8
trisiutata, Thaisa 39:21 40:24 45:12
tristis, Nitra 49:29
TRITIA 51:31
TRITON 42:29
TRITONLAL Assct. (see Geonoba) 51:44
barberensis Gabb 17:6, 8 12:2
circumpecta Storms 17:8
cryptantha Dall 12:1 17:8
fucovilata winds 12:1 17:8
fuscocostata Dall, 1919 10 2 12:1
graecilia Storms 17:3
intertessellata clathrata (Storms) 17:8
kudarae Gabb, 17:8
lancei Dall 17:8
scutumifera (Carp. in Gabb) 12:2
TRITONLAL DALL, 1908 54:7
vermillata Dall, 1908 54:7
TRIUMPHUS GRAY, 1867 50:12
dictorius (Gray) 1866, 50:12
subrostratus (Gray) 50:12
TRITIA (see PULULA) 60:13
bouchi, Trochita 56:19, 20
trochiformis, Testarius 50:6
trochiliformis, Xenophora 30:6
TRACHUS 42:24-36:3
argrostomas Gmelin (see Callostrama) 57:54
conulus Linnaeus (see Calliotropis) 55:1
imperialis Gmelin (see Astraea) 57:19
ottleyi Philippi (see Calliotropis) 58:5
rusticus Gmelin (see Omphalius) 57:37
TROCHIDAE norrisii Sorby (see NORRISIA) 57:33
TROCHITES SCHLACHER, 1817 56:19, 20
intermedia d'Orbigny, 1841 56:19, 20
radius Lehmann, 1822 56:19, 20
trochiformis Gmelin, 1791 56:19, 20
trochulus, Cochliopa 56:10
trochus, Colus 56:10
TROCHUS HENTFORT, 1810 51:56 (see Doroce-
tropon, Trophonopsis) 12:2 12:1
albospinosus Willott 17:3
aulenakensis 52:10
bentleyi Dall 17:7
clathratus Linnaeus (see Dorocele-
phinus) 51:46
laciniatus 13:2
magellanicus (Gmelin) 51:53
orphone Gould 17:7
tenuisculptus (see Trophonopsis
lasius) 51:59 17:8
triangulatus Carp, 52:10 17:6, 8
trophi us, Colus 51:64 50:19
trophonius, Volutos phus 50:19
TROPHUS OBERDÖTTER /DÄUTZMANN, and
DOLLFUS, 1882 51:59-52:10, 11
apolyonis (Dall), 1919 51:69
carrinensis (Arnold), 1903 51:59
kamchatkanus (Dall), 1902 51:59
keipi (Strong & J. Hertlein), 1927
51:59, 60
lasius (Dall), 1919 51:69
podocerus (Arnold), 1903 51:59
tolimnius (Dall), 1919 51:59
triphorus (Dall), 1902 51:59
tromalus, Hytilus 46:56
trochus, Amphithalamus 58:26
trochi, Deramatory 48:11 49:10
fluctuosus Wood, 1828 57:23, 21
magnificus Jones, 1847 57:20, 21
mazatlanicus Pilis & Lowe, 1822 57:20, 21
niger Wood, 1828 57:20, 21
piocatus Montagu (see Odostomia) 51:25
pullus Linneaus (see Tricolinis) 57:17
sanguincus L. (see Heteropoma) 57:22
saxosas Wood, 1828 57:20, 21
scalaris L. (see Epitonium) 52:18
squadriger Reeve, 1842 57:20, 21
subulatus Donovan (see Bulima) 53:15
unicus Montagu (see Graphis-Aelis) 55:17

TURBONILLA RISSE, 1826 61:21, 22 47:12
cora D&B, 1909 61:21
adusta D&B, 1909 61:30 17:7
eupynta D&B, 1909 61:23
alaskana D&B, 1909 61:27
almo D&B, 1909 61:30 17:7
alpina D&B, 1909 61:24
ambusta D&B, 1909 61:33
antomanda D&B, 1909 61:30
antestriata D&B, 1907 61:30
cragoni D&B, 1909 61:30 17:7
crata D&B, 1909 61:35 61:33
crosta D&B, 1909 61:24
asser D&B, 1909 61:24
atritta D&B, 1909 61:30
aurantia Carp., 1864 61:27
auricoma D&B, 1909 61:30
bakeri Bartsch, 1912 61:25
barkleyensis Bartsch, 1917 61:25
berryi D&B, 1907 61:27
burchi Gordon, 1933 61:17, 13 17:6, 9
buttoni D&B, 1909 61:25
cillia D&B, 1909 61:31
collimone Bartsch, 1912 61:31
campionae Philippi 61:22
canadensis Bartsch, 1917 61:25
canfieldi D&B, 1907 61:1
 carpentori D&B, 1909 61:25
 castancilla Dall, 17:17 61:1
catalinensis D&B, 1909 61:33
cayucosensis Willett, 1929 61:18, 25
carolo Carp., 1864 61:27
clarinda Bartsch, 1912 61:23
cloentina Bartsch, 1927 61:33
delmontana Bartsch, 1937 61:31
dioscoris D&B, 1909 61:22
dinora Bartsch, 1912 61:25
dora Bartsch, 1917 61:33
Bartsh, 1917: 61:31

gibbiana Cooper, 1570: 61:23

gallanoi D&B, 1809: 61:25

gilli D&B, 1807: 61:22

gilli delmontensis D&B, 1807: 61:22

ploriosa, Bartsh, 1912: 61:27

gaulidi D&B, 1809: 61:27

grippi Bartsh, 1812: 61:31

halia D&B, 1809: 61:26

halibrota D&B, 1809: 61:26

halisteropta D&B, 1809: 61:28

heterolepha D&B, 1809: 61:24

humerosa D&B, 1809: 61:25

hypolispa D&B, 1809: 61:23

ilfe Bartsh, 1827: 61:29

ina Bartsh, 1817: 61:31

ista Bartsh, 1817: 61:31

jewetti D&B, 1809: 61:32

keopi D&B, 1809, 61:23

kolsayi D&B, 1809: 61:24

kincaidi Bartsh, 1821: 61:26

lunolata Verpl, 1864: 61:34

liturwana, D&B, 1809: 61:23

lordi, E.A. Smith, 1830: 61:34

lopoi D&B, 1803: 61:23

lyali D&B, 1807: 61:23

macumi D&B, 1810: 61:28

mid endorific Bartsh, 1827: 61:23

mioperculatus Sacco 61:27

merchi D&B, 1807: 61:32

muricatoideus D&B, 1807: 61:24

mord D&B, 1809, 61:32

mordcrib D&B, 1809: 61:23

muttingi D&B, 1809: 61:22

obesa D&B, 1807: 61:32

crepuscalis D&B, 1807: 61:29

peinei, D&B, 1809: 61:39

paucilirata Carp., 61:35

pedraoa D&B, 163: 61:29

pendalopha D&B, 163: 61:34

periscelida D&B, 163: 61:34

poea D&B, 1810: 61:29

plicatula hisso, 1623: 61:21

pluto D&B, 1809: 61:32

profundicala D&B, 1809: 61:26

pugetensis Bartsh, 1917: 61:29

reymondi D&B, 1809: 61:24

ropta D&B, 1809: 61:32

regina D&B, 1809: 61:34

ridgwayi D&B, 1809: 61:29

ricketta D&B, 1810: 61:29

rissoina (Adamu), 61:33

rufo Philippi 61:50

scutarsana D&B, 1809: 61:34, 24

scuca D&B, 1807: 61:28

shayakonisa Bartsh, 1827: 61:29

siuna D&B, 1809: 61:32

simpsoni D&B, 1809: 61:23

skogeborgi Strong, 1837: 61:17, 29

stelleari Bartsh, 1827: 61:29

strongi Willett, 1851: 61:16, 17, 20

styline Carp., 1865: 61:28

subangulata Carp., 61:34

swani D&B, 1809: 61:35

talina D&B, 1810: 61:29

taylori D&B, 1807: 61:29

tenucula Gould, 1853: 61:22

tenucula subangulata, 61:22

torguta Gould, 1833: 61:26

trepori Bartsh, 1817: 61:20

triquetata Carp., 1864: 61:34

typica D&B, 1811

valdai D&B, 1807: 61:30

vanquoverensis Baird, 1855: 61:26

vexativa D&B, 1809: 61:32

victoriana D&B, 1807: 61:29

virgo Carp., 1864: 61:33

waldei D&B, 1809: 61:33

wickwardi D&B, 1809: 1:33

TURCICA A. ADAMS, 1854: 56:4

coffea (Gabb), 1865: 56:4 61:39

monilifora A. Adams 56:4

TURCICULA DALL, 1861: 56:4

cruenta Reeve 62:32, 41

aroida Dall 62:32, 41

bairdii Dall, 1889: 60:4

TURCICULA

dolenta Dall 62:32, 41

fusinella Dall 62:32, 41

imperialis (Dall), 60:4

laevina Dall 62:32, 41

libya Dall 62:32, 41

modonaldi Dall 1889 57:33

maculosa Sowerby 62:32, 41

maura Sowerby 62:32, 41

nigricans Dall 62:32, 41

turgida, Regesardia 58:15

turgida, Pomona 47; back p. 41:30, 51

turneri Aquilonaria 56:15, 16

turricula, Propheba 62:17

TURCICULA 62:47
TURRITAS 50:5 62:1-52
TURRILIS 62:41
albicarinata Sowerby (see T. nobilis 62:41
gemmata Hinds 62:41
nobilis Hinds 62:41
oxytropis Sowerby 62:41
pecta (Bock) Reeve 62:41
rosmbergii Morch 62:41
turrítata Acalis 53:17
turrítata Alabina 54:27
turrítata Copenbra 51:43
turrítata Kotsua obtusa 47:17
turrítata Stróbina 51:29
TURRITELLARIA Lamarck, 1799 54:46
cooperi Carp., 1864 54:47 55:3
jewettii Carp. (see T. pedrocnassus) 54:46
lacca Müller (see Tachyrhynchus) 54:47
lanceolata Valenciennes 47:27
mariana Dall, 1902 54:46
nobilis Ying, 1931 54:46
pedrocnassus Applin, 1941 (T. jewettii 54:46 55:9
TURRITELLIDAE 54:45-48
TURRITELLOPSIS G. O. Sars, 1878 54:47
cicula stimpsoni Dall, 1919 54:47
TURRITOMA MARTEN, 1941 62:17
TURRITOMON Dall, 1901 54:46
TURTONIA Alder, 1848 40:9,10,20,25
45:13
minuta (Fabricius), 1760 40:20
45:13
 occidentalis Dall, 1871 40:20 45:13
turvorri Kalliottis fulgans 60:20
TILOPHINA Räthl, 1819 44:3
citrina Johnston, 1844 43:8
fungica Gabb, 1863 44:8
punctulata Ráthl, 1819 48:9
TILOPHINIDAE 48:8
TITUS MONITOR, 1810 51:30
chronus Broderip, 1832 51:38
cumingii Brod., 1832 51:38
fimbriatus A. Adams, 1853 51:38
fordi Pietsch, 38:6
grandis A. Adams, 1854 51:38
latipennis Dall, 1919 51:38
lowi Pietsch 51:38
martiria Dall 51:38
pinnatus Brod. 51:38
quadra tus Hinds, 1843 51:38
typical Sulithidium 57:17,18
typica, Turbonilla 61:21
typus, Cuspidaria 50:12
uber, Polinices 60:13 56:25,30
uddevallensis, Cypra truncata 50:33
ubilibicata Tegula gallina 57:36
ubilibicata, Margarites 58:11
ubilibicata, Sulithidium 57:17
ubronata, Neumaea digitalis 57:13
ubrellum, Crucibulum 56:19,20
ubrala, Cardita 59:12,15 45:11
ubernalens Masayla 49:18,9
ubernalens, Odostoma 61:44
ubrincata Microcitharia 51:11
ubranae, Adnato centroura 49:15
ubranae, Aphichosa 51:27 17:3
ubranae, Astraea 60:39
ubranae, Brunnea 50:14
ubranae, Natella 56:26
ubranae, Chione 42:9,10 45:15
ubranae, Olivella 49:17
ubranae, Buccinum 50:23 #7
ubranae, Astraea 60:39 57:19,20
ubranae, Cantbura 50:12
ubranae, Ctenodonta 57:15 45:9
ubranae, Natina 46:3
unguiforbs, Crepidula 60:4-9
unguis Astraea 57:20,21
unguis, Calyptraea 56:19-22
UNGULIDAE 39:24 40:9 45:12
unguicarinata, Trichotropsis 54:36
unicolor, Littorina 51:14
unifasciata, Lacoa 55:15
unifasciata, Mitrella 51:14
unifasciata, Epitonium 52:23
uniculatus, Polinices 56:26
uniculatus, Pedipes 56:47 49:47
unicolor, Grassaspire 62:46
unicolor, Natilia chemitii 56:25
uniculatus, Olivus 62:43,45
unicolor, Masayla 49:18,9
uniculatus, Pedipes 48:11
urocula, Cancella 49:5
urocula, Cancella, 49:5
UROideos STIMPSON, 1865 51:54
vicinus (Sey), 1822 51:64
usta, Pelania (see Turba 39:24
URTICULUS (Brug.) (COLEOPHYSES) 47:15
UVANILLA 57:21
vagina, Solen 43:27
vaginata, Lacoa 55:15
vaginatus, Linopsis 34:5
valdozi, Odostoma 61:44 17:7
valdozi, Turbo nella 61:30
valeronas, Alvea 55:30
valeronas, Cylindica 47:25
valida, Serithium 16:4,5,6
validum, Serithium (see varicosum
VESICA SWAINSON, 1840 47:10, 21 52:5
55:11 60:12-15

vouliana (Pilsbry), 1893 40:2 49:14
52:27 62:54

punctulata (A. Adams), 1850 46:2

quoyana (Dall), 1819 46:2 49:17

quoyi 52:47

VESICIDAE 66:12-15

VESICOMYA Dall., 1886 41:27-29 41:19

atlantica (Smith) see also Callaecardia 41:27

igias Dall, 1886 41:28 45:14

leptula (Dall), 1886 41:27 45:14

cornis Dall, 1896 41:27 45:14

vesicula, Haminoa 42:27 46:14

VESICOMYIDAE 41:27, 28 45:12

vesicula, Haminoa 42:27 46:14

VESPERICOLA pinicola Berry 15:3

armigera Macy 15:3

cornina 16:3

cornina pinicola 15:3

depressa 15:3

hapi Berry 15:3

labiosa 16:3

latilabrum 15:3

megasoma Pilsbry 15:3

oria 15:3

pinicola 15:3

sasta 16:3

siierrana Berry 15:3

vespertina, Ostrea 36:11

vespertinus, Solen 42:21

vestita, Torellia 57:4

vestita, Cyrtium 56:7

vesuviana, Turbonilla 61:32

vexillata, Tritoncharpa 54:7

vexillum, Ancilliss 51:21

vibax, Centharus 50:12

vicella, Hemileurotomia 60:47

vicula, Odostomia 61:38

victoriana, Turbonilla 61:30

vidleri, Noosimia 53:23-27, 37-40

56:7

villopinni, Conus 30:6

villoser, Asthenothaerus 57:4 39:5

55:9

vinosa, Laguna 56:14

vinosa, Odostomia 61:28

vinosa, antiplanus 62:15

vinosa, Neptunea 50:21

vivacia, Cornuilla 52:11

vivacia, Jorulina 53:3

vivacia, Lora 62:22

vivacia, Serenaria 42:10

vivacia, Solen 48:24
viridula, Plicifusus 59:17
viridess, Melinoneiell 60:24, 26
virgoevch, Echinobranch 48:3, 4 49:47
virita, Tellina 43:6
virginalia, Odontaster 61:33
virginica, Ostrea 34:12
virg, Turboinella 61:33
viridiss, Axinopepis 39:22 40:24 45:12
viridiss, Lycya 42:15, 16 43:34 45:15
viridizens, Fussia 54:8
viridula, Acmaea 58:15
viridula, Russian 51:31 50:24
vitellina, Eroto 53:42
vitrea, Corolla 47:25, 26
vitrail, Decydium 37:3
VITRINELLII C. F. Adams, 1850 56:11
VITRINELLII (see CYCLOSTRATILIDAE) 57:11-23
vittatus, Comus 42:24, 25
vittata, Eocenebra 61:23
vitrinella, Slitens, 1840 51:42
vuln. rosa, King 61:42
VOLVA A 12:71
voluca, Fissurrella 60:24, 26
VOLVELLA SCOPOLI 1777 (Modiolus). 36:6, 9, 12 45:17
volar (Conch) 1837 56:12, 13 45:7
volaris (Conch) 52:57
demissana, Dillwyn 1917 36:15 45:3
diagonea (Dall) 1911 30:15 39:4
formica (Carp.) 1864 36:12, 14 49:8
sociola, Linnneus 1758 32:12, 13
palisata (Dall) 1916 36:14 39:4
politis, Verrill & Smith 1880 36:14
politis, palidus Oldroyd 36:14
recta (Coxe) 1857 36:15 45:7
recta, Milhailata (Gould) 1850 36:13 43:9 52:36
son minus, Ovace 39:13
Voluta 46:3
volutellina Solander (Adelomelon) 49:27
denticulata, Hanta (see Phytia) 48:49
discors, Chelin 30:1

roticulata, Monnaeus (see Cerithia) 49:4
volutella, Olivella 49:17
VOLUMIFERA FISCHER, 1856 50:26
volutella (Eudderoff) 1828 50:26
volutella, acuminata Dall, 1871 50:27
vormic (Jay) 1855 50:26
VOLTIDAE 49:27, 28
VOLUMOSA CRAY, 1857 49:23
volutana, Dall, 1892 49:23
VOLUMOSUS BORCH, 1857 50:16
volutus, Dall, 1874 50:13
vorticosus, (Bard, 1843 50:15
vorticosus, f Dall, 1891 50:15
vorticosus, nobilis (Bard) 1868 50:13
vorticosus, Dall, 1877 50:15
vorticosus, stenostrati (Dall) 1884 50:15
vorticosus, Dall, 1891 50:13
vorticosus, Dall, 1891 50:13
vorticosus, cotula, 1873 50:12
vorticosus, Dall, 1891 50:13
vorticosus, Dall, 1891 50:13
vorticosus, Dall, 1891 50:13
vorticosus, Dall, 1892 50:13
VOLVELLA NEWCOM 1891 47:17-20 47:12
volutella, Dall, 1919 47:18-20 30:11 fig. 17:3
volutella, Dall, 1919 47:18, 20
volutella, Dall, 1919 47:18, 20
catharia, Dall, 1919 47:18, 20
camberelli, Dall, 1871 47:18-20 17:3
cylindrica (Carp.) 1863 47:18-20
pl. II, fig. 17:13
lowi, Strong & Bartolin, 1897 47:18-20
rostrata (C. Adams) 47:17
paramia, Dall 47:19:20
tenuissima, Willett, 1941 47:18-20, 30:11 fig. 18
vorticifera, Margarita 56:7
voyi, Antiplana 62:23
voyi, Callista (see Spicula 44:19
vulgaris, Cart 43:21
vulgaris, Volutina 67:3
wallalensis, Halotis 63:11 as ruf-
fascens 60:13
washingtoni, Xylophaga 44:36
washingtoni, Odontaster 61:16
watszone, Portzilium 40:9, 13, 17 pl. I
weigmanni, Cymatium 54:7
wotti, Turboinella 61:33
wothori, Acteocina 47:12
willettii, Asteria 39:5,6 45:10
willettii, Cerithiopsis 54:19
willettii, Epitonium 52:27
willettii, Odostoma 61:44
willettii, Rissoina 56:2-4
willettii, Scaphander 47:20
willettii, Suavopedilia 62:9
WILLETTIA GORDON, 1839 55:28
WILLIAM MONTGOMERY, 1864 45:15

galapagana Dall, 1899 48:16
gussoni di Costa 48:15
peltoïdes (Corp.), 1864 17:8 48:16
vernalis (Dall), 1870 48:16 17:3
williamsoni, Vitrinella 58:11
winslowi, Arene 57:24,25
woodiana, Lora 62:22
woodworthi, Massyla 49:9,1,12
woodwardi, Rissoina 56:2,3
wroblewskii, Opalia 52:40 52:16

xanthicus, Conus (see C. fergusoni) 48:24
xantusi, Cyclolitoma 58:17
xantusi, Epitonium 52:23
xenic, Mitrella 51:14
xenicus, Aesopus 51:24
xeno, Hessarina 52:10

XYLOPHAGA conciliophora Born (in X. trochoïformis) 30:6
robusta Verrill, 1870 56:34
ximines, Conus 48:24,25
xylona, Fleurotomoides 62:41

XYLOPHAGA TURTON, 1822 45:20 44:36
californica Bartech, 1921 44:36
dorsalis Turton, 1822 44:36
mexicana Dall, 1909 44:36
washingtona Bartech, 1921 44:36
xylophaga, Martesia 44:35
xystrum, Sulcoretusa 47:16

yatesii, Hemitoma (see H. bella) 60:29
yescensia, Pecten 35:8
yod, Belais 53:8

YOLDIA HOLLER, 1842 33:11,12,14 45:4
beringiana Dall, 1916 33:13 45:4
casae Dall, 1916 33:13 45:4
cocinella Dall, 1916 33:13 45:4
coperi Gab, 1865 33:13 45:4
ensifera Dall, 1897 33:12

ensifera plena Dall, 1903 33:12
gardneri Olaryd, 1935 33:12
intermedia Sars, 1865 33:13 45:4
limatula Say, 1851 33:12 45:4
limatula gardneri Olaryd, 1935 33:12 45:4
martyriae Dall, 1897 33:12 45:4
montreyensis Dall, 1895 33:13 45:4
myalis Gouithou, 1838 33:12 45:4
oricia Dall, 1916 33:13 45:4
sesesia Dall, 1916 33:13 45:4
scissurata Dall, 1897 33:12 39:4

45:4
secunda Dall, 1916 33:13 45:4
sominuda Dall, 1871 33:12
siligua Reeve, 1855 33:13 45:4
50:37
thraciformis Storer, 1838 33:13 45:4
vancouverensis Smith, 1860 33:13 45:4
zoldiformis, Macoma 47:30,33 pl.11 f.49
49:47; back p. 45:4,15 46: back p

YOLDIALLA 33:12 45:4
youngi, Odostoma 61:44

zebra, Mitra 49:28
ZAMARRAINA Pilsky & Lowe, 1932 50:2
zealandica, Inomia 36:13
zebra, Littorina 55:11
zebra, Mitra 49:28
zebrina, Scurria 56:34
ZEIDOROA flabellum Dall, 1902 56:12
zeltneri, Rissoina 56:2-4
zebrina, Epitonium 52:33
zeteki, Barloea 55:22-25
zeteki, Cylichna 47:25
zeteki, Detracia 48:14
zeteki, Epitonium 52:27
ZEITKIN, Dall 62:51

denticulata Dall 62:42
zeuxippe, Ture 62:47
ziozaco, Littorina 55:11
ZIKFUN, OR.Y, 1842 44:27,33,37 45:20
crispatus (Linnaceus) 44:33
pilsbryi Lowe, 1931 45:32
ZLEYPHINUS OR.Y, 1843 58:1
zonalis, Olivella 49:17
ZON., Rill., spadicea (Swainson) 53:42
zonata, Engino 50:28
zonata, Velutina 57:3
zonatula, Olivella 49:17
zonulata, Cassispina 62:45
ZYGOBER.NCHI, 42:25p,27,29